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Abstract
Drought is the primary and dominant natural cause of stress on vegetation, and thus, it needs our full attention.
Current understanding of drought across extensive spatial measures, around the world, is considerably limited.
As case studies to evaluate the feasibility of utilizing space-based solar-induced chlorophyll fluorescence (SIF)
across extensive spatial measures, here, we have used data from 2007 to 2017 in Heilongjiang and Jiangsu prov-
inces of China. The onset of the 2015 drought was accompanied by a substantial response of SIF from vegetation
in both the provinces; these data were associated with changes in soil moisture, standardized precipitation
evapotranspiration index, and emissivity. Our findings suggest that SIF can effectively provide the spatial and
temporal progress of drought, as inferred through substantial associations with SIF normalized by absorbed pho-
tosynthetically active radiation (related to FF ) and by photosynthetically active radiation (SIFPAR). For the de-
piction of onset to drought, SIF, FF , and SIFPAR provide a significant association and a quicker response
than the leaf area index and the normalized difference vegetation index. Furthermore, we found that the corre-
lation between gross primary productivity and SIF is highly substantial in both Heilongjiang (R2 = 0.85, p < 0.001)
and Jiangsu (R2 = 0.75, p < 0.001) during the drought period. Our results indicate that continuing evaluation from
space-based SIF can indeed provide an understanding of the seasonal differences in vegetation for evaluating
the impact of drought across extensive spatial measures.

Keywords: solar-induced chlorophyll fluorescence; gross primary production; leaf area index; normalized differ-
ence vegetation index; drought; vegetation

Introduction
Drought (water deficit) is a dominant natural stress on
vegetation activity and thus requires our attention;1,2

also see Pareek et al.3 Extreme drought can substan-
tially affect water storage, farming cultivation, ecolog-
ical land systems, and later cause harmful effects on
the evolution of economy and civilization.4 Specifi-
cally, when there is global warming and an expanding
demand for water through human activities, drought
becomes a serious problem.5 Conceptually, efficient
drought tracking across extensive spatial measures
is necessary to solve the problems caused by drought.

Drought is associated with either below-average rain-
fall or above-average air warming, which remains con-
stant for weeks, years, or even several decades; this
has significant consequences for vegetation growth.
The prevalence and time span of drought have been in-
creasing over time due to climate change.6–8 Several
drought periods are known to have existed within vari-
ous regions throughout the world, in particular, in north
China from 2013 to 2014,9 in Europe during 2018,10 in
North America from 2011 to 2012,11 and in temper-
ate areas in Southeast Asia and the Amazon from 2015
to 2016.12,13
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The occurrence of intense drought has increased
substantially throughout previous decades and had a
significant effect on the ecological systems, for exam-
ple, in southern China.14,15 The major drought after
the fall of 2018 resulted in a financial loss of more
than 8 billion US dollars in southwestern China.16 Fur-
thermore, the 2017 drought in Italy caused increased
air warming compared with the long-term mean,
breaking all previous records.17

Vegetation attributes, obtained through various re-
mote sensing approaches, have been measured to ex-
plore the effects of drought on vegetation. Vegetation
indices (VIs), such as leaf area index (LAI), and nor-
malized difference vegetation index (NDVI) obtained
from the Moderate Resolution Imaging Spectroradi-
ometer (MODIS)18 have been used to measure the
greenness of crops. Below-normal crop greenness was
observed during the 2000–2016 drought period, as
measured through NDVI,19 although there has been a
difference of opinion on the crop greenness abnor-
malities during the 2016 drought period.20 Analysis
of these sensor perceptions is problematic as they
are severely induced through sun-sensor geometric
variations and atmospheric impacts.21–23

The NDVI employs visible and near-infrared reflec-
tions on two edges, referred to as red edges; further-
more, they are responsive to the measure of the so-
called green bioenergy over a space-based pixel.24

These indicators and their related attributes have
been extensively employed to explore physiological
changes in vegetation.25–27

Space-based assessment of solar-induced chloro-
phyll fluorescence (SIF) has been available for several
years for tracking vegetation worldwide.28–32 SIF is
currently being obtained through various space-based
devices, such as Global Ozone Monitoring Instrument-2
(GOME-2),33 Greenhouse gases Observing SATellite,34,35

and the Orbiting Carbon Observatory-2 (OCO-2).36

These devices have their foundation in several ground-
based and satellite analyzing systems.37,38

