An Introduction to the Brain and Cranial Nerves

• Learning Objectives
 • List the main components of the cerebellum and specify the functions of each.
 • List the main components of the midbrain and specify the functions of each.
 • List the main components of the diencephalon and specify the functions of each.
 • Identify the major anatomical subdivisions and functions of the cerebrum, and discuss the origin and significance of the major types of brain waves seen in an electroencephalogram
 • Name the 12 cranial nerves and describe the functions of each
An Introduction to the Brain and Cranial Nerves

- The Adult Human Brain
 - Ranges from 750 cc to 2100 cc
 - Contains almost 97% of the body’s neural tissue
 - Average weight about 1.4 kg (3 lb)

- Six Regions of the Brain
 1. Cerebrum
 2. Cerebellum
 3. Diencephalon
 4. Mesencephalon
 5. Pons
 6. Medulla oblongata
14-1 The Brain

- **Cerebrum**
 - Largest part of brain
 - Controls higher mental functions
 - Divided into left and right cerebral hemispheres
 - Surface layer of gray matter (neural cortex)

- **Neural cortex**
 - Also called cerebral cortex
 - Folded surface increases surface area
 - Elevated ridges (gyri)
 - Shallow depressions (sulci)
 - Deep grooves (fissures)
14-1 The Brain

- **Cerebellum**
 - Second largest part of brain
 - Coordinates repetitive body movements
 - Two hemispheres
 - Covered with *cerebellar cortex*
14-1 The Brain

- **Diencephalon**
 - Located under cerebrum and cerebellum
 - Links cerebrum with **brain stem**
 - Divisions of the diencephalon
 - **Thalamus (left & right)**
 - major relay center for sensory information
 - **Hypothalamus**
 - part of emotion center
 - hormone production (endocrine system)
 - control center for autonomic function
 - **Pituitary gland**
 - Major endocrine gland
 - Connected to hypothalamus
 - Via **infundibulum** (stalk)
 - Interfaces nervous and endocrine systems
14-1 The Brain

- **Midbrain**
 - Also called *mesencephalon*
 - Processes sight, sound, and associated reflexes
 - Maintains consciousness

- **Pons**
 - Connects cerebellum to brain stem
 - Is involved in somatic and visceral motor control

- **Medulla Oblongata**
 - Connects brain to spinal cord
 - Relays information
 - Regulates autonomic functions
 - Heart rate, blood pressure, and digestion
14-1 The Brain: Ventricles

- Ventricles of the Brain
 - Each cerebral hemisphere contains one large lateral ventricle
 - Separated by a thin medial partition (septum pellucidum)

- Third ventricle
 - Ventricle of the diencephalon
 - Lateral ventricles communicate with third ventricle
 - Via interventricular foramen (foramen of Monro)

- Fourth ventricle
 - Extends into medulla oblongata
 - Becomes continuous with central canal of the spinal cord
 - Connects with third ventricle
 - Via narrow canal in midbrain called the cerebral aqueduct
14-5 The Cerebellum

- Functions of the Cerebellum
 1. Adjusts postural muscles
 2. Fine-tunes conscious and subconscious movements

CEREBELLUM
- Coordinates complex somatic motor patterns
- Adjusts output of other somatic motor centers in brain and spinal cord
14-5 The Cerebellum

- Structures of the Cerebellum
 - Folia
 - Surface of cerebellum
 - Highly folded neural cortex
 - Anterior and posterior lobes
 - Separated by primary fissure
 - Cerebellar hemispheres
 - Separated at midline by vermis
14-5 The Cerebellum

- Structures of the Cerebellum
 - Vermis
 - Narrow band of cortex
 - Flocculonodular lobe
 - Below fourth ventricle
14-5 The Cerebellum

