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Abstract 

Evaluation of photosynthetic quantum yield is important for analyzing the phenotype of plants. 

Chlorophyll a fluorescence (ChlF) has been widely used to estimate plant photosynthesis and 

its regulatory mechanisms. The ratio of variable to maximum fluorescence, Fv/Fm, obtained from 

ChlF induction curve, is commonly used to reflect the maximum photochemical quantum yield 

of photosystem II (PSII), but it is measured after a sample is dark-adapted for a long time, which 

limits its practical use. In this research, a least squares support vector machine (LSSVM) model 

was developed to explore if Fv/Fm can be determined from ChlF induction curves measured 

without dark adaptation. A total of 7, 231 samples of eight different experiments, under diverse 

conditions, were used to train the LSSVM model. Model evaluation with different samples 

showed excellent performance in determining Fv/Fm from ChlF signals without dark adaptation. 

Computation time for each test sample was less than 4 ms. Further, the prediction performance 
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of test dataset was found to be very desirable: a high correlation coefficient (0.762-0.974); a low 

root mean squared error (0.005-0.021); and a residual prediction deviation of 1.254-4.933. 

These results clearly demonstrate that Fv/Fm, the widely used ChlF induction feature, can be 

determined from measurements without dark adaptation of samples. This will not only save 

experiment time but also make Fv/Fm useful in real-time and field applications. This work 

provides a high throughput method to determine the important photosynthetic feature through 

ChlF for phenotyping plants. 

 

Keywords: Chlorophyll a fluorescence; Least squares support vector machine; Dark 

adaptation; Variable to maximum Chlorophyll a fluorescence Fv/Fm; Phenotyping 

 

Abbreviations  

Abbreviations Definitions 

ChlF Chlorophyll a fluorescence 

OJIP 

Chlorophyll a fluorescence induction kinetic curve, O is for fluorescence when all the 

reaction centers are open, P is for fluorescence peak, J and I are inflection points 

between the O and the P levels 

PSII Photosystem II 

PSI Photosystem I 

Fo Minimal chlorophyll a fluorescence in dark-adapted samples 

Fm Maximal chlorophyll a fluorescence in dark-adapted samples 

Fv/Fm 
Ratio of variable Fv (Fv = Fm - Fo) to Fm, representing maximum quantum yield of 

primary PSII photochemistry in dark-adapted samples  

Y(II) Effective quantum yield of photochemical energy conversion in PSII 

Y(NPQ) Quantum yield of regulated non-photochemical energy loss in PSII 

Y(NO) Quantum yield of non-regulated heat dissipation and fluorescence emission 

 

1. Introduction 

Photosynthesis is the source of food, energy, fiber, and oxygen for all living organisms including 

humans. Evaluation of photosynthetic quantum yield is important for analyzing plant 

phenotypes; however, the research of current plant phenomics is often limited to external 

geometry features. When the chloroplasts in plants and algae absorb sunlight, pigments, mainly 

chlorophyll molecules, in the light-harvesting pigment protein (antenna) complexes (LHCs) are 
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excited and the absorbed energy is transferred to photosystem II (PSII) and photosystem I (PSI) 

reaction centers [1, 2]. The absorbed light energy is used mostly for photosynthesis but is partly 

dissipated in the form of chlorophyll a fluorescence (ChlF) or heat [3]. Background on the 

various steps of photosynthesis is available in several publications [4].  

 Environmental or plant physiological changes that affect PSII lead to changes in ChlF, 

which can be used as a fast, sensitive, and a nondestructive indicator of the status of PSII [5, 6]. 

Analysis of ChlF changes is one of the most powerful and widely used techniques to study the 

effects of various types of stress on the photosynthetic process [7-9]. At present, ChlF is widely 

used as a probe for not only PSII, but overall photosynthesis [10], photosynthetic systems [11], 

photochemistry and heat dissipation [12], several photosynthetic reactions [13], and 

photoinhibition [14]. Furthermore, it is used to monitor different types of abiotic stress [15], 

including drought [16], heat [17, 18], environmental pollution [19], nutrient status [20], and 

plant phenotyping [21]. ChlF measurement can serve as a plant physiological variable related 

to photosynthesis in phenotypic analysis. Advances in optical phenotyping (including that by 

ChlF) of cereal crops have been summarized by Sun et al. [22].  

Although ChlF has been used for many purposes, as mentioned above, the interpretation of 

ChlF measurement is quite complex. A very important feature derived from the ChlF induction 

curve is Fv/Fm [23], which allows us to provide information on effects of carbon metabolism, 

and has been successfully used as a sensitive indicator of the photosynthetic performance of 

plants [24]. To determine the Fv/Fm ratio, dark adaptation is needed to open all the PSII reaction 

centers, and only then can the minimal fluorescence (Fo) be measured. (For a discussion on the 

timing for measuring Fo, see Padhi et al. 2021 [25].) After excitation with strong continuous 

light, most, if not all, the reaction centers are closed, and thus ChlF reaches a maximum value 

(Fm). The difference, Fv = Fm - Fo, is referred to as the variable fluorescence. The ratio, Fv/Fm = 

(Fm−Fo)/Fm, reflects an intrinsic PSII efficiency and measures the quantum yield of the primary 

PSII photochemistry in dark-adapted photosynthetic samples [26, 27]. Fv/Fm has been 

successfully used as an indicator of plant photosynthetic performance [28]. It has also been used 

to obtain information on photoinhibition induced by abiotic stress [29]. The Fv/Fm can also 

reflect the severity of plant phenotypic diseases, and it is an important indicator of plant stress. 