SIF measurement is based on the fact that a small
amount of absorbed energy is released as fluores-
cence; this fluorescence has two emission peaks at
about 685 and 740 nm,24 recognized as the red and
far-red emission bands. For background on all aspects
of chlorophyll fluorescence, see chapters in Papageor-
giou and Govindjee39 and Govindjee et al.40

In any environment, a significant portion of the
absorbed photosynthetically active radiation (APAR)
is used by the photochemical pathway leading to pho-

tosynthesis; the actual values depend on various con-
ditions, including temperature. SIF measurements are
sensitive to the fraction of APAR (fPAR). SIF captures
photosynthesis changes caused by drought; further-
more, published data show that SIF was more sensitive
to plant physiological variations.41,42 The space-based
SIF information is highly useful in assessing photosyn-
thesis on local as well as on a worldwide scale.43 SIF
has been utilized for agriculture fidelity over different
crop canopies to observe changes in photosynthesis-
related process throughout the day.44

Furthermore, space-based NDVI can be employed to
analyze the association among gross primary produc-
tivity (GPP) for exploring the consistency of vegeta-
tion.45,46 Gonsamo et al.47 compared space-based
NDVI information over tower-estimated CO2 flux de-
tails with FLUXNET. Few years later, Jeong et al.48

found that the NDVI-derived drought period was lon-
ger in duration than flux metrics, indicating an incon-
sistency in seasonal pattern among vegetation
functionality. This inconsistency may be the result of
variations in the measurements among space-based
and tower metrics49; thus, alternative ways and means
are essential to solve these concerns.

Typically, almost 1% of the solar energy acquired
through vegetation is retransmitted through chloro-
phyll as fluorescence (see chapters in Papageorgiou
and Govindjee39 and Govindjee et al.40). Phenology-
based studies on leaf canopies show a clear associa-
tion between SIF and photosynthesis.50,51 Both SIF
and GPP are associated with the light absorption pro-
cess of photosynthesis,52 and space-based SIF is con-
sidered to be the direct reflection of photosynthetic
action. Consequently, we must attempt to associate
information from space-based SIF data with GPP for
validating the seasonal changes in vegetation at the
study areas.

The rate of losses in vegetation productivity by
drought has been increasing during the past 30 years;
furthermore, more than 30 drought cases have been ob-
served once every 2 years during the past 60 years in
Heilongjiang province of China.53 Concurrently,
drought rates also showed a rising trend throughout
this province. Similarly, there are records of drought
events in 13 areas in Jiangsu province of China. It is im-
portant to note that, in this province, the water deficit
has been above 60%.54 During June 2011, the affected
regions of crops were 401 thousand hectares in Jiangsu,
and the direct economic loss was of 1.35 billion Yuan
(www.stats.gov.cn).
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Furthermore, increases in the frequency and intensity
of drought in Heilongjiang and Jiangsu might damage
vegetation yield and thus the entire agricultural sector.
The spatial and temporal attributes of the agricultural
drought hazard in both the provinces were assessed. In
our study, we have detected drought conditions over
both the provinces during the summer months for 11
years from 2007 to 2017 through measurements of soil
moisture (SM), standardized precipitation evapotranspi-
ration index (SPEI), and emissivity (which provides in-
formation on the atmospheric column water vapor and
lower boundary air surface temperature).

In addition, we have analyzed the impact of
drought on vegetation growth through LAI, SIF, SIF
normalized by APAR (FF), SIF normalized by PAR
(SIFPAR), and NDVI. The associations among SIF
and SM, SPEI, and emissivity can advance the insight
of drought over Heilongjiang and Jiangsu. The goal of
our current study was to: (1) investigate the spatio-
temporal evolution of the drought event across exten-
sive spatial measures; (2) evaluate the relationship
and responses of SIF and traditional VIs to drought

in both the provinces; and (3) explore the interannual
changes of LAI, SIF, FF , SIFPAR, and NDVI for the
summer period in both provinces.

Data and Methods
Study area
Heilongjiang province is located between 121�130¢–
135�05¢E in longitude and 43�22¢–53�24¢N in latitude
(Fig. 1a). This northern province of China has an area
of 454,000 km2 and a population of more than 38.17 mil-
lion people. The yearly temperature in Heilongjiang has
been between �4 and 4�C, and the annual precipitation
has averaged over 500–600 mm. In this province, the
mountainous regions account for 59% of the land.
Referred to as the ‘‘Great northern granary,’’ Heilong-
jiang province produced more than 43.5 million tons
of grain in 2009 from 2.85 million ha of agricultural
land. The entire province is situated in the mid-
temperate climate zone and is prone to drought.

