Cellular Injury, Necrosis, Apoptosis
Cell injury results when cells are stressed and can no longer adapt.

Injury may progress through a reversible stage.

Diagram:

- NORMAL CELL (homeostasis)
 - Stress
 - Injurious stimulus

- ADAPTATION
 - Inability to adapt

- CELL INJURY
 - Severe, progressive

- IRREVERSIBLE INJURY
 - NECROSIS
 - CELL DEATH
 - APOPTOSIS

- REVERSIBLE INJURY
 - Mild, transient

Copyright © 2010 by Saunders, an imprint of Elsevier Inc.
Reduced oxidative phosphorylation with resultant depletion of energy stores in the form of adenosine triphosphate (ATP)

Cellular swelling caused by changes in ion concentrations and water influx
Cell Death

Necrosis- pathologic

Damage to membranes is severe, lysosomal enzymes enter the cytoplasm and digest the cell, and cellular contents leak out

Apoptosis- normal and pathologic

DNA or proteins are damaged beyond repair, the cell kills itself characterized by nuclear dissolution, fragmentation of the cell without complete loss of membrane integrity

Autophagy- normal and pathologic
Causes of Cell Injury

Oxygen Deprivation
Hypoxia is a deficiency of oxygen that can result in a reduction in aerobic oxidative respiration. Extremely important common cause of cell injury/cell death.

Causes include reduced blood flow (ischemia), inadequate oxygenation of the blood, decreased blood oxygen-carrying capacity.

Physical Agents
Mechanical trauma, extremes of temperature (burns and deep cold), sudden changes in atmospheric pressure, radiation, and electric shock.

Chemical Agents and Drugs

Infectious Agents

Immunologic Reactions

Genetic Derangements

Nutritional Imbalances
Protein-calorie and/or vitamin deficiencies. Nutritional excesses (overnutrition)
FIGURE 1–7 Sequential development of biochemical and morphologic changes in cell injury. Cells may become rapidly nonfunctional after the onset of injury, although they are still viable, with potentially reversible damage; a longer duration of injury may eventually lead to irreversible injury and cell death. Note that irreversible biochemical alterations may cause cell death, and typically this precedes ultrastructural, light microscopic, and grossly visible morphologic changes.

Copyright © 2010 by Saunders, an imprint of Elsevier Inc.
FIGURE 1-8 Schematic illustration of the morphologic changes in cell injury culminating in necrosis or apoptosis.

Copyright © 2010 by Saunders, an imprint of Elsevier Inc.
TABLE 1.2 -- Features of Necrosis and Apoptosis

<table>
<thead>
<tr>
<th>Feature</th>
<th>Necrosis</th>
<th>Apoptosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell size</td>
<td>Enlarged (swelling)</td>
<td>Reduced (shrinkage)</td>
</tr>
<tr>
<td>Nucleus</td>
<td>Pyknosis → karyorrhexis → karyolysis</td>
<td>Fragmentation into nucleosome-size fragments</td>
</tr>
<tr>
<td>Plasma membrane</td>
<td>Disrupted</td>
<td>Intact; altered structure, especially orientation of lipids</td>
</tr>
<tr>
<td>Cellular contents</td>
<td>Enzymatic digestion; may leak out of cell</td>
<td>Intact; may be released in apoptotic bodies</td>
</tr>
<tr>
<td>Adherent microvilli</td>
<td>Frequent</td>
<td>No</td>
</tr>
<tr>
<td>Physiologic or pathologic role</td>
<td>Invariably pathologic (culmination of irreversible cell injury)</td>
<td>Often physiologic, means of eliminating unwanted cells; may be pathologic after some forms of cell injury, especially DNA damage</td>
</tr>
</tbody>
</table>