Rousseau et al. (2013) focused on phenotyping by analyzing Fv/Fm images, and their results 
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showed that there was a clear strong difference between the infected tissues and the healthy 

tissues [21]. Zhou et al. (2018) used ChlF in the phenotypic analysis of faba beans (Vica faba 

L.) under both cold and heat stress, and found that Fv/Fm is a very effective parameter in 

detecting the damage by low and high temperatures to PSII; further, they identified high 

temperature tolerant broad beans genotypes [30]. Therefore, Fv/Fm can be used as a 

physiological marker for phenotyping. 

 Before measuring Fo, it is necessary to dark-adapt a plant sample for 15-30 minutes [31] or 

even longer [32]. This dark-adaptation process is time-consuming. Far-red light, absorbed 

mainly by PSI, might be used to speed up the oxidation of the reduced PQ pool and thus suppress 

the measured Fo, i.e., Fo’ (minimum ChlF intensity in the light-adapted state) increase, and this 

method is often applied following dark-adaptation. It is thus desirable to find a method to 

determine Fv/Fm from ChlF measurement without dark adaptation. The exact relationship 

between ChlF with dark adaptation and that without dark adaptation is complex and has not yet 

been established. By using contemporary computational methods, this hidden relationship can 

be explored to determine accurate Fv/Fm from ChlF measurement without dark adaptation, but 

this has not yet been done by any research group.  

 Artificial intelligence methods have been widely used to identify hidden relationships in 

many fields. Using these methods to analyze ChlF data can identify complex relationships in 

plant responses to stresses [33]. Tyystjärvi et al. (2011) have identified species of crops and 

weeds by analyzing ChlF induction curve with an ANN (artificial neural network) method [34]. 

This method has been used to identify plant species by analyzing ChlF induced by different 

types of illumination [35]. Furthermore, Goltsev et al. (2012) have constructed and trained an 

ANN by using photoinduced prompt ChlF, delayed ChlF, and 820-nm modulated reflection 

signal (measuring PSI) to identify changes in the photosynthetic activity in bean leaves during 

drying [36]. Yao et al. (2018) have applied kinetic ChlF and multi-color fluorescence imaging 

technology for phenotypic analysis of Arabidopsis drought stress response, and, from it, they 

have successfully classified Arabidopsis under different drought stress levels by Support Vector 

Machine (SVM) [37]. Artificial intelligence methods may be potentially used to find the hidden 

relationship between the Fv/Fm and ChlF measurement, without any dark adaptation of plants, 

D
ow

nloaded from
 https://spj.science.org on M

arch 17, 2023



Plant Phenomics                             Manuscript Template                             Page 5 of 21                         

but by using a general learning strategy (i.e., a mathematical method), so that Fv/Fm under dark 

adaptation can be predicted from ChlF measurement without dark adaptation. 

In our present study, a least-squares support vector machine (LSSVM), an artificial 

intelligence method, was used to determine Fv/Fm from ChlF measurement without dark 

adaption for multiple plant species and conditions, which allows one to save tremendous amount 

of experimental time and provides an important feature for plant phenomics.  

 

2. Materials and methods 

2.1 Plant samples 

Eight sets of experiments with a total of 7,231 samples were performed on six plant species 

(Oryza sativa L. (Rice), Camellia japonica, Euonymus japonicus Thunb, Osmanthus sp, 

Cerasus lannesiana var. speciosa and Capsicum annuum). These plant species are under 

different drought stress, ambient growth temperature, growing seasons, and measured 

environments. Details are described below in the order they were done from the summer of 2019 

till the winter of 2021 for different plant species, described below. 

 Rice (Oryza sativa L.). The first set of experiments was conducted on rice plants (Oryza 

sativa L.) under four different drought stress conditions. Rice plants were taken with roots from 

a production field in Jiangsu, China, in the early mornings, during the growing season in the 

Summer of 2019, when the ambient temperature was ~28 oC. To reduce the effects of variations 

in moisture in different samples, during ChlF measurements, the roots of the plants were 

completely immersed in water for at least 2 hours. Then the roots were placed in 20% 

polyethylene glycol (PEG) for different duration (0 hour, 1 hour, 2 hours, and 4 hours) of 

treatment to achieve different levels of drought stress or physiological state [38]. The number 

of samples of rice plants without drought, or with drought treatment for 1 hour, 2 hours, and 4 

hours was 1335, 1093, 1322, and 1146, respectively. The temperature during ChlF measurement 

was between 30 oC and 36 oC, and the ambient photosynthetic photon flux density (PPFD) was 

between 3 µmol photons m-2 s-1 and 7 µmol photons m-2 s-1.  

 Camellia japonica and Euonymus japonicus Thunb. The second set of experiments was 

carried out on Japanese Camellia (Camellia japonica) leaves, using 314 samples. The third set 

of experiments was done on leaves of Euonymus japonicus Thunb, also using 314 samples. Both 
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Camellia japonica and Euonymus japonicus Thunb were grown on the campus of Jiangnan 

University (Wuxi, China). Leaves from these two plants were picked in the mornings in April 

2021 and were transferred immediately to the laboratory for measurements. To reduce the effect 

of variations in the water condition, the sampled leaves of the second and the third sets of 

experiments were floated on water for at least an hour. The temperature during ChlF 

measurement was ~ 23 o C and the ambient PPFD was ~ 5 µmol photons m-2 s-1. 

Osmanthus sp and Cerasus lannesiana var. speciosa. The fourth and the fifth set of 

experiments were carried out on intact plants in the wild field, using leaves of Osmanthus sp 

with 237 samples and those of Cerasus lannesiana var. speciosa with 335 samples. These plants 

in the fourth and the fifth experiments were grown naturally on the campus of Jiangnan 

University (Wuxi, China). The ChlF data of the fourth and the fifth experiments were collected 

at the end of July 2021, the ambient temperature was ~33 oC, and the ambient PPFD was 

between 58 µmol photons m-2 s-1 and 1960 µmol photons m-2 s-1.  

