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Abstract Singlet-excited oxygen (1O2
*) has been recog-

nized as the most destructive member of the reactive

oxygen species (ROS) which are formed during oxygenic

photosynthesis by plants, algae, and cyanobacteria. ROS

and 1O2
* are known to damage protein and phospholipid

structures and to impair photosynthetic electron transport

and de novo protein synthesis. Partial protection is afforded

to photosynthetic organism by the b-carotene (b-Car)
molecules which accompany chlorophyll (Chl) a in the

pigment-protein complexes of Photosystem II (PS II). In

this paper, we studied the effects of exogenously added b-
Car on the initial kinetic rise of Chl a fluorescence

(10–1000 ls, the OJ segment) from the unicellular

cyanobacterium Synechococcus sp. PCC7942. We show

that the added b-Car enhances Chl a fluorescence when it is
excited at an intensity of 3000 lmol photons m-2 s-1 but

not when excited at 1000 lmol photons m-2 s-1. Since b-
Car is an efficient scavenger of 1O2

*, as well as a quencher

of 3Chl a* (precursor of 1O2
*), both of which are more

abundant at higher excitations, we assume that the higher

Chl a fluorescence in its presence signifies a protective

effect against photo-oxidative damages of Chl proteins.

The protective effect of added b-Car is not observed in O2-

depleted cell suspensions. Lastly, in contrast to b-Car, a
water-insoluble molecule, a water-soluble scavenger of

1O2
*, histidine, provides no protection to Chl proteins dur-

ing the same time period (10–1000 ls).

Keywords b-Carotene � Chlorophyll fluorescence �
Cyanobacteria � Singlet oxygen � Synechococcus sp.
PCC7942

Abbreviations

b-Car b-Carotene
Chl Chlorophyll

DCMU 3-(3,4-Dichlorophenyl)-1,1-dimethylurea

DMSO Dimethyl sulfoxide

GO Glucose oxidase

PS I, PS

II

Photosystem I, photosystem II

PQ-pool Plastoquinones shuttling electrons between PS

II and PS I

ROS Reactive oxygen species

Introduction

Singlet-excited molecular oxygen (1Dg;
1O2

*), a high energy

form of oxygen and a byproduct of light capture and

conversion in photosynthesis, is known to damage oxy-

genic photosynthetic organisms (Krieger-Liszkay et al.

2008; Triantaphyllidès and Havaux 2009; Vass 2012;

Kreslavski et al. 2013; Tyystjaervi 2013; Pospišil and

Prasad 2014; Telfer 2014; Demmig-Adams et al. 2014). In

particular, it initiates the degradation of the D1 protein of

the photosystem II reaction center (PSII-RC) complex

(Edelman and Mattoo 2008) and inhibits de novo proteins

synthesis, which then leads to the photoinactivation of PS

II (Allakhverdiev and Murata 2004; Nishiyama et al. 2004;
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Murata et al. 2012). 1O2
* is formed upon transfer of triplet

electronic excitation from chlorophyll a (3Chl a*) to

ground-state triplet oxygen (3O2). Excited Chl a triplets are

formed in two ways: (a) by spontaneous intersystem

crossing (spin inversion) of singlet-excited Chl a (1Chl a*)

to the triplet state, a transition which is favored when

photochemical de-excitations are prevented (Asada 1999;

Vass 2012; Telfer 2014) and (b) by charge recombination

between the primary electron donor cation (P680
?) and the

primary electron acceptor anion (Pheo-) of PSII-RC to a

virtual triplet state 3(P680
?Pheo-), followed by excitation

transfer to 3O2 (van Mieghem et al. 1989; Vass et al. 1992;

Keren et al. 1997; Mamedov et al. 2015).
3Chls a* have been detected also in whole photosystem I

(PS I; Blankenship et al. 1975; Shuvalov 1976; Frank et al.

1979), in peripheral PS I antenna proteins (Carbonera et al.

2005; Croce et al. 2007), as well as in its reaction center (PSI-

RC; Schlodder et al. 2005, 2007). However, 1O2
* could not be

detected in isolated PS I particles (Hideg and Vass 1995). On

the other hand, amutant ofArabidopsis thalianawith a lowb-
Car content in PSIwas found to bemore susceptible to photo-

oxidative damage at chilling temperatures than wild-type

plants (Cazzaniga et al. 2012); also, a carotenoidless Syne-

chocystis mutant has been described which is unable to syn-

thesize PS II complexes although it can formand assemble PS

I complexes (Domonkos et al. 2013). All these may suggest

that 1O2
* is formed in PS I but it is effectively scavenged by the

b-Cars and xanthophylls of pigment-protein complexes.