Differential features of apoptosis and necrosis

<table>
<thead>
<tr>
<th>Apoptosis</th>
<th>Necrosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affects single cells</td>
<td>Affects groups of neighboring cells</td>
</tr>
<tr>
<td>No inflammatory response</td>
<td>Significant inflammatory response</td>
</tr>
<tr>
<td>Cell shrinkage</td>
<td>Cell swelling</td>
</tr>
<tr>
<td>Membrane blebbing but integrity maintained</td>
<td>Loss of membrane integrity</td>
</tr>
<tr>
<td>Increased mitochondria membrane permeability, release of proapoptotic proteins and formation of apoptotic bodies</td>
<td>Organelle swelling and lysosomal leakage</td>
</tr>
<tr>
<td>Chromatin condensation and non-random DNA fragmentation</td>
<td>Random degradation of DNA</td>
</tr>
<tr>
<td>Apoptotic bodies ingested by neighboring cells</td>
<td>Lysed cells ingested by macrophages</td>
</tr>
</tbody>
</table>
Normal kidney tubules

- Epithelial cells stain evenly pink (eosinophilic) in cytoplasm, with purple, basophilic, nucleic acids confined to the nuclei.
- Apical surfaces are ciliated.
- Interstitia not infiltrated with immune cells nor congested with proteins.
Swollen kidney tubules

- Increased eosinophilic staining
- Decreased basophilic staining (RNA)
- Plasma membrane rounding, blebbing, loss of cilia, due to loss of connections with cytoskeleton
- Integrity of tubules degrading, but basement membranes intact
- Nuclei largely intact, slightly narrowed, pyknotic
How much can a cell swell?

Boudreault F, Grygorczyk R J Physiol 2004;561:499-513

©2004 by The Physiological Society
Cellular swelling (synonyms: hydropic change, vacuolar degeneration, cellular edema) is an acute reversible change resulting as a response to nonlethal injuries. It is an intracytoplasmic accumulation of water due to incapacity of the cells to maintain the ionic and fluid homeostasis. It is easy to be observed in parenchymal organs: liver (hepatitis, hypoxia), kidney (shock), myocardium (hypoxia, phosphate intoxication). It may be local or diffuse, affecting the whole organ.
Intracellular accumulations of a variety of materials can occur in response to cellular injury. Here is fatty metamorphosis (fatty change) of the liver in which deranged lipoprotein transport from injury (most often alcoholism) leads to accumulation of lipid in the cytoplasm of hepatocytes.
Necrotic kidney tubules

- Cellular fragmentation
- Loss and fading of nuclei--karyolysis
- Burst membranes
- Loss of tissue architecture
Necrosis

The morphologic appearance of necrosis is the result of denaturation of intracellular proteins and enzymatic digestion.

Necrotic cells are unable to maintain membrane integrity and their contents often leak out, a process that may elicit inflammation in the surrounding tissue.

The enzymes that digest the necrotic cell are derived from the lysosomes of the dying cells themselves and from the lysosomes of leukocytes that are called in as part of the inflammatory reaction.

Digestion of cellular contents and the host response may take hours to develop. The earliest histologic evidence of necrosis may not become apparent until 4 to 12 hours.
Necrotic and regenerating tubular epithelia after kidney injury

(Courtesy of Dr. Agnes Fogo, Vanderbilt University, Nashville, TN.)
FIGURE 1–10A Ultrastructural features of reversible and irreversible cell injury (necrosis) in a rabbit kidney. A, Electron micrograph of a normal epithelial cell of the proximal kidney tubule. Note abundant microvilli (mv) lining the luminal surface (L). B, Epithelial cell of the proximal tubule showing early cell injury resulting from reperfusion following ischemia. The microvilli are lost and have been incorporated in apical cytoplasm; blebs have formed and are extruded in the lumen. Mitochondria would have been swollen during ischemia; with reperfusion, they rapidly undergo condensation and become electron-dense. C, Proximal tubular cell showing late injury, expected to be irreversible. Note the markedly swollen mitochondria containing electron-dense deposits, expected to contain precipitated calcium and proteins. Higher magnification micrographs of the cell would show disrupted plasma membrane and swelling and fragmentation of organelles.

(Courtesy of Dr. Brigitte Kaislin, Institute of Anatomy, University of Zurich, Switzerland.)
Necrosis - cytoplasm

Increased eosinophilia in hematoxylin and eosin (H & E) stains, attributable in part to the loss of cytoplasmic RNA (which binds the blue dye, hematoxylin) and in part to denatured cytoplasmic proteins (which bind the red dye, eosin).