Capsicum annuum. The sixth set of experiments was performed on attached leaves of 

Capsicum annuum. Here, 356 samples were tested in the field, which were grown in a 

greenhouse in Wuxi, China. The ChlF data were collected at the beginning of August 2021. The 

temperature was between 36 oC and 40 oC and the ambient PPFD was between 58 µmol photons 

m-2 s-1 and 1770 µmol photons m-2 s-1 during measurements in the greenhouse.  

Camellia japonica and Osmanthus sp. The seventh and eighth experiments were carried 

out on intact plants on the campus of Jiangnan University (Wuxi, China), which included leaves 

of Osmanthus sp with 379 samples and of Camellia japonica with 400 samples. These 

experiments were done in December 2021; the ambient temperature was between 8 oC and 15 

oC, and the ambient PPFD was between 78 µmol photons m-2 s-1 and 1380 µmol photons m-2 s-

1. 

Table 1. Plant samples and experiment specifics (the light intensity of exciting 
the ChlF was 2400 µmol photons m-2 s-1 for all experimental samples) 

Plant and 
Treatment 

Symbol 
Number 

of 
samples 

Measurement  
Location 

Measurement Date
Ambient 

Temperature
Ambient PPFD 

All plant samples P 7231 --- --- --- --- 

All rice samples A 4896 --- --- --- --- 
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All Osmanthus 
sp samples 

(Osmanthus sp 
samples in 

Summer and 
Winter) 

B 616 --- --- --- --- 

Rice without 
drought 

treatment 
A0 1335 Laboratory 

July and August 
2019 

Between 30 
and 36 oC 

Between 3 and 
7 µmol photons 

m-2 s-1  
Rice with 1 hour 

of drought 
treatment 

A1 1093 Laboratory 
July and August 

2019 
Between 30 
and 36 oC 

Between 3 and 
7 µmol photons 

m-2 s-1 
Rice with 2 hours 

of drought 
treatment 

A2 1322 Laboratory 
July and August 

2019 
Between 30 
and 36 oC 

Between 3 and 
7 µmol photons 

m-2 s-1 
Rice with 4 hours 

of drought 
treatment 

A3 1146 Laboratory 
July and August 

2019 
Between 30 
and 36 oC 

Between 3 and 
7 µmol photons 

m-2 s-1 

Osmanthus sp in 
Summer 

B1 237 Wild Field July 2021 About 33 oC 
Between 58 and 

1960 µmol 
photons m-2 s-1 

Osmanthus sp in 
Winter 

B2 379 Wild Field December 2021 
Between 8 
and 15 oC 

 between 78 
and 1380 µmol 
photons m-2 s-1 

 Euonymus 
japonicus Thunb 

C 314 Laboratory April 2021 About 23 oC 
About 5 µmol 
photons m-2 s-1 

 Camellia 
japonica 

D 314 Laboratory April 2021 About 23 oC 
About 5 µmol 
photons m-2 s-1 

Capsicum 
annuum 

E 356 Greenhouse August 2021 
Between 36 
and 40 oC 

Between 58 and 
1770 µmol 

photons m-2 s-1 
Cerasus 

lannesiana var. 
speciosa 

F 335 Wild Field July 2021 About 33 oC 
Between 58 and 

1960 µmol 
photons m-2 s-1 

Camellia 
japonica 

G 400 Wild Field December 2021 
Between 8 
and 15 oC 

Between 78 and 
1380 µmol 

photons m-2 s-1 

 

2.2 Instrumentation and measurements 

The ChlF parameter Fv/Fm (ratio of variable to maximum fluorescence) was measured under 

two conditions: with and without dark adaptation of the leaves. The illumination condition 

without dark adaptation means that the plant leaves are not dark adapted before the ChlF 

measurement. The leaves were measured without dark adaptation, and then they were measured 

in dark-adapted state after dark adaptation. Twenty-minute dark adaptation was applied through 

dark adaptation clips [39]. A FluorPen ChlF measurement device (Photon Systems Instruments, 

Drásov, Czech Republic) was used to measure ChlF transient, ChlF induction of the leaves, 

where “O” is the minimum fluorescence, J and I are inflection steps, and P is for the peak (the 

maximum). The illumination light intensity to excite the ChlF of leaves was set as 2400 µmol 

photons m-2 s-1 for all samples.  

The ambient light intensities for all our experiments were measured by a light intensity 

meter (VC1010A, Victor, Shenzhen, China). The light intensity read in Lux, from the measured 

light intensity meter, was converted to PPFD. The conversion relationships are 1Klux = 19.5 
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µmol photons m-2 s-1 for daylight PPFD [40], and 1Klux = 12 µmol photons m-2 s-1 for white 

fluorescent light [41]. The values of ambient light intensities in this work are only used to show 

that measurements were made on samples illuminated with a wide range of initial lighting 

conditions. Estimation errors of PPFD from Lux have no effect the conclusion of this work. 

2.3 Development of an LSSVM model 

A support vector machine (SVM) maps high-dimensional data from an input space to a feature 

space through a nonlinear mapping process. Least Squares Support Vector machine (LSSVM) 

is an extension of SVM; it uses inequality constraints instead of equality constraints and the sum 

of squared-error loss function as the “experience loss” to transform a problem into a linear one. 