Jiangsu province is located in the eastern part of
China within the longitudes 116�18¢–121�57¢ E and
the latitudes 30�45¢–35�20¢ N covering an area of

FIG. 1. Distribution of dominant vegetation types in Heilongjiang province (a) and Jiangsu province (b)
based on MODIS vegetation product data. MODIS, Moderate Resolution Imaging Spectroradiometer. Color
images are available online.

EVALUATING THE IMPACT OF SUMMER DROUGHT USING SIF 3

D
ow

nl
oa

de
d 

by
 S

ou
th

er
n 

Y
an

gt
ze

 U
ni

ve
rs

ity
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

5/
14

/2
1.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



around 100,000 km2 (Fig. 1b). Water bodies, grasslands
and hills, and mountains, respectively, make up 16.8%,
68.0%, and 14.3% of the entire territorial province. The
typical yearly precipitation ranges between 550 and
1450 mm, which is highest in the summers. Its popu-
lation of 78.5 million inhabitants makes Jiangsu prov-
ince the most densely populated territory in China
(www.stats.gov.cn). The most severe drought recor-
ded in the past 50 years was in 2011.55 This damaging
effect led to an increased interest in the tracking and
evaluation of the ecosystem resulting from drought
activity.

Data

Moisture calculation in soil and SPEI. To assess the
impact of distinct drought events on vegetation devel-
opment in Heilongjiang and Jiangsu, SM at 0.25� soil
information ESA CCI SM v04.4 (https://www.esa-
soilmoisture-cci.org) was used in our study. To detect
the effects of drought patterns on vegetation develop-
ment, SM resources were assessed during 2007–2017.
SM data indicate precipitation irregularities, and we
used them to represent the spatial anomalies of drought
in both Heilongjiang and Jiangsu provinces.

Vicente-Serrano et al.56 had already considered SPEI
for comparing evapotranspiration variables with tem-
perature. SPEI has numerous advantages in drought
detection, and thus, it was used in our present study.
The monthly SPEI information was acquired at a spa-
tial resolution of 1� · 1� by using an SPEI global
drought monitor (http://spei.csic.es). To fit and equal-
ize the spatial resolution of additional information,
all the data were incorporated into the latitudinal di-
mension of 0.5� · 0.5�. Furthermore, SPEI was used in
Heilongjiang and Jiangsu provinces for assessing the
past scarcity of water and severity and their associations
to the drought.

Data products of MODIS. We utilized MODIS data
products, which included emissivity, GPP, fPAR, sur-
face reflectance, LAI, and NDVI (https://lpdaac.usgs
.gov). The MOD17A2H (V6) GPP, an 8-day com-
posite of scales through a 500-meter (m) pixel size,
was used to explore the water cycle processes of the
vegetation. Furthermore, the MOD21A2 (V6) of
MODIS, an 8-day composite data set, was used to
acquire emissivity from the MODIS thermal infrared
bands through the optimal water vapor scaling at-
mospheric correction pattern. Reflectance-grounded

vegetation directories, including LAI and NDVI, were
employed to assess the response of drought during
vegetation growth. The MCD15A2H (V6) of MODIS,
Level 4 of the composite data set, was used to derive
LAI. The 500-meter pixel size LAI data set was utilized
to acquire the one-sided green leaf area per unit
ground area in broadleaf canopies during the period
from 2007 through 2017. The NDVI-MODIS product
was used from MOD13A3 (V6) to understand the
drought-related vegetation growth conditions.

GOME-2 solar-induced chlorophyll fluorescence. In
this study, we have utilized information (Level 3,
V28) (https://avdc.gsfc.nasa.gov), provided through the
GOME-2. MetOp-A/B was associated through GOME-2
programs that have an equator passage spell at 09:30 a.m.
In the spectral range of 600–800 nm, GOME-2 provided
radiance of about 740 nm and was used for SIF through
the principal component analysis method, as performed
by Joiner et al.57 and Frankenberg and Berry58 More than
50% was lost when going through a cloud segment, as
shown by Köhler et al.59 SIF responses were combined
with data from monthly resources at 0.5� · 0.5� and a
minimum of five SIF retrievals in 30 days were obtained.
Here, we investigated this robust association between SIF
and VIs through the vegetation composition. We char-
acterize this as shown below60:

SIF = PAR � fPAR�FF�OC, (1)

FF =
SIF

OC�APAR
=

SIFPAR

fPAR
, (2)

SIFPAR =
SIF

OC�PAR
, (3)

where SIFPAR is SIF regulated through photosyntheti-
cally active radiation, and PAR is the occurrence flux
of APAR and remains a segment for fPAR, which was
obtained by the data products of MODIS (MOD15
A2), OC is an escape eventuality binding the discharge
of fluorescence from the top of the canopy to the
emission of fluorescence at the level of the chloro-
plast membranes24; FF is the yield of fluorescence
in the wavelength band of the measures and signifies
the efficiencies for chlorophyll fluorescence emis-
sion, respectively.
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Results
Interannual anomalies in SM, SPEI, and emissivity
We initially considered the interannual anomalies
of the SM, SPEI, and emissivity within Heilongjiang
and Jiangsu provinces for the summer periods during
2007–2017, as shown in Figure 2. In both Heilongjiang
and Jiangsu, SM, SPEI, and emissivity indicate significant
interannual dissimilarities. In June, for all the years
(2007–2017) examined, SM remained higher than the
mean in Heilongjiang than in Jiangsu. In comparison to
SM and emissivity, negative SPEI anomalies were noted
in 2007, 2008, 2010, and 2013 for Heilongjiang province,
and in 2010, 2012, 2013, 2014, 2015, and 2017 for Jiangsu
province. In July 2011, the mean values of SPEI and emis-
sivity remained lower in Heilongjiang than in Jiangsu. All
these three (SM, SPEI, and emissivity) parameters show a
drought-associated reduction in 2015 compared with
those during 2007–2017 in both the provinces during
the vegetation growth. Consequently, we focused on the
drought case in the summer 2015 for further analysis.

Spatial distributions of SM, SPEI, and emissivity
during 2015 drought in Heilongjiang
The monthly spatial allocation of the SM, SPEI, and
emissivity in Heilongjiang was acquired, in 2015, from
June to August (Fig. 3). Generally, the spatial allocation

of the SM fluctuated with increases and decreases in the
monthly SPEI. SM in the northern region of Heilong-
jiang province, during the month of June, had severely
decreased since there was no precipitation for 2 months
before it. This change is indicated much more clearly in
SM mapping during July and August, as the measures
change from �0.05 to 0.02 m3m� 3, showing that a sig-
nificant drought had occurred in June. Data on the
mean assesses of surface SM of Heilongjiang showed a
gradual incline indicating drought during June.

The response of the SPEI transit over the zero-scale
range reflected a dry-wet state during August in Hei-
longjiang. Additionally, the occurrence of the drought
was higher in the central regions of the province during
July. The spatial SPEI increased slightly in June but de-
clined in July. The observed emissivity during the sum-
mer drought decreased as the time scale increased. The
frequency of emissivity in June and August was within
15%–25%, and the frequency in July in the eastern part
of Heilongjiang was less compared with that in the
northern region of this province.

Spatial distributions of SM, SPEI, and emissivity
during 2015 drought in Jiangsu
The spatial distributions of the SM, SPEI, and emissivity in
Jiangsu, acquired from June to August 2015, are shown in

FIG. 2. Interannual changes of SM, SPEI, and emissivity for the summer ( June–August) periods during 2007–
2017 in Heilongjiang and Jiangsu. SM, soil moisture; SPEI, standardized precipitation evapotranspiration index.
Color images are available online.
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Figure 4. The SM anomaly indicates less variation with less
amplitude in the summer months, where the average SM
anomaly was 0.02 m3m� 3. The SM measures in August
show much more negative anomaly than in June and
July. Generally, the northwest area of Jiangsu is moderately
dry compared with the central and eastern parts, which re-
flects the precipitation gradient across Jiangsu province.

The majority of the province during June showed
low SPEI (e.g., between �1 and 1 [80%] in the north
and northwest areas of Jiangsu). For the central regions
of the province and some regions in the south, SPEI
ranged between 1 and 2 during July. There were
some regions with SPEI exceeding 1 throughout Au-
gust, compared with that in June. Especially, emissivity
data for July showed negative anomalies when ade-
quate solar radiation was present, and SM changed in-
dicating significant stress in vegetation growth. In

August, there was a lower correlation than in June,
which further indicates that a summer drought had oc-
curred in Jiangsu province.