When enzymes have digested the cytoplasmic organelles, the cytoplasm becomes vacuolated and appears moth-eaten.

Dead cells may be replaced by large, whorled phospholipid masses called myelin figures that are derived from damaged cell membranes.

These phospholipid precipitates are then either phagocytosed by other cells or further degraded into fatty acids; calcification of such fatty acid residues results in the generation of calcium soaps. Thus, the dead cells may ultimately become calcified.
Necrosis - nucleus

Nuclear changes

Pyknosis, characterized by nuclear shrinkage and increased basophilia.

Karyorrhexis, the pyknotic nucleus undergoes fragmentation. With the passage of time (a day or two), the nucleus in the necrotic cell totally disappears.

Karyolysis, the basophilia of the chromatin fades which appears to reflect loss of DNA because of enzymatic degradation by due to endonucleases.
Patterns of Tissue Necrosis

When large numbers of cells die the tissue or organ is said to be necrotic.

Necrosis of tissues has several morphologically distinct patterns, which are important to recognize because they may provide clues about the underlying cause.

The terms that describe these patterns are somewhat outmoded, they are used often and their implications are understood by pathologists and clinicians.
“Types” of Tissue necrosis

- Coagulative
- Liquefactive
- Gangrenous
- Caseous
- Fat
- Fibrinoid
Coagulative Necrosis

Architecture of dead tissues is preserved for a span of at least some days.

Tissues exhibit a firm texture

Injury denatures proteins and enzymes blocking proteolysis of the dead cells;

Eosinophilic, anucleate cells may persist for days or weeks.

Ultimately the necrotic cells are removed by phagocytosis of the cellular debris by infiltrating leukocytes.
Coagulative necrosis—kidney infarction

This is the typical pattern with ischemia and infarction (loss of blood supply and resultant tissue anoxia). Here, there is a wedge-shaped pale area of coagulative necrosis (infarction) in the renal cortex of the kidney. Microscopically, the renal cortex has undergone anoxic injury at the left so that the cells appear pale and ghost-like. There is a hemorrhagic zone in the middle where the cells are dying or have not quite died, and then normal renal parenchyma at the far right.
FIGURE 1-11B Coagulative necrosis. A, A wedge-shaped kidney infarct (yellow). B, Microscopic view of the edge of the infarct, with normal kidney (N) and necrotic cells in the infarct (I) showing preserved cellular outlines with loss of nuclei and an inflammatory infiltrate (which is difficult to discern at this magnification).

Copyright © 2010 by Saunders, an imprint of Elsevier Inc.
Coagulative necrosis—myocardial infarction

Here is myocardium in which the cells are dying as a result of ischemic injury from coronary artery occlusion. This is early in the process of necrosis. The nuclei of the myocardial fibers are being lost. The cytoplasm is losing its structure, because no well-defined cross-striations are seen.
Digestion of the dead

Transformation of the tissue into a liquid viscous mass.

The necrotic material is frequently creamy yellow because of the presence of dead leukocytes and is called pus.
Gangrenous Necrosis

Not a specific pattern.

Term is commonly used in clinical practice.

Usually applied to a limb, generally the lower leg, that has lost its blood supply and has undergone, typically, coagulative necrosis.

Sepsis induced DIC has led to extensive arterial thrombosis, resulting in profound tissue death.

http://meded.ucsd.edu/clinicalimg/skin_gangrene_dic.jpg

http://www.microscopy-uk.org.uk/mag/imgaug02/HistPaper01_Fig2.jpg
“Caseous” (cheeselike) is derived from the friable white appearance of the area of necrosis.

Necrotic area appears as a collection of fragmented or lysed cells and amorphous granular debris enclosed within a distinctive inflammatory border; this appearance is characteristic of a focus of inflammation known as a granuloma.
Fat Necrosis

Not a specific pattern

Focal areas of fat destruction, typically resulting from release of activated pancreatic lipases into the substance of the pancreas and the peritoneal cavity.

Lipases split the triglyceride esters contained within fat cells. Free fatty acids can combine with calcium to produce grossly visible chalky-white areas (fat saponification).