- Structures of the Cerebellum
 - **Purkinje cells**
 - Large, branched cells
 - Found in cerebellar cortex
 - Receive input from up to 200,000 synapses
 - **Arbor vitae** ("tree of life")
 - Highly branched, internal white matter of cerebellum
 - Cerebellar nuclei embedded in arbor vitae
 - Relay information to **Purkinje cells**

© 2012 Pearson Education, Inc.
14-5 The Cerebellum

- Structures of the Cerebellum
 - The peduncles
 - Tracts link cerebellum with brain stem, cerebrum, and spinal cord
 - Superior cerebellar peduncles
 - Middle cerebellar peduncles
 - Inferior cerebellar peduncles
14-5 The Cerebellum

- Disorders of the Cerebellum
 - Ataxias (cerebellar degeneration)
 - Causes include:
 - hereditary factors or from
 - damage (due to trauma or stroke)
 - viral infection (chicken pox)
 - tumors
 - Intoxication (temporary impairment)
 - Disturbs muscle coordination
 - impairs speech/makes swallowing difficult
 - affects gait (walking)
 - affects fine-motor tasks
 - caused involuntary back and forth eye movements (nystagmus)
14-7 The Diencephalon

- The Thalamus
 - Filters ascending sensory information for primary sensory cortex
 - Relays information between basal nuclei and cerebral cortex
 - Structurally there are two: **left thalamus** and **right thalamus**

© 2012 Pearson Education, Inc.
14-7 The Diencephalon

• The Thalamus
 • Five Groups of Thalamic nuclei
 • Are rounded masses that form thalamus
 • Relay sensory information to basal nuclei and cerebral cortex
 1. Anterior group (part of limbic system: emotions)
 2. Medial group (awareness and emotional states)
 3. Ventral group (relay sensory info)
 4. Posterior group (sensory: visual/auditory info)
 5. Lateral group (affects emotional states/integrates sensory info)

© 2012 Pearson Education, Inc.
14-7 The Diencephalon

- The Hypothalamus
 - Mamillary bodies
 - Process olfactory and other sensory information
 - Control reflex eating movements
 - Infundibulum
 - A narrow stalk
 - Connects hypothalamus to pituitary gland
14-7 The Diencephalon

Eight Functions of the Hypothalamus

1. **Provides subconscious control of skeletal muscle**
2. **Controls autonomic function**
3. **Coordinates activities of nervous and endocrine systems**
4. **Secretes hormones**
 - Antidiuretic hormone (ADH) by **supraoptic nucleus**
 - Oxytocin (OT; OXT) by **paraventricular nucleus**
5. **Produces emotions and behavioral **drives**
 - The **feeding center** (hunger)
 - The **thirst center** (thirst)
6. **Coordinates voluntary and autonomic functions**
7. **Regulates body temperature**
 - **Preoptic area** of hypothalamus
8. **Controls circadian rhythms (day–night cycles)**
 - **Suprachiasmatic nucleus**
14-8 The Limbic System

- **The Limbic “System”**
 - Is a functional “grouping” that:
 - Establishes emotional states
 - Links conscious functions of cerebral cortex with autonomic functions of brain stem
 - Facilitates memory storage and retrieval

- **Components of the Limbic System includes**
 - Amygdaloid body “amygdala”
 - Limbic lobe of cerebral hemisphere
 - Cingulate gyrus
 - Dentate gyrus
 - Parahippocampal gyrus
 - Hippocampus
 - Parts of the anterior thalamus
 - Reticular formation

![A three-dimensional reconstruction of the limbic system, showing the relationships among the major components.](image-url)
14-9 The Cerebrum

• The Cerebrum
 • Is the largest part of the brain
 • Controls all conscious thoughts and intellectual functions
 • Processes somatic sensory and motor information

• Structurally it is comprised of
 • Gray Matter - *cerebral cortex, basal nuclei*
 • White Matter – *deep to cortex, surrounds basal nuclei*
14-9 The Cerebrum