In this work, an LSSVM model was employed to map the relationship between the ChlF 

induction feature Fv/Fm with and without dark adaptation of the photosynthetic samples. The 

LSSVM regression equation is: 

𝑓ሺ𝑥ሻ ൌ 𝑤்𝜑ሺ𝑥ሻ ൅ 𝑏              (1) 

where, x is the ChlF response without dark-adaptation, f(x) is the corresponding output, 𝜑ሺ𝑥ሻ is 

a nonlinear mapping function that maps x to a high-dimensional feature space, w is a weighting 

vector, and b is a bias variable. Based on the principle of structural risk minimization, the 

function becomes: 

𝑓ሺ𝑥ሻ ൌ ∑ 𝑎௜
௠
௜ୀଵ 𝐾ሺ𝑥, 𝑥௜ሻ ൅ 𝑏            (2) 

where, K is a kernel function, 𝑎௜ is the Lagrangian multiplier, i is an integer, and m is the 

number of samples in a training dataset. According to the Mercer condition, the kernel function 

can be written as: 

𝐾൫𝑥௜, 𝑥௝൯ ൌ 𝜑ሺ𝑥௜ሻ்𝜑൫𝑥௝൯    𝑖, 𝑗 ൌ 1,2, … , 𝑚         (3) 

The following radial basis function (RBF) was used as the kernel function in our research: 

𝐾ሺ𝑥, 𝑥௜ሻ ൌ 𝑒𝑥𝑝 ቄെ
‖௫ି௫೔‖మ

ଶఛమ ቅ            (4) 

where, τ represents the parameter of the Gaussian radial basis kernel function. 

For the training dataset ሼሺ𝑥௜, 𝑦௜ሻ, 𝑖 ൌ 1,2, … , 𝑚ሽ, xi�Rm represents the input of the i-th 

training sample (ChlF measured without dark adaptation), and yi�R is the target value of the i-

th training data set (Fv/Fm measured with dark adaptation), and m is the number of samples in 

the training dataset. 
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For the testing dataset ሼሺ𝑋௜, 𝑌௜ሻ, ሺ𝑖 ൌ 1, 2, …  , 𝑛ሻሽ, Xi is the input of the i-th test sample 

(ChlF measured without dark adaptation), Yi is the real target value of the i-th test data sample 

(Fv/Fm measured with dark adaptation), and n is the number of samples in the test dataset. Xi is 

fed to the trained LSSVM model (Eqn. (2)) to calculate the corresponding predicted Fv/Fm value, 

and the i-th predicted Fv/Fm value is expressed as 𝑌𝑌௜ ሺ𝑖 ൌ 1,2, … , 𝑛ሻ.  

2.4 Data normalization 

To reduce the influence of differences in data magnitudes, the following zero-mean 

normalization method (Z-score normalization) was used to normalize both the ChlF signal data 

without dark-adaptation and the Fv/Fm target values with dark-adaptation so that both were in 

the same order of magnitude:  

𝑍 ൌ ௫ିఓ

ఙ
                 (5) 

where, μ denotes the mean and σ is the standard deviation of the original data x, and Z represents 

standard normal distribution. 

 The predicted Fv/Fm values from the model were denormalized to their original scale for 

testing and evaluation. 

2.5 Model testing and evaluation 

To evaluate the performance and generalization ability of the model, the following metrics 

computed from the test samples were used to assess the predicted Fv/Fm: (1) root mean square 

error (RMSE); (2) correlation coefficient (CC); and (3) residual predictive deviation (RPD), as 

shown below in Eqns. 6-8.  

𝑅𝑀𝑆𝐸 ൌ ට∑ ሺ௒௒೔ି௒೔ሻమ೙
೔సభ

௡
             (6) 

𝐶𝐶 ൌ
∑ ሺሺ௒௒೔ି௒௒തതതതሻሺ௒೔ି௒തሻሻ೙

೔సభ

ටൣ∑ ሺ௒௒೔ି௒௒തതതതሻమ೙
೔సభ ൧ሾ∑ ሺ௒೔ି௒തሻమ೙

೔సభ ሿ
           (7) 

𝑅𝑃𝐷 ൌ ට
∑ ሺ௒೔ି௒തሻమ೙

೔సభ

∑ ሺ௒௒೔ି௒೔ሻమ೙
೔సభ

              (8) 

where, YYi is the predicted Fv/Fm value of the i-th test sample, Yi is the true Fv/Fm value of the i-

th test sample, 𝑌ത is the true Fv/Fm mean value of the test samples, and n is the number of samples 

in the test dataset. All these metrics measure the deviation of the predicted Fv/Fm values from 

the true values. As is commonly known, the smaller RMSE or the closer to unity CC is, the 

higher the prediction performance. For most applications, models with RPD values lower than 
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1.5 are considered insufficient, while models with values greater than 2.0 have good robustness 

[42].   

In the training of the LSSVM model, a 10-fold cross-validation, and a grid optimization, 

was used to optimize the two parameters (regularization coefficient and parameter of the 

Gaussian radial basis kernel function) that affect the accuracy and the complexity of the model. 

In each of the 10 runs, 10%, 20%, …, and 90% of each sample type was randomly selected as 

the training dataset, and the remaining was used as the testing dataset. The average values of 

RMSE, CC, and RPD obtained in the 10 runs (𝑅𝑀𝑆𝐸തതതതതതതത, 𝐶𝐶തതതത, and 𝑅𝑃𝐷തതതതതത) were used to evaluate 

model performance. The LSSVM model was implemented in MATLAB 2019b (Mathworks, 

Inc., Natwick, MA, USA).  

 

3. Results  

3.1 Variations in Fv/Fm with dark adaptation and without dark adaptation  

To explore the difference between different sample types of the Fv/Fm measured with and 

without dark adaptation, statistical comparisons on the Fv/Fm from different sample types are 

presented in Table 2. Values indicated with different letters in a column are significantly (p<0.05) 

different from one another by the LSD (Least Signification Difference) test. The Fv/Fm measured 

with and without dark adaptation show statistical differences between most different sample 

types and treatments, as shown below in Table 2.  