In the trimeric (LHCII) and the monomeric (CP29,

CP26, CP24) peripheral antenna proteins of PSII, 1O2
* is

trapped by xanthophylls, while in the core antenna proteins

(CP43, CP47) it is by b-Cars (e.g., Ramel et al. 2013;

Pospišil and Prasad 2014). In general, ground-state b-Cars
and carotenoids quench 1Chl a* and 3Chl a* and scavenge

chemically 1O2
*, thereby decreasing 1O2

* levels directly, as

well as indirectly (Edge and Truscott 1999; Ostrumov et al.

2014; Telfer 2014). In cyanobacteria, which have no Chl a-

binding peripheral antenna proteins, 1O2
* is formed only in

the core antenna (CP43, CP47) and in the PSII-RC (D1, D2)

complexes. In these photosynthetic prokaryotes, the

homodimeric core antenna complex binds, per monomer,

35 Chls a and 11 b-Car. Each of the reaction center

complexes (i.e., D1 and D2), binds 3 Chls a and 1 b-Car,
while CP43 binds 13 Chls a and 4 b-Cars and CP47 binds

16 Chls a and 5 b-Cars (see Broser et al. 2010).
1O2

* formswithin the hydrophobic domains of the thylakoid

membrane, where Chls a is located. During its long lifetime

(25–100 ls in non-polar solvents, 2–4 ls in water; Knox and
Dodge 1985) it diffuses to aqueousmembrane domains where

it is usually detected by means of water-soluble compounds

that act as chemical traps (e.g., imidazole, histidine, sodium

azide; see: Telfer et al. 1994; Rehman et al. 2013) or as fluo-

rescence sensors (Hideg et al. 2002; Fryer et al. 2002; Flors

et al. 2006; Sinha et al. 2011). In this research, we investigated

the possibility of detecting 1O2
*within hydrophobicmembrane

domains by means of the water-insoluble scavenger b-Car.
Our expectation was that this scavenger would report the

presence of 1O2
* by eliminating its destructive effects on Chl

a and on the fluorescence signal it emits.

To this end, we compared initial rise kinetics of Chl

a fluorescence (the OJ phase; lasting from 10 to 1000 ls),
upon transition from darkness to light, recorded in cell

suspensions with and without added b-Car. For this com-

parison, to OJ traces are normalized at J, namely at equal

concentrations of QA, the primary quinone electron

acceptor of PSII. This normalization is justified by the fact

that, upon dark adaptation, cyanobacteria shift to state II

because their intersystem plastoquinones (the PQ-pool)

become fully reduced by respiratory substrates (Dominy

and Williams 1987; Tsimilli-Michael et al. 2009). This is

reflected in the fact that, in cyanobacteria, fluorescence

levels at J, I, and P of the fluorescence induction trace are

nearly equal (see Tsimilli-Michael et al. 2009; Fig. 1b,

insert). In contrast, in eukaryotic photosynthetic cells

(plants, algae) it is as follows: J\ I\ P. Practically, the

single independent variable that determines the rise of Chl

a fluorescence along OJ in cyanobacteria is the reduction

level of QA. By normalizing the OJ traces to J, we compare

Synechococcus samples with equal QA contents.

Our results show enhanced Chl a fluorescence along the

OJ kinetic phase (see Stirbet and Govindjee 2011) when

plus-b-Car Synechococcus suspensions are compared with

minus-b-Car ones. Since the 650 nm light, used in these

experiments, does not excite b-Car to higher electronic

states, and since ground-state b-Car is an efficient chemical

scavenger of 1O2
* (Di Mascio et al. 1989), but has no other

action except light harvesting (Ramel et al. 2013) we take

this result to indicate that exogenous b-Car does indeed

afford protection to Chls a in situ. We show, also, that the

fluorescence difference DF± = F?b-Car - F-b-Car is

higher at higher excitation intensities and close to zero in

O2-depleted (anoxic) cell suspension. Further, we show

that 1O2
* does depress the very first recorded Chl a fluo-

rescence signal (F0, or point O, at 10 ls). With exoge-

nously added b-Car, therefore, 1O2
* can be detected directly

within hydrophobic membrane domains where it is formed

and before it diffuses to hydrophilic membrane domains.

