
The function of the brain is incredibly complex.

## Computer simulation is one way to begin to understand brain function.

If you are interested in an independent study on computational neuroscience, then enroll in:

MCB 493 section TJA: Neural Systems Modeling



## **Neural Systems Modeling**

An independent study course in using computers to model the nervous system

Each week students will learn to use a new modeling paradigm, and will learn the relevance of that paradigm for understanding real neural systems. Students will work on their own from a tutorial-style textbook, and will meet with the instructor once weekly to work out programming details and to discuss the implications of the simulations.

| Instructor:       | Thomas J. Anastasio<br>Associate Professor of Molecular and Integrative Physiology<br>email: tja@illinois.edu                   |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Required text:    | title:Tutorial on Neural Systems Modelingauthor:Thomas J. Anastasiopublisher:Sinauer Associatespub year:2010                    |
| Meeting times:    | Wednesday 3:30-4:30pm                                                                                                           |
| Meeting location: | depends on enrollment and will be announced                                                                                     |
| Work required:    | Completion of weekly computer programming assignments<br>and submission of write-ups for each assignment                        |
| Grading method:   | Straight letter grade (A, B, C, D, F).                                                                                          |
| Class policy:     | Homeworks are assigned each Monday and are due the following<br>Monday by midnight. Late write-ups will not be accepted.        |
| Background:       | MCB 314 (Intro to Neurobiology), CS 110 (Programming Lab),<br>Math 124 (Finite Math), or equivalents, or concent of instructor. |

## **Topics covered:**

- 1. Overview of neural systems and computer modeling
- 2. Abstract neuron models and simple neural circuits
- 3. Feed-forward and recurrent lateral inhibition
- 4. Covariance learning and Hopfield networks
- 5. Unsupervised learning and self-organizing maps
- 6. Supervised learning and back-propagation
- 7. Reinforcement learning and associative conditioning
- 8. Informational capacity of neural networks
- 9. Estimation of probabilities by neural networks
- 10. Recurrent back-propagation and time series learning
- 11. Sequential decisions and temporal difference learning
- 12. Predictor-corrector networks and temporal inference
- 13. Genetic algorithms and neural networks
- 14. Review and case studies