Table 2 Statistical analysis of the Fv/Fm measured with dark adaptation or without dark adaptation for different 

samples (the results are presented as mean ± standard) 

Sample 
Type# 

 

Without dark 
adaptation 

With dark 
adaptation 

Sample 
type 

Without dark 
adaptation 

With dark 
adaptation 

P 0.786±0.051 0.818±0.036 B1 0.803±0.017ab 0.837±0.016a 

A 0.803± 0.012 0.831±0.010 B2 0.735±0.115f 0.783±0.076d 

B 0.761±0.097 0.804±0.066 C 0.746±0.043e 0.780 ±0.044b 

A0 0.807±0.012a 0.831±0.013a D 0.778±0.018d 0.807±0.018c 

A1 0.805±0.010ab 0.834±0.007a E 0.706±0.047h 0.768±0.027f 

A2 0.803±0.011b 0.830±0.009a F 0.801±0.014bc 0.834±0.009a 

A3 0.798±0.013c 0.828±0.010b G 0.713±0.096g 0.755±0.058g 

#P: all plant samples; A: all the rice samples; B: all Osmanthus sp samples; A0: Rice without drought treatment; 

A1: rice with 1 hour of drought treatment; A2: rice with 2 hours of drought treatment; A3: rice with 4 hours 

of drought treatment; B1: Osmanthus sp in Summer; B2: Osmanthus sp in Winter; C: Euonymus japonicus 

Thunb in the laboratory; D: Camellia japonica in the laboratory; E: Capsicum annuum; F: Cerasus lannesiana 

var. speciosa; G: Camellia japonica in wild field. 
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3.2 Training performance of the model for prediction of Fv/Fm using ChlF without dark 
adaptation  

We note that 10%, 20%, …, and 90% of A0, A1, A2, A3, B1, B2, C, D, E, F, and G were 

randomly selected as the training data set to establish the initial LSSVM model, and the 

remaining samples were used as the verification data set to test the prediction performance of 

the established LSSVM model for Fv/Fm under dark adaptation. The all-rice test datasets were 

composed of rice samples with four different drought levels. All Osmanthus sp test datasets 

were composed of Osmanthus sp samples in Summer and Winter. The 𝐶𝐶തതതത, 𝑅𝑀𝑆𝐸തതതതതതതത, and 𝑅𝑃𝐷തതതതതത 

represent the average values of the correlation coefficient (CC), root mean square error (RMSE), 

and residual predictive deviation (RPD), respectively. 

 LSSVM model performance evaluation index (𝐶𝐶തതതത , 𝑅𝑀𝑆𝐸തതതതതതതത , and 𝑅𝑃𝐷തതതതതത) for determining 

Fv/Fm values of training dataset from ChlF without dark adaptation under different training 

dataset sample numbers are shown in Tables 3-5. When the training dataset sample exceeds 

70%, the 𝐶𝐶തതതത of most sample type for training dataset is greater than 0.80 in Table 3, the 𝑅𝑃𝐷തതതതതത 

of most sample type for training dataset is greater than 1.5 for the training dataset in Table 5. 

The 𝑅𝑀𝑆𝐸തതതതതതതത of different sample type for training dataset is less than 0.016 in Table 4. 

 

Table 3 LSSVM model performance evaluation index 𝐶𝐶തതതത in determining Fv/Fm values of training dataset 

from ChlF without dark adaptation under different training dataset sample numbers (10%, 20%, …, and 90% 

of the total sample size). 

Sample Type# 10% 20% 30% 40% 50% 60% 70% 80% 90% 

P 0.973 0.975 0.975 0.974 0.974 0.975 0.974 0.976 0.976 

A 0.772 0.788 0.808 0.808 0.805 0.809 0.818 0.821 0.825 

B 0.974 0.975 0.971 0.970 0.971 0.973 0.973 0.974 0.975 

A0 0.677 0.720 0.745 0.736 0.739 0.739 0.792 0.792 0.765 

A1 0.865 0.875 0.882 0.879 0.888 0.886 0.891 0.889 0.891 

A2 0.778 0.783 0.817 0.821 0.814 0.812 0.822 0.815 0.824 

A3 0.867 0.871 0.891 0.887 0.881 0.896 0.895 0.899 0.901 

B1 0.851 0.920 0.939 0.961 0.944 0.962 0.968 0.970 0.970 

B2 0.970 0.970 0.966 0.965 0.966 0.968 0.968 0.970 0.970 

C 0.986 0.987 0.989 0.985 0.985 0.986 0.984 0.986 0.987 

D 0.957 0.968 0.969 0.969 0.968 0.967 0.966 0.967 0.965 

E 0.940 0.969 0.958 0.946 0.946 0.944 0.940 0.958 0.959 

F 0.809 0.888 0.874 0.857 0.876 0.890 0.865 0.877 0.887 

G 0.968 0.972 0.972 0.969 0.970 0.968 0.968 0.969 0.970 
#P: all plant samples; A: all rice samples; B: all Osmanthus sp samples; A0: Rice without drought treatment; 

A1: rice with 1 hour of drought treatment; A2: rice with 2 hours of drought treatment; A3: rice with 4 hours 

of drought treatment; B1: Osmanthus sp in Summer; B2: Osmanthus sp in Winter; C: Euonymus japonicus 
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Thunb in the laboratory; D: Camellia japonica in the laboratory; E: Capsicum annuum; F: Cerasus lannesiana 

var. speciosa; G: Camellia japonica in wild field. 

 

Table 4 LSSVM model performance evaluation index 𝑅𝑀𝑆𝐸തതതതതതതത in determining Fv/Fm values of training dataset 

from ChlF without dark adaptation under different training dataset sample numbers (10%, 20%, …, and 90% 

of the total sample size). 