Materials and methods

Cell cultures and preparations

The single-cell cyanobacterium Synechococcus sp.

PCC7942 was cultured photo-autotrophically in the BG11
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medium (Rippka et al. 1979) as described by Stamatakis

et al. (2014). Cells were harvested after 4 days (during

exponential growth) and were resuspended in fresh BG11

medium at 1 lg Chl a ml-1 to be used in fluorimetric

assays. Depending on the assay, cell samples further con-

tained: 20 lL of the PS II inhibitor 3-(3,4-dichlor-

ophenyl)-1,1-dimethylurea (DCMU), added from a stock

solution in ethanol; 5 lg ml-1 b-Car, from a stock solution

in the water miscible aprotic solvent dimethyl sulfoxide

(DMSO); and 5 mM histidine.

Anoxic cells were prepared by adding to cell suspen-

sions 5 lg ml-1 glucose oxidase (GO) and 20 mM glu-

cose, followed either by a 5-min dark incubation without

stirring (low level anoxia), or a 30-min dark incubation

(high-level anoxia).

All used chemicals were obtained from Sigma-Aldrich.

Jinetic assays of Chl a fluorescence

Time courses of the intensity of Chl a fluorescence, which

is emitted after turning on continuous exciting light on

dark-adapted cell suspensions (fluorescence induction, FI)

were recorded with a Plant Efficiency Analyser fluorometer

(Handy-PEA, Hansatech, King’s Lynn, Norfolk, UK).

Continuous excitation was provided to cell suspensions at

650 nm, Dk = 22 nm, 3000 lmol photons m-2 s-1 (strong

light, SL), or at 1000 lmol photons m-2 s-1 (weak light,

WL). Chl a fluorescence was detected above 700 nm and

was recorded continuously from 10 ls to 2 min with data

acquisition every 10 ls for the first 300 ls, then every

100 ls (300 ls–3 ms), then every 1 ms (3–30 ms). Each

displayed OJ trace is the average of 3 independent traces.

Results and discussion

Effects of exogenous b-Car on the OJ segment

of the Chl a fluorescence time trace

The time trace of Chl a fluorescence, or Chl a fluorescence

induction, as recorded after illuminating dark-adapted

photosynthetic samples with continuous and steady excit-

ing light, reflects the interplay of various photochemical

and non-photochemical processes that impact on the pop-

ulation of singlet-excited Chl a (1Chl a; reviewed by

Papageorgiou et al. 2007; Papageorgiou 2012; Papageor-

giou and Govindjee 2014). In cyanobacteria, the fluores-

cence induction trace takes the typical form shown in the

insert of Fig. 1b, whose extrema and inflections are labeled

as OJIPSMT (‘‘O’’ is for the origin, the minimum; ‘‘J’’ &

‘‘I’’ are inflections; ‘‘P’’ is for peak; ‘‘S’’ is for semi-steady-

state; ‘‘M’’ is for maximum; and ‘‘T’’ is for the terminal

steady-state; also see Govindjee 1995). In this research, we

focus on the OJ fluorescence rise segment (cf. Fig. 1b,

inset) which lasts for *1 ms and its main cause in

cyanobacteria is the photochemical reduction of QA, the

primary plastoquinone electron acceptor of PSII. The rea-

son for this is that in these prokaryotes photosynthesis and

respiration are both located in the thylakoid membrane and

this allows the dark reduction of the PQ-pool by respiratory

substrates. Thus, after dark adaptation, cyanobacteria shift

to the low fluorescence state 2, so upon illumination fluo-

rescence signal is not subject to changes by state 1 to state

2 transitions or by direct quenching by oxidized PQ-pool

plastoquinones. This justifies the normalization of the OJ

traces to J (i.e., to equal concentrations of QA), and allows

us to compare only two independent variables affecting Chl

Fig. 1 Effects of strong light

excitation (3000 lmol photons

m-2 s-1; kexc = 650 nm,

Dk = 22 nm) on the OJ

segment of the Chl

a fluorescence induction trace

(see inset in b) of
Synechococcus sp. 7932 cells.