- **Structures of the Cerebrum**
 - **Gyri** of neural cortex (increase surface area)
 - **Longitudinal fissure** – *separate left and right cerebral hemispheres*
 - **Lobes** – *divisions of cerebral hemispheres (frontal, parietal, temporal, occipital)*
 - **Sulci (sulcus singular)** – *deep fissures which separate lobes*
 - **Central sulcus** divides: *frontal from parietal lobe*
 - **Lateral sulcus** divides: *frontal from temporal lobe*
 - **Parieto-occipital sulcus** divides: *parietal from occipital lobe*
14-9 The Cerebrum: Inter and Intra-hemispheric communication

- White Matter of the Cerebrum – communication within and between cerebral hemispheres is mediated by a variety of fibers including:
 - **Association fibers** - Connections within one hemisphere
 - Arcuate fibers, longitudinal fasciculi
 - **Commissural fibers** - Bands of fibers connecting the two hemispheres
 - Corpus callosum, anterior commissure
 - **Projection fibers** - Connect cerebrum with lower areas
 - Internal capsule
14-9 The Cerebrum

- Functionally the Cerebrum (cerebral cortex) can be divided into areas devoted to motor control, sensory processing and association areas.

- Motor and Sensory Areas of the Cortex
 - Central sulcus divides motor from sensory areas
14-9 The Cerebrum

- **Motor areas**
 - **Precentral gyrus** (frontal lobe) - *Directs voluntary movements, contains the primary motor cortex*

- **Sensory areas**
 - **Postcentral gyrus** (parietal lobe) - *Receives somatic sensory information (touch, pressure, pain, vibration, taste, and temperature)*
 - Contains Primary sensory (somatosensory) cortex
Within different lobes of the cerebrum, there are discreet areas specialized for different sensory “modalities”. They include:

- **Visual cortex** (occipital lobe) – *processing visual information*
- **Auditory cortex** (temporal lobe) – *processing sound*
- **Olfactory cortex** (temporal lobe) – *processing smell*
- **Gustatory cortex** (frontal lobe) – *processing taste*
14-9 The Cerebrum

- In addition to the sensory and motor areas, there are a series of association “integrative” areas devoted to

- **Association Areas**
 - **Sensory association areas**
 - Monitor and interpret arriving information at sensory areas of cortex

 - Somatic sensory association area
 - Somatic sensory association area - interprets input to primary sensory cortex (e.g., recognizes and responds to touch)

 - Somatic motor association area (premotor cortex)
 - Somatic motor association area (premotor cortex) - coordinates motor responses (learned movements)

 - Visual association area
 - Visual association area - interprets activity in visual cortex

 - Auditory association area
 - Auditory association area - monitors auditory cortex

© 2012 Pearson Education, Inc.
14-9 The Cerebrum

- **Integrative Centers**
 - Are located in lobes and cortical areas of both cerebral hemispheres
 - Receive information from association areas
 - Direct complex motor or analytical activities

- **Speech center**
 - Is associated with general interpretive area
 - Coordinates all vocalization functions

- **Prefrontal cortex of frontal lobe**
 - Integrates information from sensory association areas
 - Performs abstract intellectual activities (e.g., predicting consequences of actions)

- **General Interpretive Area (Wernicke’s area)**
 - Present in only one hemisphere (usually left)
 - Receives information from all sensory association areas
 - Coordinates access to complex visual and auditory memories

© 2012 Pearson Education, Inc.
14-9 The Cerebrum

- *Hemispheric Lateralization*
 - Functional differences between left and right hemispheres
 - Each cerebral hemisphere performs certain functions that are not ordinarily performed by the opposite hemisphere
14-9 The Cerebrum

The Left Hemisphere

- In most people, left brain (*dominant hemisphere*) controls:
 - Reading, writing, and math
 - Decision making
 - Speech and language

The Right Hemisphere

- Right cerebral hemisphere relates to:
 - Senses (touch, smell, sight, taste, feel)
 - Recognition (faces, voice inflections)
14-9 The Cerebrum