Sample Type# 10% 20% 30% 40% 50% 60% 70% 80% 90% 

P 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 

A 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 

B 0.013 0.015 0.015 0.015 0.016 0.015 0.015 0.015 0.015 

A0 0.009 0.009 0.009 0.009 0.009 0.009 0.008 0.008 0.008 

A1 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 

A2 0.005 0.006 0.005 0.005 0.005 0.005 0.005 0.005 0.005 

A3 0.005 0.005 0.005 0.005 0.005 0.004 0.004 0.004 0.004 

B1 0.005 0.005 0.004 0.005 0.004 0.004 0.004 0.004 0.004 

B2 0.017 0.019 0.019 0.019 0.020 0.019 0.019 0.018 0.018 

C 0.009 0.007 0.007 0.008 0.008 0.008 0.008 0.007 0.007 

D 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 

E 0.008 0.007 0.007 0.009 0.009 0.008 0.009 0.007 0.007 

F 0.006 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 

G 0.015 0.014 0.015 0.016 0.015 0.016 0.016 0.015 0.015 
#P: all plant samples; A: all rice samples; B: all Osmanthus sp samples; A0: Rice without drought treatment; 

A1: rice with 1 hour of drought treatment; A2: rice with 2 hours of drought treatment; A3: rice with 4 hours 

of drought treatment; B1: Osmanthus sp in Summer; B2: Osmanthus sp in Winter; C: Euonymus japonicus 

Thunb in the laboratory; D: Camellia japonica in the laboratory; E: Capsicum annuum; F: Cerasus lannesiana 

var. speciosa; G: Camellia japonica in wild field. 

 

Table 5 LSSVM model performance evaluation index 𝑅𝑃𝐷തതതതതത in determining Fv/Fm values of training dataset 

from ChlF without dark adaptation under different training dataset sample numbers (10%, 20%, …, and 90% 

of the total sample size). 

Sample Type# 10% 20% 30% 40% 50% 60% 70% 80% 90% 

P 4.577  4.500  4.519 4.404 4.457 4.490 4.493 4.600 4.652  

A 1.637  1.632  1.700 1.706 1.689 1.704 1.743 1.749 1.770  

B 4.727  4.530  4.238 4.170 4.257 4.334 4.355 4.454 4.501  

A0 1.416  1.420  1.472 1.460 1.453 1.459 1.602 1.611 1.524  

A1 1.767  1.778  1.817 1.850 1.854 1.862 1.900 1.897 1.920  

A2 1.725  1.679  1.768 1.769 1.714 1.694 1.729 1.687 1.720  

A3 2.042  2.053  2.230 2.153 2.111 2.236 2.225 2.261 2.297  

B1 2.454  3.371  3.278 3.723 3.317 3.625 3.934 4.021 4.163  

B2 4.422  4.170  3.919 3.851 3.910 3.990 4.007 4.101 4.131  

C 6.253  6.001  6.462 5.489 5.584 5.846 5.590 6.039 6.235  

D 3.344  3.749  3.725 3.728 3.629 3.622 3.504 3.549 3.479  

E 3.875  4.422  3.676 3.219 3.304 3.500 3.370 3.683 3.929  

F 1.525  1.909  1.816 1.637 1.815 1.963 1.753 1.865 1.973  

G 4.017  4.052  4.056 3.734 3.847 3.785 3.755 3.854 3.892  
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#P: all plant samples; A: all rice samples; B: all Osmanthus sp samples; A0: Rice without drought treatment; 

A1: rice with 1 hour of drought treatment; A2: rice with 2 hours of drought treatment; A3: rice with 4 hours 

of drought treatment; B1: Osmanthus sp in Summer; B2: Osmanthus sp in Winter; C: Euonymus japonicus 

Thunb in the laboratory; D: Camellia japonica in the laboratory; E: Capsicum annuum; F: Cerasus lannesiana 

var. speciosa; G: Camellia japonica in wild field. 

 

3.3 Prediction of Fv/Fm using ChlF without dark adaptation on the test dataset 

The test dataset results of using the LSSVM model to determine Fv/Fm from ChlF measured 

without dark adaptation under different training dataset sample numbers are presented in Tables 

7-8. By all the measures (see Tables 7-8), the model, used in our research, showed strong 

prediction performance when the training dataset sample is more than 80% of all sample size. 

Under this condition, the 𝐶𝐶തതതത values for the test dataset show (Table 6) that the predicted Fv/Fm 

by the LSSVM model are significantly, nearly perfectly in most cases, correlated with the true 

Fv/Fm values, the most 𝐶𝐶തതതത values being more than 0.80. The 𝑅𝑀𝑆𝐸തതതതതതതത values for the test dataset 

in Table 8 show nearly negligible differences between the predicted and the real Fv/Fm, the 𝑅𝑃𝐷തതതതതത 

values of the most sample types are much greater than 2, and all 𝑅𝑃𝐷തതതതതത values are greater than 

1.5, which shows that the model has good robustness for the test dataset. 

 

Table 6 LSSVM model performance evaluation index 𝐶𝐶തതതത in determining Fv/Fm values of test dataset from 

ChlF without dark adaptation under different training dataset sample numbers (10%, 20%, …, and 

90% of the total sample size). 

Sample Type# 10% 20% 30% 40% 50% 60% 70% 80% 90% 

P 0.947 0.955 0.958 0.960 0.961 0.962 0.963 0.964 0.962 

A 0.706 0.751 0.765 0.757 0.779 0.780 0.772 0.806 0.802 

B 0.959 0.965 0.966 0.967 0.967 0.966 0.966 0.972 0.969 

A0 0.570 0.645 0.662 0.652 0.683 0.688 0.690 0.763 0.762 

A1 0.841 0.857 0.865 0.872 0.872 0.872 0.871 0.888 0.892 

A2 0.743 0.758 0.773 0.757 0.778 0.799 0.765 0.841 0.831 

A3 0.817 0.859 0.865 0.864 0.884 0.866 0.869 0.880 0.882 

B1 0.907 0.934 0.953 0.939 0.958 0.950 0.949 0.917 0.837 

B2 0.953 0.959 0.960 0.962 0.962 0.960 0.960 0.966 0.964 

C 0.946 0.939 0.963 0.961 0.962 0.954 0.973 0.974 0.939 

D 0.956 0.959 0.962 0.963 0.965 0.961 0.963 0.958 0.962 

E 0.674 0.655 0.647 0.699 0.746 0.783 0.771 0.810 0.838 

F 0.777 0.776 0.790 0.829 0.800 0.786 0.788 0.876 0.847 

G 0.955 0.958 0.959 0.962 0.958 0.962 0.961 0.961 0.963 
#P: all plant samples; A: all rice samples; B: all Osmanthus sp samples; A0: Rice without drought treatment; 