Interannual anomalies in LAI, SIF, FF , SIFPAR,
and NDVI
The interannual anomalies of LAI, SIF, FF , SIFPAR, and
NDVI over the drought periods during June–August
from 2007 to 2017 were analyzed (Fig. 5). In both the
provinces, studied here, the space-based perceptions
of LAI are lower compared with the multi-annual aver-
age in June 2008, when the SM, SPEI, and emissivity
changed due to precipitation scarcity. In June, the mea-
sures of LAI in Heilongjiang were nearly equal to the
multi-annual average, and the measures of NDVI
were significantly higher than multi-annual average.

FIG. 3. The spatial distribution of the anomalies in SM, SPEI, and emissivity in Heilongjiang during the 2015
summer ( June–August) period. Color images are available online.
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While drought expanded through the province, LAI and
NDVI showed a moderately poor response to drought in
July. However, SIF,FF , and SIFPAR indicated significantly
higher sensitivity and much more constant reduction in
response to drought than LAI and NDVI. Similarly, mea-
sures of SIF, FF , and SIFPAR in Jiangsu province showed a
substantial reduction in July and August compared with
the multi-annual average, showing that there was a consis-
tent response of vegetation to drought. Overall, the study
of both provinces shows that SIF, FF , and SIFPAR indeed
reflect drought dynamics and are much more sensitive to
severe drought environments than LAI and NDVI.

Spatial distributions of LAI, SIF, FF , SIFPAR,
and NDVI during 2015 drought in Heilongjiang
The spatial distribution of LAI, SIF, FF , SIFPAR, and
NDVI during 2015 was investigated to study the vege-

tation responses to drought in Heilongjiang (Fig. 6).
Over the severe drought event, SIF, FF , and SIFPAR

show a sudden reduction in June, and the LAI and
NDVI outset in June and increased in July and August
indicating a delayed response to drought.

The major part of the province shows positive anom-
alies of LAI and NDVI in June at the onset of the
drought. However, 60%–70% of this province had pos-
itive SIF, FF , and SIFPAR anomalies. While drought in-
creased in Heilongjiang, more than 35% of the
vegetation in the province reflected mild losses of
SIFPAR in July, and more than 20% of the vegetation
suffered severe losses. Furthermore, the proportion of
mild and severe FF loss was 19% and 36%, respectively.

In contrast, only 32% and 9% of the province showed
slight and severe LAI loss. The greater part of Heilong-
jiang experienced drought, as indicated through data

FIG. 4. The spatial distribution of the anomalies of SM, SPEI, and emissivity in Jiangsu during the 2015
summer ( June–August) period. Color images are available online.
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on LAI, FF , and SIFPAR, in August, while LAI consis-
tently demonstrated fewer anomalies than NDVI. The
negative NDVI anomalies manifested largely in the prov-
ince during July and August. The spatial distributions
suggest that SIF, FF , and SIFPAR had larger sensitivity
to drought compared with LAI and NDVI.

Spatial distribution of LAI, SIF, FF , SIFPAR,
and NDVI during 2015 drought in Jiangsu
The spatial distribution of LAI, SIF, FF , SIFPAR, and
NDVI during 2015 was investigated to study the vege-
tation responses to drought in Jiangsu (Fig. 7). SIF, FF ,

and SIFPAR anomalies were lower in July than in Au-
gust and also showed lower measures of SM, SPEI,
and emissivity (as shown above in Fig. 4), which indi-
cates that vegetation growth can be severely exacer-
bated through drought in this province.

The mean of SIFPAR during June 2015 is close to the
mean of SIF during July 2015, which indicates the pre-
cision of drought. Through the advancement of
drought, more than 28% of the vegetation in Jiangsu
experienced average losses as shown by changes in
SIF, FF , and SIFPAR. In August 2015, the major part
of Jiangsu showed more than 80% negative LAI and

FIG. 5. Interannual changes of LAI, SIF, FF , SIFPAR, and NDVI for the summer ( June–August) period 2007–2017
in Heilongjiang and Jiangsu. APAR, absorbed photosynthetically active radiation; LAI, leaf area index; NDVI,
normalized difference vegetation index; PAR = photosynthetically active radiation; SIF, solar-induced chlorophyll
fluorescence; SIFPAR, SIF normalized by PAR; FF , SIF normalized by APAR. Color images are available online.
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NDVI anomalies, and around 45% negative anomalies
in SIF, FF , and SIFPAR. Moreover, above 18% of the
vegetation showed an extreme loss in June.