Figure 1-14: Fat necrosis. The areas of white chalky deposits represent foci of fat necrosis with calcium soap formation (saponification) at sites of lipid breakdown in the mesentery.

Copyright © 2010 by Saunders, an imprint of Elsevier Inc.
Fibrinoid Necrosis

Usually seen in immune reactions involving blood vessels.

Deposits of “immune complexes,” together with fibrin that has leaked out of vessels.

Bright pink and amorphous appearance in H&E stains, called “fibrinoid” (fibrin-like) by pathologists.
Mechanisms leading to necrotic cells

- ATP decrease
- Mitochondrial damage
 - Decrease in ATP
 - Leakage of pro-apoptotic proteins
 - Mitochondrial permeability increase
 - Activation of multiple cellular enzymes
 - Damage to lipids, proteins, DNA
 - Loss of cellular components
 - Enzymatic digestion of cellular components
 - Activation of pro-apoptotic proteins

- Entry of Ca²⁺
 - Mitochondrial Ca²⁺ leakage

- ROS increase

- Membrane damage
 - Plasma membrane
 - Lysosomal membrane

- Protein misfolding, DNA damage
Ischemia

Mitochondrion

↓ Oxidative phosphorylation

↓ ATP

↓ Na⁺ pump

↑ Influx of Ca²⁺, H₂O, and Na⁺

↑ Efflux of K⁺

ER swelling

Cellular swelling

Loss of microvilli

Blebs

↓ Anaerobic glycolysis

↑ Glycogen

↓ Lactic acid

↓ pH

↓ Detachment of ribosomes

↓ Protein synthesis

↓ Clumping of nuclear chromatin

↓ Lipid deposition

http://ars.els-cdn.com/content/image/1-s2.0-S0163725809001120-gr2.jpg
Intracellular, cytosolic $[\text{Ca}^{++}]$ as many as 4 orders of magnitude lower than extracellular or organellar (ER, SR, Mt).

Mitochondrial damage and ER swelling releases Ca++ to cytosol

Hydrolytic enzymes activated

Apoptosis may be activated

Necrosis occurs

Calcium Flux

FIGURE 1-18 Consequences of mitochondrial dysfunction, culminating in cell death by necrosis or apoptosis.

Copyright © 2010 by Saunders, an imprint of Elsevier Inc.
ROS and free radicals

- Hydroxyl radicals and hydrogen may be split from water by ionizing radiation
- Superoxide radicals, hydrogen peroxide, lipid peroxides normally present in small amounts
 - Neutralized by catalase or glutathione peroxidase
- ROS created and released by neutrophils in response to microbial infection
- Toxic chemicals natively, or after activation by P450 redox in liver or kidney, may result in free radicals
- ROS initiate chain reaction of lipid peroxidation in membranes
PATHOLOGIC EFFECTS OF ROS: CELL INJURY AND DEATH
ROS react with:
- Fatty acids \rightarrow oxidation \rightarrow generation of lipid peroxides \rightarrow disruption of plasma membrane, organelles
- Proteins \rightarrow oxidation \rightarrow loss of enzymatic activity, abnormal folding
- DNA \rightarrow oxidation \rightarrow mutations, breaks

REMOVAL OF FREE RADICALS
Antioxidant mechanisms:
- SOD (in mitochondria) converts O_2^+ \rightarrow H_2O_2
- Glutathione peroxidase (in mitochondria) converts $\cdot\text{OH} \rightarrow \text{H}_2\text{O}_2 \rightarrow \text{H}_2\text{O} + \text{O}_2$
- Catalase (in peroxisomes) converts $\text{H}_2\text{O}_2 \rightarrow \text{H}_2\text{O} + \text{O}_2$

Copyright © 2010 by Saunders, an imprint of Elsevier Inc.
TABLE 1.3 -- Properties of the Principal Free Radicals Involved in Cell Injury