A1: rice with 1 hour of drought treatment; A2: rice with 2 hours of drought treatment; A3: rice with 4 hours 

of drought treatment; B1: Osmanthus sp in Summer; B2: Osmanthus sp in Winter; C: Euonymus japonicus 
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Thunb in the laboratory; D: Camellia japonica in the laboratory; E: Capsicum annuum; F: Cerasus lannesiana 

var. speciosa; G: Camellia japonica in wild field. 

 

Table 7 LSSVM model performance evaluation index 𝑅𝑀𝑆𝐸തതതതതതതത in determining Fv/Fm values of test dataset 

from ChlF without dark adaptation under different training dataset sample numbers (10%, 20%, …, 

and 90% of the total sample size). 

Sample Type# 10% 20% 30% 40% 50% 60% 70% 80% 90% 

P 0.012 0.011 0.011 0.010 0.010 0.010 0.010 0.010 0.010 

A 0.007 0.007 0.007 0.007 0.006 0.006 0.007 0.006 0.006 

B 0.019 0.018 0.017 0.017 0.017 0.017 0.017 0.016 0.017 

A0 0.011 0.010 0.010 0.010 0.009 0.009 0.009 0.009 0.009 

A1 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 

A2 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.005 0.005 

A3 0.006 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 

B1 0.007 0.006 0.005 0.005 0.005 0.005 0.005 0.005 0.005 

B2 0.024 0.022 0.022 0.022 0.021 0.021 0.021 0.020 0.021 

C 0.015 0.015 0.012 0.013 0.012 0.012 0.010 0.010 0.017 

D 0.006 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.006 

E 0.025 0.023 0.023 0.002 0.019 0.017 0.018 0.021 0.018 

F 0.012 0.008 0.007 0.006 0.007 0.007 0.006 0.007 0.006 

G 0.019 0.018 0.018 0.017 0.017 0.017 0.016 0.017 0.017 
#P: all plant samples; A: all rice samples; B: all Osmanthus sp samples; A0: Rice without drought treatment; 

A1: rice with 1 hour of drought treatment; A2: rice with 2 hours of drought treatment; A3: rice with 4 hours 

of drought treatment; B1: Osmanthus sp in Summer; B2: Osmanthus sp in Winter; C: Euonymus japonicus 

Thunb in the laboratory; D: Camellia japonica in the laboratory; E: Capsicum annuum; F: Cerasus lannesiana 

var. speciosa; G: Camellia japonica in wild field. 

 

Table 8 LSSVM model performance evaluation index 𝑅𝑃𝐷തതതതതത in determining Fv/Fm values of test dataset 

from ChlF without dark adaptation under different training dataset sample numbers (10%, 20%, …, 

and 90% of the total sample size). 

Sample Type# 10% 20% 30% 40% 50% 60% 70% 80% 90% 

P 3.095 3.362 3.468 3.566 3.626 3.689 3.706 3.757 3.724 

A 1.402 1.511 1.552 1.528 1.600 1.604 1.581 1.692 1.695 

B 3.491 3.74 3.87 3.901 3.941 3.918 3.884 4.209 4.176 

A0 1.187 1.300 1.322 1.309 1.362 1.365 1.376 1.556 1.548 

A1 1.627 1.672 1.763 1.753 1.803 1.780 1.794 1.884 1.925 

A2 1.469 1.504 1.547 1.506 1.581 1.652 1.549 1.837 1.831 

A3 1.702 1.910 1.985 1.971 2.130 1.987 2.050 2.110 2.272 

B1 2.330 2.790 3.292 2.960 3.371 3.282 3.158 3.071 2.507 

B2 3.245 3.466 3.556 3.589 3.635 3.608 3.569 3.849 3.858 

C 3.127 3.006 3.700 3.625 3.670 3.802 4.744 4.933 4.141 

D 3.179 3.256 3.299 3.441 3.364 3.285 3.528 3.079 3.336 

E 1.168 1.189 1.184 1.311 1.387 1.578 1.451 2.104 1.726 

F 0.926 1.165 1.336 1.454 1.293 1.271 1.334 1.254 1.512 

G 3.086 3.240 3.241 3.377 3.222 3.414 3.497 3.462 3.520 
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#P: all plant samples; A: all rice samples; B: all Osmanthus sp samples; A0: Rice without drought treatment; 

A1: rice with 1 hour of drought treatment; A2: rice with 2 hours of drought treatment; A3: rice with 4 hours 

of drought treatment; B1: Osmanthus sp in Summer; B2: Osmanthus sp in Winter; C: Euonymus japonicus 

Thunb in the laboratory; D: Camellia japonica in the laboratory; E: Capsicum annuum; F: Cerasus lannesiana 

var. speciosa; G: Camellia japonica in wild field. 