However, most of Jiangsu province exhibited nega-
tive NDVI anomalies in July. As the drought extended,

around 75% of Jiangsu province was affected, as iden-
tified through changes in SIF, FF , and SIFPAR mea-
sures in June and August, although only 30% and
49% of the province had losses in LAI and NDVI.
The spatial allocation of LAI and NDVI anomalies

FIG. 6. The spatial distribution of the anomalies of LAI, SIF, FF , SIFPAR, and NDVI in Heilongjiang province
during the 2015 summer ( June–August) period. Color images are available online.
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suggest that the satellite insights of VIs are less sensitive
to drought than SIF, FF , and SIFPAR. LAI anomalies
were negative across the major part of the province
and higher in June. However, changes in SIF, FF , and
SIFPAR reflect a much more sensible spatial indication
of drought than LAI and NDVI.

Correlation of SM, SPEI, and emissivity
with LAI, SIF, FF , SIFPAR, and NDVI
Figure 8 shows the correlation of SM, SPEI, and emis-
sivity with LAI, SIF, FF , SIFPAR, and NDVI. The im-
pact of drought on SM, SPEI, and emissivity was
identical to that on SIF, FF , and SIFPAR during June

FIG. 7. The spatial distribution of the anomalies of LAI, SIF, FF , SIFPAR, and NDVI in Jiangsu province during the
2015 summer ( June–August) period. Color images are available online.
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FIG. 8. Correlation of SM, SPEI, and emissivity with LAI, SIF, FF , SIFPAR, and NDVI in Heilongjiang province (a)
and Jiangsu province (b) during the 2015 summer ( June–August) period. Color images are available online.
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2015 in both the provinces. In particular, the effects of
SPEI on LAI showed a negative correlation during
July than during June and August. Direct representa-
tions in June 2015 were exploited to evaluate the sum-
mer crop output in Heilongjiang, where emissivity and
the SIF information can be associated throughout the
drought period.

Furthermore, emissivity showed low correlation
with LAI during the June–August drought, which was
most likely based on the dissimilarity of emissivity
with SIF, FF , and SIFPAR. SPEI was further covariant
and indicated a positive correlation with SIF during
June–August in both the provinces studied in this
work.

In contrast, SM indicated a lower correlation be-
tween LAI and NDVI, which showed that SM was a sig-
nificant parameter in detecting anomalies in SIF, FF ,
and SIFPAR. During August 2015, the impact of all
VIs was insubstantial excluding LAI and NDVI,
which, in turn, had indicated a strong correlation
with emissivity. SIF, FF , and SIFPAR showed much
more substantial correlation with SM and emissivity
than LAI and NDVI, emphasizing their significant
role in detecting drought. SM, SPEI, and emissivity
were substantial in showing the anomalies in SIF, and
indeed, NDVI was essential in revealing anomalies in
emissivity. SM, SPEI, and emissivity are much more
prominent vegetation growth parameters in tracking
the anomalies of SIF, FF , and SIFPAR since they
showed strong correlations during drought.

Relationship between SM, SPEI, and emissivity
to SIF in the summer months of 2015
Figure 9 shows correlation of SIF with SM, SPEI, and
emissivity from data in the summer months of 2015.
The observed evaluation indicates that for SM measures
lower than 0.2 m3m� 3 higher SIF correlations and sig-
nificant positive slopes are present in both provinces.
The correlation between SM and SIF is relatively strong,
showing positive slopes by the measures in Heilongjiang
(R2 = 0.73, p < 0.05) and Jiangsu (R2 = 0.75, p < 0.05).

For the SPEI, SIF increased substantially and
showed positive correlation in Heilongjiang
(R2 = 0.81, p < 0.05) and Jiangsu (R2 = 0.71, p < 0.05).
This information may be (and has been) used
through high-intensity farming methods in major
parts of both the provinces studied in this article; this
is true for substantial cultivation and higher vegetation
yield changes, which restore high photosynthetic
yield for larger SM.

Moreover, there are clear associations between SIF
and emissivity. The positive correlation of SIF for a
change in emissivity is greater across the measures in
both Heilongjiang (R2 = 0.72, p < 0.05) and Jiangsu
(R2 = 0.77, p < 0.05). The SIF-SPEI correlation has
been shown to be significantly stronger compared
with the measures of SM and emissivity in Heilong-
jiang, whereas SIF-emissivity correlation has been
shown to be stronger compared with SM and SPEI in
Jiangsu, specifically during the drought period
(Fig. 9b).