a OJ traces of -DCMU cells, in

the absence (black line, control),

or in the presence of exogenous

b-carotene (dashed black line).

b OJ traces of ?DCMU cells, in

the absence (gray line), or in the

presence of exogenous b-
carotene (gray dashed line). All

OJ traces displayed are

normalized at equal J, namely to

equal concentrations of fully

reduced QA
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a fluorescence, the reduction level of QA and the presence

of exogenous b-Car.
In Fig. 1a experiment, we compare normalized OJ traces

of Chl a fluorescence of cell suspensions with and without

added b-Car. In Fig. 1b, we do the same experiments, but

with DCMU-containing cell suspensions. Very character-

istically, in Fig. 1a the OJ trace of the ?b-Car sample lies

above that of the -b-Car one. Since b-Car has no effect on

the redox level of QA (see Concluding Remarks) while, on

the other hand, it is a very effective scavenger of 1O2
* (Di

Mascio et al. 1989) the fluorescence difference magnitude

DF± = F(?b-Car) - F(-b-Car) must reflect a protective

effect of the added b-Car against photo-oxidative damage

by 1O2
* that occurs within 1 ms of exciting light illumina-

tion. In contrast, in Fig. 1b, the -b-Car trace and the ?b-
Car trace coincide, DF± = 0 and therefore no apparent

protective effect is expressed by the added b-Car. Since the
-DCMU and ?DCMU samples differed not in the dis-

solved O2 content but only in the inability of the ?DCMU

sample to evolve oxygen (Velthuys 1981), we conclude

that the protective effect of added b-Car must relate to the

photosynthetically evolved O2, and more specifically to the

PSII-RC. Therefore, it appears that only the 1O2
* formed in

PSII-RC by charge recombination causes the photo-ox-

idative damages against which the protective effect of the

exogenous b-Car is exerted.

Effects of low light excitation intensity on F0 and OJ

Since 3Chls a*, the precursors of 1O2, are products of

photonic reactions, it is expected that higher excitation

intensities will lead to higher 1O2
* populations. In Fig. 2

experiment, we asked if the protective effect of exogenous

b-Car against the 1O2
*-induced suppression of Chl a fluo-

rescence, clearly evident in Fig. 1a upon exciting Syne-

chococcus with 3000 lmol photons m-2 s-1, will also

materialize at the lower excitation intensity of 1000 lmol

photons m-2 s-1. In spite of the more noisy OJ traces of

Chl a fluorescence, due to the lower excitation intensity, no

difference can be discerned in Fig. 2 between the minus-b-
Car trace and the plus-b-Car one.

Effects of cell suspension anoxia on F0 and OJ

If the protective effect of exogenous b-carotene on Chl

a fluorescence is due to the removal of 1O2
*, then it should

not materialize in O2-depleted (anoxic) cell suspensions. In

such suspensions, the light-induced formation of 1O2
* and

the extent of the attendant suppression of Chl a fluores-

cence are expected to be reduced, compared to O2-replete

suspensions. To test this expectation, we prepared anoxic

cyanobacteria by incubating cell suspension with glucose

oxidase (GO) and glucose. This reaction consumes O2 by

oxidizing glucose to gluconic acid and H2O to H2O2. Since

the cell membrane is impermeable to the enzyme, the de-

oxygenation reaction operates only on the dissolved O2 in

the suspension medium. Cells, therefore, become anoxic by

the natural diffusion of the cytoplasmic O2 to the O2-poor

suspension medium, and this may require longer incuba-

tions of the reaction mixture.

Figure 3 shows data from experiments in which we

tested whether de-oxygenation of the call suspension can

afford a similar protection to Synechococcus cells as the

addition of b-Car. Cells were dark incubated with GO and

glucose for 5 min in (a) or for 30 min in (b) and the OJ

traces of Chl a fluorescence were recorded. According to

Fig. 3a, the 5-min dark incubation with GO and glucose

caused nearly no effect since DF±GO & 0. We interpret

this result to reflect the incomplete de-oxygenation of

samples due to the short incubation time. Indeed, when the

dark incubation time was increased to 30 min (Fig. 3b), the

OJ fluorescence trace of the deoxygenated cells was clearly

above that of the control cells (i.e., DF±GO[ 0). The

enhanced fluorescence of the anoxic cells may signify a

suppressed generation of 1O2
* and, in addition, a suppressed

excitation quenching by ground-state O2 (Papageorgiou

et al. 1972). Further, the addition b-Car to the 30-min dark

incubated cells revealed a supplementary protective effect,

on top of that of the GO-effected anoxia (i.e., DF?b-Car,?-

GO[DF?GO,[DF-GO). This proves that 1O2
* was

involved in the suppression of Chl a fluorescence of anoxic

cells.