<table>
<thead>
<tr>
<th>Properties</th>
<th>(\text{O}_2^-)</th>
<th>H(_2)O(_2)</th>
<th>(^\cdot \text{O} _2) H</th>
<th>ONOO(-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECHANISMS OF PRODUCTION</td>
<td>Incomplete reduction of O(_2) during oxidative phosphorylation; by phagocyte oxidase in leukocytes</td>
<td>Generated by SOD from O(_2)- and by oxidases in peroxisomes</td>
<td>Generated from H(_2)O by hydrolysis, e.g., by radiation; from H(_2)O(_2) by Fenton reaction; from (\text{O}_2^-)</td>
<td>Produced by interaction of (\text{O}_2^-) and NO generated by NO synthase in many cell types (endothelial cells, leukocytes, neurons, others)</td>
</tr>
<tr>
<td>MECHANISMS OF INACTIVATION</td>
<td>Conversion to H(_2)O(_2) and O(_2) by SOD</td>
<td>Conversion to H(_2)O and O(_2) by catalase (peroxisomes), glutathione peroxidase (cytosol, mitochondria)</td>
<td>Conversion to H(_2)O by glutathione peroxidase</td>
<td>Conversion to HNO(_2) by peroxiredoxins (cytosol, mitochondria)</td>
</tr>
<tr>
<td>PATHOLOGIC EFFECTS</td>
<td>Stimulates production of degradative enzymes in leukocytes and other cells; may directly damage lipids, proteins, DNA; acts close to site of production</td>
<td>Can be converted to (^\cdot \text{O} _2) H and OCl(-), which destroy microbes and cells; can act distant from site of production</td>
<td>Most reactive oxygen-derived free radical; principal ROS responsible for damaging lipids, proteins, and DNA</td>
<td>Damages lipids, proteins, DNA</td>
</tr>
</tbody>
</table>

HNO\(_2\), nitrite; H\(_2\)O\(_2\), hydrogen peroxide; NO, nitric oxide; \(\text{O}_2^- \), superoxide anion; OCl\(-\), hypochlorite; \(^\cdot \text{O} _2 \) H, hydroxyl radical; ONOO\(-\), peroxynitrite; ROS, reactive oxygen species; SOD, superoxide dismutase.
Loss of ER Homeostasis

FIGURE 1–27A Mechanisms of protein folding and the unfolded protein response. A, Chaperones, such as heat shock proteins (Hsp), protect unfolded or partially folded proteins from degradation and guide proteins into organelles. B, Misfolded proteins trigger a protective unfolded protein response (UPR). If this response is inadequate to cope with the level of misfolded proteins, it induces apoptosis.

Copyright © 2010 by Saunders, an imprint of Elsevier Inc.
B. RESPONSES TO UNFOLDED PROTEINS

STRESS (UV, heat, free radical injury, etc.)

Protein → Mutations → Accumulation of misfolded proteins

Increased synthesis of chaperones → Repair

Decreased translation of proteins

Activation of the ubiquitin-proteasome pathway

Ubiquitin → Proteasome → Degradation of unfolded proteins

Activation of caspases → APOPTOSIS

FIGURE 1-27B Mechanisms of protein folding and the unfolded protein response. A, Chaperones, such as heat shock proteins (Hsp), protect unfolded or partially folded proteins from degradation and guide proteins into organelles. B, Misfolded proteins trigger a protective unfolded protein response (UPR). If this response is inadequate to cope with the level of misfolded proteins, it induces apoptosis.

Copyright © 2010 by Saunders, an imprint of Elsevier Inc.
Apoptosis

• Programmed cell death
 – Especially during fetal development
 – In response to hormonal cycles (e.g. endometrium)
 – Normal turnover in proliferating tissues (e.g. intestinal epithelium)

• Cells shrink, not swell
• Nuclei condense and DNA fragments
• Cells fragment into membrane-bound bits
• Bits are phagocytosed by macrophages
FIGURE 1–22A Morphologic features of apoptosis. **A**, Apoptosis of an epidermal cell in an immune reaction. The cell is reduced in size and contains brightly eosinophilic cytoplasm and a condensed nucleus. **B**, This electron micrograph of cultured cells undergoing apoptosis shows some nuclei with peripheral crescents of compacted chromatin, and others that are uniformly dense or fragmented. **C**, These images of cultured cells undergoing apoptosis show blebbing and formation of apoptotic bodies (*left panel*, phase contrast micrograph), a stain for DNA showing nuclear fragmentation (*middle panel*), and activation of caspase-3 (*right panel*, immunofluorescence stain with an antibody specific for the active form of caspase-3, revealed as red color).
Apoptotic fetal thymus