Relationship between GPP and SIF
Figure 10 shows scatter maps of GPP with SIF during
the summer of 2015 in both Heilongjiang and Jiangsu.
Significant linear correlations were found between GPP
and annual mean SIF in Heilongjiang (R2 = 0.85) and
Jiangsu (R2 = 0.75). In 2015, GPP-negative anomalies
onset was in June for Heilongjiang, whereas SIF anom-
alies were significant in July for both the provinces. The
SIF-GPP relationship had a relatively stronger correla-
tion in Heilongjiang province compared with Jiangsu
province. High GPP values were found in some agricul-
tural regions in the summers. SIF remained clearly as-
sociated with GPP, demonstrating that SIF has a high
potential in detecting increases in photosynthesis,
which is a benefit in assessing vegetation growth during
drought across the extensive spatial measure.

Discussion
An appropriate and precise evaluation of drought stress is
needed for tracking threats to terrestrial environment. To
advance the level of our understanding regarding mea-
sures of drought, the temporal and spatial changes in
SIF over the drought periods in Heilongjiang and Jiangsu
provinces were evaluated. Our findings show that both
LAI and NDVI exhibit a weaker response than SIF, FF ,
and SIFPAR to the onset of drought (Fig. 5), suggesting
that the former two indices are less sensitive to ecological
stress, such as drought. Limited research (see e.g., Joiner
et al.57) has shown that photosynthesis in rainforest
parts declines during water stress periods, although crop
greenness remains constant. These traditional VIs re-
flect only potential photosynthesis, but they are not, un-
fortunately, directly related to the drought analysis
approach.

Through correlation analysis, we have found that
SIF, FF , and SIFPAR are much more sensitive to severe
drought than LAI and NDVI (Fig. 8). This is also the
case with the results of Li et al.,61 who had associated
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the effects of drought across the Amazon forest on en-
hanced vegetation index (EVI) and SIF. Although SIF
in the Central Amazon declined much more substan-
tially during moderate dry time spans than during
wet time spans, yet EVI indicated only mild changes.
Furthermore, we note that the various responses of
LAI and NDVI to the progress of drought may be pre-
cisely identified through the association of the average

measures of SM, SPEI, and emissivity. Thus, further re-
search is needed to exploit all the available parameters.

The analysis of summer drought using SIF across
extensive spatial measures during 2007–2017 has pro-
vided us key insight and understanding on the relation-
ship of SIF to the evaluation of drought. The findings of
our study indicate that SIF response is quicker in pro-
viding information on the onset of drought in both

FIG. 9. Scatter plots of SM, SPEI, and emissivity to SIF in Heilongjiang (a) and Jiangsu (b) in the summer
months of 2015. Color images are available online.
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Heilongjiang and Jiangsu provinces (Fig. 5). This find-
ing was additionally exploited through the association
of SM, SPEI, emissivity with LAI, SIF, FF , SIFPAR,
and NDVI in both Heilongjiang and Jiangsu (Fig. 9).
Specifically, in comparison to NDVI, LAI showed
slightly better correlation with SM, SPEI, and emissiv-
ity in Jiangsu but slightly weaker correlation in Hei-
longjiang during June 2015 (Fig. 8).

The variations in the delayed response of LAI and
NDVI to SM, SPEI, and emissivity are related to the
variations of vegetation demands, such as that of chloro-
phyll, and its development frequency, and are affected
by weather conditions weeks before the measure-
ments. In this context, Yoshida et al.24 have indicated
that SIF and NDVI within mixed forest environments
show slight decreases under drought. This signifies
that vegetation patterns can also have impact on sig-
nals of SIF and NDVI to drought. In conclusion, our
study has shown that SIF, FF , and SIFPAR anomalies
can be much more effectively used to learn about ad-
vancement of drought than traditional VIs.

The scatter plots of GPP and SIF in 2015 are nearly
identical (Fig. 10) and show substantial positive corre-
lation in both the provinces examined. This association
indicates that GPP is consistent with SIF data in Hei-
longjiang (R2 = 0.85, p < 0.001) and Jiangsu (R2 = 0.75,
p < 0.001) and is much more precise than in the existing
studies from North America.62 Few regions, specifically
in Jiangsu province, compared with Heilongjiang prov-
ince, had higher SIF measures that were not included
in the mapping of GPP. The predominant cause for

this poor correlation is that extreme photosynthesis
typically occurs within the most appropriate climate
state, which may not be reflected in climate data.