Fig. 2 Effects of weak light excitation (1000 lmol photons m-2 s-1;

kexc = 650 nm, Dk = 22 nm) in the absence (control, black line), or

in the presence of exogenous b-carotene (gray line)
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Effects of histidine, a water-soluble scavenger of 1O2
*

on the millisecond rise of Chl a fluorescence

of Synechococcus

Singlet oxygen formed during photosynthesis has been

detected and determined by methods employing chemical

trapping, spin trapping, dye bleaching, and fluorescent

traps (Rehman et al. 2013; Telfer 2014). All these probes

are water-soluble compounds, so they respond to 1O2
* that

diffuses from hydrophobic to hydrophilic regions of the

thylakoid membrane. A method that has been applied by

several laboratories is the chemical trapping of 1O2
* by

histidine (see e.g., Telfer et al. 1994; Rehman et al. 2013).

In the experiment shown in Fig. 4, we asked whether this

water-soluble chemical trap of 1O2
* would afford protection

to Chls a during the OJ rise of Chl a fluorescence.

According to the figure, the OJ traces recorded with

Synechococcus cells suspended in the absence and in the

presence of histidine are very nearly the same. Therefore,

as detected by means of OJ rise of Chl a fluorescence,

water-soluble histidine affords no protection to chlorophyll

structures against photo-oxidative damage within approx.

1 ms from the onset of the exciting illumination.

Concluding remarks

The time course of the Chl a fluorescence in vivo, fol-

lowing a transition from darkness to light, particularly the

OJIP of the total OJIPSMT pattern (see Fig. 1b, insert) has

been simulated quite successfully by several authors (see,

e.g., Strasser et al. 2004; Belyaeva et al. 2008, 2011, 2015;

Lazar and Jablonsky 2009; Stirbet and Govindjee 2011;

Schansker et al. 2014; Vredenberg 2015). None of these

simulations, however, did include 1O2
* among the factors

that determine the early kinetic rise of Chl a fluorescence.

As shown in the present paper, 1O2
* is indeed involved,

particularly at high light excitation intensities).

Fig. 3 Effects of cell

suspension anoxia on the OJ

traces of Chl a fluorescence

induction of Synechococcus

cells. a Lower level of anoxia,

after 5 min dark incubation of

the cells with (GO) and glucose.

b Higher level of anoxia, after

30 min dark incubation of the

cells with GO and glucose

Fig. 4 Effects of histidine on the OJ segment of the Chl a fluores-

cence induction trace
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In the Results and Discussion section, we interpreted the

higher Chl a fluorescence along OJ of ?b-Car cell sus-

pensions only in terms of scavenging of 1O2
* and quenching

of 3Chls a* by the exogenous b-Car. This interpretation

would be valid only if the added b-Car is not involved in

other processes that may impact on Chl a fluorescence. One

such process could be the direct reduction of QA and of

PQ-pool quinones by the exogenous b-Car. This would be

possible if the 1-electron redox potential of the added b-
Car is a more negative than that of the QA/QA

- couple

(Em
0 & 0 V). However, b-Cars with (Em

0 & 1 V; Edge

et al. 2000; Ishikita and Knapp 2005) have been reported to

transfer electrons only to P680?, the strongest oxidant of

PS II (Em
0 & 1.1 V; Hanley et al. 1999; Vrettos et al. 1999)

and not, of course, to plastoquinones. A direct reduction,

therefore, of QA and of intersystem plastoquinones by

exogenously added b-Car seems highly unlikely. Further,

the involvement of triplet-excited b-Car as a non-photo-

chemical modulator of F0 (Belyaeva et al. 2015) also

appears unlikely in our case, since the 650-nm exciting

light we used is not absorbed by carotenes.

In conclusion, it appears that the enhancement of Chl a

fluorescence in cyanobacteria by exogenously added b-Car
is due only to the scavenging of 1O2

*, and therefore it is a

unique way to detect its presence in non-polar domains of

the thylakoid membrane.
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