 

Figure 1 shows a comparison of the Fv/Fm values predicted by the LSSVM model obtained from 

different training dataset sample numbers with the experimental values measured after dark-

adaptation for all the tested samples. It is obvious from the plots that the predicted Fv/Fm values 

by the LSSVM model match the real values of Fv/Fm well. To further evaluate model prediction 

performance, a regression line was computed to verify if it is close to the 1:1 line. As shown in 

Figure 1, the fitted regression lines have small slopes and intercept errors; further, the predicted 

values for Fv/Fm almost coincide with the perfect 1:1 line for the sample types used. The data 

points are tightly distributed around the ideal straight line, which means that the predicted values 

are linearly related to the real values. The coefficient of determination (R2) values between the 

predicted Fv/Fm and the measured Fv/Fm values with dark-adaptation is 0.970 for all plant 

samples, which is close to 1, and the p-value of 0.000 is less than the default significance level 

of 0.05. We emphasize that a significant linear regression relationship exists between the 

predicted Fv/Fm from ChlF signal without dark-adaptation and the Fv/Fm with dark-adaptation. 

Our data clearly show that the LSSVM model is highly effective in predicting Fv/Fm from ChlF 

measured without dark adaptation.  

 

Figure 1 The Fv/Fm predictions for test dataset using the LSSVM model obtained by different training dataset 

sample numbers. (A) the number of training dataset is 80% of the total sample, (B) the number of training 

dataset is 90% of the total sample. (P: all plant samples; A: all rice samples; B: all Osmanthus sp samples; 

A0: Rice without drought treatment; A1: rice with 1 hour of drought treatment; A2: rice with 2 hours of 

drought treatment; A3: rice with 4 hours of drought treatment; B1: Osmanthus sp in Summer; B2: Osmanthus 
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sp in Winter; C: Euonymus japonicus Thunb in the laboratory; D: Camellia japonica in the laboratory; E: 

Capsicum annuum; F: Cerasus lannesiana var. speciosa; G: Camellia japonica in wild field.) 

 

4. Discussion 

Understanding the physiological mechanism of plant genetic phenotype is of great significance 

for improving the growth and yield of crops. ChlF is a very useful phenotypic tool for plant 

phenotyping and photosynthesis, the Fv/Fm is subject to genetic control. The genetic phenotype 

of ChlF parameters is affected under stress conditions. It is very important to study the 

correlation between the internal difference of Fv/Fm among different varieties and the growth 

and yield of crops.  

Dark adaptation has been the usual treatment before ChlF induction measurement and it can 

often be used as a reference for plant stress research. Papageorgiou et al. (2007) reported that 

different dark adaptation times had a significant impact on the ChlF results [43]. In addition, 

dark adaptation needs additional equipment and is very time-consuming. In this work, ChlF 

signals measured without dark adaptation have been used to obtain true Fv/Fm successfully by 

using an LSSVM model. 

The experiments in this work involved the use of six different genetic varieties of plants, 

four levels of drought stress conditions, several different environmental temperatures (8 oC – 40 

oC), three different growing seasons (Spring, Summer, and Winter), wide range of 

photosynthetic photon flux density (between 3 µmol photons m-2 s-1 and 1960 µmol photons m-

2 s-1), and three different measured locations (wild field, greenhouse, and laboratory) (Table 1). 

All of the above lead to enormous differences in the ChlF parameters under a large variety of 

physiological conditions among different plants under different conditions (Table 2). As is well 

known, Fv/Fm is closely related to physiological status of plants. Our results clearly show that 

the developed model predicts the Fv/Fm among different samples with only very small errors 

(Tables 3-5). These data clearly prove that the LSSVM model can indeed discern the hidden 

relationship between ChlF signal without dark-adaption and Fv/Fm values with good robustness.  

The computation time for each test sample is less than 4 ms (Processor: Intel(R) Core (TM) 

i5-9400F CPU @ 2.90GHz) and much less than the dark-adaptation time (almost 20 minutes) 

taken in the traditional experiments. The machine learning method proved effective in 

uncovering the hidden relationships between ChlF signals of plant leaves with and without dark 

adaptation. The ability to measure Fv/Fm without dark adaptation will save experimental time 
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and cost. More significantly, this will allow Fv/Fm to be used in the field and in real time, which 

will make Fv/Fm a much more convenient measure in probing the physiological status of plants. 

This work provides a high throughput method for determining the important photosynthetic 

feature through ChlF, which would provide plant physiological features in phenotyping. 

This work also implies that the hidden nonlinear biological photosynthetic behavior can be 

discerned by artificial intelligence. The concept in this work is not only limited to predicting 

Fv/Fm, but it may be also used to predict other ChlF parameters, such as effective photochemical 

quantum yield of PSII (Y(II)), quantum yield of regulated energy dissipation in PSII (Y(NPQ), 

and quantum yield of non-regulated heat energy dissipation and fluorescence emission (Y(NO)) 

after model retraining. 

Recently, there have been many updated deep learning networks in the literature [44], such 

as Extreme Gradient Boosting (XGboost) [45] and Light Gradient Boosting Machine 

(LightGBM) [46]. The performance of XGboost and LightGBM were tested for predicting Fv/Fm 

values from ChlF measurements without dark-adaptation in this work for comparison, but their 

performance is similar to the LSSVM model, which implies that an LSSVM model is enough 

for this application. In this work, we thus report only the results from the simple LSSVM model 

as its performance is already very promising. The LSSVM model, used here, has shown great 

promise with small prediction errors, but, as is the case for other neural network-based tools, 

more experiments are needed to build a much bigger public training and testing dataset like the 

well-known imageNet for human face recognition [47] to call for improvements of the 

prediction model.  

 

5. Conclusion 

Dark adaptation of photosynthetic samples has been essential in measuring quantum yield of 

Photosystem II via Fv/Fm through ChlF-based analysis of photosynthesis and plant responses. 

An LSSVM model was developed to obtain Fv/Fm from ChlF signals measured without dark 

adaptation. The model was validated with data collected from many different plants under varied 

conditions. Our results have established that the LSSVM model could indeed determine Fv/Fm 

from ChlF measurements without dark adaptation. We emphasize that this work demonstrates 

that Fv/Fm can be determined without dark adaptation of plants, which will make the 

measurement more convenient and enhance the research of plant physiology and phenotyping. 
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