- Monitoring Brain Activity
 - Brain activity is assessed by an electroencephalogram (EEG)
 - Electrodes are placed on the skull
 - Patterns of electrical activity (brain waves) are printed out

- Four Categories of Brain Waves
 1. **Alpha waves** - Found in healthy, awake adults at rest with eyes closed
 2. **Beta waves** - Higher frequency waves; found in adults concentrating or mentally stressed
 3. **Theta waves** - Found in children; also in intensely frustrated adults; can be indicator for brain disorders
 4. **Delta waves** - Present during certain phases of sleep
14-10 Cranial Nerves

- Cranial Nerves

- 12 pairs connected to brain

- Four Classifications of Cranial Nerves

1. Sensory nerves - carry somatic sensory information, including touch, pressure, vibration, temperature, and pain
2. Special sensory nerves - carry sensations such as smell, sight, hearing, balance
3. Motor nerves: - axons of somatic motor neurons
4. Mixed nerves: - mixture of motor and sensory fibers
14-10 Cranial Nerves

- **Olfactory Nerves (I)**
 - Primary function:
 - Special sensory (smell)
14-10 Cranial Nerves

- **Optic Nerves (II)**
 - *Primary function*: Special sensory (vision)
 - *Origin*: Retina of eye
14-10 Cranial Nerves

- **Oculomotor Nerves (III)**
 - *Primary function:* Motor (eye movements – extrinsic and intrinsic muscles)

- **Trochlear Nerves (IV)**
 - *Primary function:* Motor (eye movements – superior oblique muscle)
14-10 Cranial Nerves

- **Trigeminal Nerves (V)**
 - *Primary function* - Mixed (sensory and motor) to face
 - 2 sensory branches *maxillary branch & mandibular* – receive information from eyelids, mouth (upper lip, gums, teeth, palate), cheeks
 - 1 motor branch *mandibular* – muscles of mastication

- **Abducens Nerves (VI)**
 - *Primary function* - Motor (eye movements – lateral rectus muscles)
14-10 Cranial Nerves

• **Facial Nerves (VII)**
 - *Primary function* - Mixed (sensory and motor) to face
 - *Sensory* - Taste receptors on anterior 2/3 of tongue
 - *Motor (somatic and visceral)* – *Somatic* - muscles of facial expression; visceral – tear & salivary gland secretions

• **The Vestibulocochlear Nerves (VIII)**
 - *Primary function* - special senses (hearing, balance and equilibrium)
 - Vestibular branch - Balance and equilibrium
 - Cochlear branch - Hearing
14-10 Cranial Nerves

- Glossopharyngeal Nerves (IX)

 Primary function:

 - **Mixed** (sensory and motor) to head and neck
 - **Sensory** – anterior 1/3 of tongue, pharynx, palate, carotid arteries
 - **Motor** – nerves involved swallowing; parotid salivary glands

© 2012 Pearson Education, Inc.
14-10 Cranial Nerves

The **Vagus Nerves (X)**

- **Primary function** - Mixed (sensory and motor)
 - Widely distributed in thorax and abdomen
- **Sensory**
 - Sensory nuclei and autonomic centers of medulla oblongata *(major output of parasympathetic branch of ANS)*
- **Visceral motor**
 - Muscles of the palate and pharynx
 - Muscles of the digestive, respiratory, and cardiovascular systems in thoracic and abdominal cavities
14-10 Cranial Nerves

- **The Accessory Nerves (XI)**
 - *Primary function* - Motor to muscles of neck and upper back
 - *Internal branch* - voluntary muscles of palate, pharynx, and larynx
 - *External branch* - sternocleidomastoid and trapezius muscles
- **The Hypoglossal Nerves (XII)**
 - *Primary function* - Motor (tongue movements)
 - Controls muscles of the tongue