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phyll (Chl) b. Chl b is found only in the peripheral, nuclear-
encoded light-harvesting complexes and its selective 
reduction was shown to result in a corresponding decrease 
in the antenna size. Using the light-regulated nucleic 
acid-binding protein 1 (NAB1) translational repressor to 
control the expression of a gene fusion product between 
the 5ꞌ NAB1 – binding element (LRE) and the CAO gene 
(Mussgnug et al. 2005), Negi et al. (2020) demonstrated 
that Chlamydomonas LRE-CAO transformants lacking 
the wild-type CAO gene were able to continuously and 
reversibly alter the size of their light-harvesting complexes 
throughout the algal life cycle (see Fig. 1). In collaboration 
with Dr. Jun Minagawaꞌs laboratory (in Japan), they 
demonstrated that LRE-CAO transgenics having the 
highest photosynthetic efficiencies also had reduced 
levels of photoinhibition under high light and greater 
activity of nonphotochemical quenching of the excited 
state of Chl a. Further, they observed that the thylakoid 
membrane architecture was altered in structure such that 
the membrane thickness and lumen space were much 
more favorable for enhanced electron transport activity. 
These results demonstrate that reduction in Chl b and 
light-harvesting antenna structure has pleiotropic effects 
on the photosynthetic apparatus. Significantly, when the 
LRE-CAO transgenics were grown as monocultures 
under conditions mimicking those of a commercial algal 
production pond, the transgenics had biomass yields that 
were more than two-fold higher than their wild-type 
parental strains. These are the greatest increases in biomass 
yield observed to date for algae engineered for improved 
photosynthetic efficiency. 

An obvious concern is whether LRE-CAO transgenics 
would have an increased fitness advantage relative to wild-
type algae in the wild. Early studies indicate that this is 
not likely to be the case. Thus, we have not engineered 
a ‘monster’ strain. Chlamydomonas strains engineered to 
have fixed but optimal light-harvesting antenna sizes for 
biomass yield were less competitive than wild-type algae 
in mixed cultures due to the shading effect of the wild-
type algae on transgenics with smaller but more efficient 

Due to the overall low thermodynamic efficiency (1–4%) 
of photosynthesis (Ort et al. 2011, Subramanian et al. 2013) 
and its impact on crop productivity, substantial efforts are 
being made to engineer photosynthesis to improve its light 
use and carbon capture efficiency to increase crop yields 
(Polle et al. 2003, Mussgnug et al. 2007, Beckman et al. 
2009, Kirst et al. 2012, Mitra et al. 2012, Perrine et al. 
2012, Cazznigga et al. 2014, Friedland et al. 2019). The 
greatest potential for increasing photosynthetic efficiency 
may still be realized, however, by improving its light-use 
efficiency (Zhu et al. 2008, Ort et al. 2011, Perrine et al. 
2012). In plants and algae, light saturates photosynthesis 
at approximately one fourth of full sunlight intensity. 
(For a background on all aspects of photosynthesis, see 
Blankenship 2014 and Shevela et al. 2019.) The excess 
light energy must then be dissipated through nonproductive 
energy emission pathways often leading to substantial 
damage to the photosynthetic apparatus further reducing 
crop yields (Ohad et al. 1992, Niyogi 1999, Ruffle et al. 
2001, Polle et al. 2003, Subramanian et al. 2013, Demmig-
Adams et al. 2014, Berman et al. 2015, Wu et al. 2020). 
Earlier studies have shown that by reducing the optical 
cross section of the light-harvesting antenna complex, 
it is possible to increase photosynthetic efficiency and 
biomass yield in crops and algae by up to 40% when 
grown continuously in high light or in the field (Perrine  
et al. 2012, Friedland et al. 2019). In nature, however, light 
intensity varies substantially over the course of the day, 
with depth in the plant architecture or algal pond, and even 
seasonally (Mircovic et al. 2017). Theoretically, a light-
harvesting apparatus that could be continuously adjusted 
in size for differing light regimes could lead to further 
improvements in photosynthetic efficiency (Negi et al. 
2020). 

Negi et al. (2020) have indeed described a strategy 
for the continuous light-mediated regulation of the light- 
harvesting antenna size in a green alga Chlamydomonas 
reinhardtii. This system is based on the post transcriptional 
regulation of chlorophyllide a oxygenase (CAO) protein 
levels and activity that catalyzes the synthesis of chloro-
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light-harvesting antenna complexes (Henley et al. 2013). 
These results have clear implications for addressing global 
challenges for food and biomass production as well as 
carbon capture.

For other ideas on engineering plants to use far-red 
light, see Blankenship et al. (2011).
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Fig. 1. Light regulated translational control of chlorophyll b 
synthesis by the NAB1 translational repressor (Negi et al. 2020).
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