In this fetal thymus there is involution of thymic lymphocytes by the mechanism of apoptosis. In this case, it is an orderly process and part of normal immune system maturation. Individual cells fragment and are consumed by phagocytes to give the appearance of clear spaces filled with cellular debris. Apoptosis is controlled by many mechanisms. Genes such as BCL-2 are turned off and Bax genes turned on. Intracellular proteolytic enzymes called caspases produce much cellular breakdown.
FIGURE 1-23 Agarose gel electrophoresis of DNA extracted from culture cells. Ethidium bromide stain; photographed under ultraviolet illumination. Lane A, Viable cells in culture. Lane B, Culture of cells exposed to heat showing extensive apoptosis; note ladder pattern of DNA fragments, which represent multiples of oligonucleosomes. Lane C, Culture showing cell necrosis; note diffuse smearing of DNA.

FIGURE 1-24 Mechanisms of apoptosis. The two pathways of apoptosis differ in their induction and regulation, and both culminate in the activation of "executioner" caspases. The induction of apoptosis by the mitochondrial pathway involves the action of sensors and effectors of the Bcl-2 family, which induce leakage of mitochondrial proteins. Also shown are some of the anti-apoptotic proteins ("regulators") that inhibit mitochondrial leakiness and cytochrome c-dependent caspase activation in the mitochondrial pathway. In the death receptor pathway engagement of death receptors leads directly to caspase activation. The regulators of death receptor–mediated caspase activation are not shown. ER, endoplasmic reticulum; TNF, tumor necrosis factor.
Getting TRAIL back on track for cancer therapy
Article · Literature Review (PDF Available) in Cell Death and Differentiation 21(9) · June 2014 with 301 ReadsDOI: 10.1038/cdd.2014.81 · Source: PubMed
FIGURE 1–26 The extrinsic (death receptor–initiated) pathway of apoptosis, illustrated by the events following Fas engagement. FAAD, Fas-associated death domain; FasL, Fas ligand.
FIGURE 1–25 The intrinsic (mitochondrial) pathway of apoptosis. A, Cell viability is maintained by the induction of anti-apoptotic proteins such as Bcl-2 by survival signals. These proteins maintain the integrity of mitochondrial membranes and prevent leakage of mitochondrial proteins. B, Loss of survival signals, DNA damage, and other insults activate sensors that antagonize the anti-apoptotic proteins and activate the pro-apoptotic proteins Bax and Bak, which form channels in the mitochondrial membrane. The subsequent leakage of cytochrome c (and other proteins, not shown) leads to caspase activation and apoptosis.
Intrinsic and extrinsic pathways of caspase activation in mammals. Activation of executioner caspases-3 and -7 is the key event in mammalian apoptosis, and two major mechanisms exist to carry out this task (see also text). The intrinsic pathway involves the mitochondrion, which acts as an intracellular death receptor receiving a variety of proapoptotic signals that trigger oligomerization of proapoptotic proteins (Bcl-2-associated protein, Bax, and Bcl-2-antagonist killer, Bak, to produce mitochondrial outer membrane permeabilization, MOMP). This leads to the release of cytochrome c, which activates Apaf1, induction of apoptosome formation, procaspase-9 recruitment/activation and direct processing and activation of procaspase-3 and -7. In the extrinsic pathway, Fas receptor ligand (FasL) triggers the membrane-bound Death-Inducing Signaling Complex (DISC), which recruits procaspase-8 and activates caspase-3 directly. In some cell types, caspase-8 can also cleave Bid to form tBid, which interacts with Bax/Bak to trigger MOMP, cytochrome c release and apoptosome formation. The activation of caspase-3 and -7 is antagonized by IAPs, which in turn can be inhibited by Smac/Diablo and Omi/HtrA2. Activation of caspase-3 and -7 orchestrates the demolition of the cell by cleavage of specific substrates, such as ICAD, Rho effector ROCK1, kinase MST1, PARP, transcription and translation initiation factors.