Moreover, both provinces studied here have typically
sustained regular cloud cover that might have con-
strained the computation of VIs. However, the SIF
data are still noisy, and there are lesser number of mea-
surements in a small number of areas within both the
provinces. It is essential that subsequent future re-
search employs SIF and reflectance information at
higher spatial and temporal resolution for improved
global phenological understanding.

Conclusions
We have explored the response of SIF over the 2015
drought event in Heilongjiang and Jiangsu provinces
of China. For both the provinces, space-based SIF,
FF , and SIFPAR had a much higher correlation with
drought stress compared with that by LAI and NDVI.
Space-based SIF, FF , and SIFPAR show a much more
significant response to SM, SPEI, and emissivity than
LAI and NDVI during the 2015 drought period. The
quick and distinct response of SIF, described in this
article, shows high susceptibility to droughts during
the vegetation growth period. In this article, we have
additionally explored and associated the responses of
SM, SPEI, and emissivity to SIF during drought for
Heilongjiang and Jiangsu provinces.

We have observed that LAI and NDVI had more dis-
tinct delayed responses than SIF, FF , and SIFPAR dur-
ing the drought period. The spatial, as well as temporal,

FIG. 10. Scatter plots of GPP and SIF in Heilongjiang province (a) and in Jiangsu province (b) in the summer
months of 2015. All relationships are statistically significant ( p < 0.001). GPP, gross primary productivity. Color
images are available online.
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paradigms show that the insight obtained from SIF to
drought was much more useful compared with that
from LAI and NDVI during the 2015 drought event
in both the provinces examined in this article. Addi-
tionally, we found that SIF anomaly has a much
more significant association with the GPP anomaly
during the drought period in both Heilongjiang
(R2 = 0.85, p < 0.001) and Jiangsu (R2 = 0.75, p < 0.001)
provinces. Thus, SIF offers researchers a powerful
tool for precisely tracking the drought across extensive
spatial measures.
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59. Köhler P, Guanter L, Joiner J. A linear method for the retrieval of sun-
induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data.
Atmos Meas Tech. 2015;8:2589–2608.

60. Guanter L, Zhang Y, Jung M, et al. Global and time-resolved monitoring of
crop photosynthesis with chlorophyll fluorescence. Proc Natl Acad Sci.
2014;111:E1327—E1333.

61. Li X, Xiao J, He B, et al. Solar-induced chlorophyll fluorescence is strongly
correlated with terrestrial photosynthesis for a wide variety of biomes:
First global analysis based on OCO-2 and flux tower observations. Glob
Chang Biol. 2018;24:3990–4008.

62. Zhang Y, Xiao X, Jin C, et al. Consistency between sun-induced chloro-
phyll fluorescence and gross primary production of vegetation in North
America. Remote Sens Environ. 2016;183:154–169.

Cite this article as: Pandiyan S, Govindjee G, Meenatchi S, Prasanna S,
Gunasekaran G, Guo Y (2021) Evaluating the impact of summer
drought on vegetation growth using space-based solar-induced
chlorophyll fluorescence across extensive spatial measures. Big Data
X:X, 1–16, DOI: 10.1089/big.2020.0350.

Abbreviations Used
FF ¼ SIF normalized by APAR
OC ¼ escape eventuality binding the discharge

of fluorescence from the top of the canopy
to the emission of fluorescence

APAR ¼ absorbed photosynthetically active radiation
EVI ¼ enhanced vegetation index

fPAR ¼ fraction of APAR
GOME-2 ¼ Global Ozone Monitoring Instrument-2

GPP ¼ gross primary productivity
LAI ¼ leaf area index

MODIS ¼ Moderate Resolution Imaging Spectroradiometer
NDVI ¼ normalized difference vegetation index

OCO-2 ¼ Orbiting Carbon Observatory-2
PAR ¼ photosynthetically active radiation

SIF ¼ solar-induced chlorophyll fluorescence
SIFPAR ¼ SIF normalized by PAR

SM ¼ soil moisture
SPEI ¼ standardized precipitation evapotranspiration index

VIs ¼ vegetation indices
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