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Abstract The green alga Chlamydomonas (C.) rein-

hardtii is a model organism for photosynthesis research.

State transitions regulate redistribution of excitation energy

between photosystem I (PS I) and photosystem II (PS II) to

provide balanced photosynthesis. Chlorophyll (Chl)

a fluorescence induction (the so-called OJIPSMT transient)

is a signature of several photosynthetic reactions. Here, we

show that the slow (seconds to minutes) S to M fluores-

cence rise is reduced or absent in the stt7 mutant (which is

locked in state 1) in C. reinhardtii. This suggests that the

SM rise in wild type C. reinhardtii may be due to state 2

(low fluorescence state; larger antenna in PS I) to state 1

(high fluorescence state; larger antenna in PS II) transition,

and thus, it can be used as an efficient and quick method to

monitor state transitions in algae, as has already been

shown in cyanobacteria (Papageorgiou et al. 1999, 2007;

Kaňa et al. 2012). We also discuss our results on the effects

of (1) 3-(3,4-dichlorophenyl)-1,4-dimethyl urea, an in-

hibitor of electron transport; (2) n-propyl gallate, an in-

hibitor of alternative oxidase (AOX) in mitochondria and

of plastid terminal oxidase in chloroplasts; (3) salicylhy-

droxamic acid, an inhibitor of AOX in mitochondria; and

(4) carbonyl cyanide p-trifluoromethoxyphenylhydrazone,

an uncoupler of phosphorylation, which dissipates proton

gradient across membranes. Based on the data presented in

this paper, we conclude that the slow PSMT fluorescence

transient in C. reinhardtii is due to the superimposition of,

at least, two phenomena: qE dependent non-photochemical

quenching of the excited state of Chl, and state transitions.
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NDA2 Type II NADPH dehydrogenase

OJIPSMT Chl a fluorescence transient, where ‘‘O’’

refers to the minimum fluorescence, J and I

for inflections, P for peak, S for semi-steady

state, M for maximum and T for terminal

steady state

PC Plastocyanin

PG n-Propyl gallate

pmf Proton-motive force

PQ, PQH2 Plastoquinone, plastoquinol

PS Photosystem

PTOX Plastid (or plastoquinol) terminal oxidase

SHAM Salicylhydroxamic acid

Introduction

Chlorophyll (Chl) a fluorescence transient measurement is

a sensitive and non-invasive tool to investigate various

processes of photosynthetic apparatus in vivo (see e.g.,

Papageorgiou et al. 2007; Kalaji et al. 2012a, 2014; Stirbet

et al. 2014). Fast (microseconds to a second) fluorescence

transient has been used to monitor primary events in pho-

tosynthesis, including quantum yield of photosynthesis and

electron transport both in photosystem (PS) II and I

(Maxwell and Johnson 2000; Baker 2008; see also chapters

in Govindjee and Fork 1986, and in Papageorgiou and

Govindjee 2004; Schreiber 2004; Strasser et al. 2004). It

has been used to monitor effects of various abiotic and

biotic stresses on the photosynthetic machinery (see e.g.,

Lichtenthaler 1988; DeEll and Toivnen 2003; Suggett et al.

2010; Kalaji et al. 2012b, Zivcak et al. 2014). Further, Chl

a fluorescence can be used to monitor the slow (seconds to

minutes) fluorescence transient in algae and plants to

evaluate regulatory mechanisms such as ‘‘state changes’’,

as has already been done in cyanobacteria (Papageorgiou

et al. 1999, 2007; Kaňa et al. 2012). In this study, we have

examined these changes in the green alga Chlamydomonas

(C.) reinhardtii, during the slow (minute range) S to M rise

in Chl a fluorescence induction. C. reinhardtii is a model

organism for research on both photosynthesis and respira-

tion (see chapters in Rochaix et al. (1998); and Stern et al.

(2008) for a Chlamydomonas source book).

In higher plants, algae, and cyanobacteria, PS I and PS II

operate in series to generate reduced nicotinamide adenine

dinucleotide phosphate (NADPH) and ATP, which are then

used for CO2 fixation, by the Calvin–Benson cycle, to form

sugars and starch (see a general scheme in Fig. 1). PS II

oxidizes water and reduces plastoquinone (PQ), whereas

PS I oxidizes plastocyanin (PC) and reduces ferredoxin

(Fd). During electron transfer from PS II to PS I, a cy-

tochrome (Cyt) b6f complex serves to oxidize plastoquinol

(PQH2) and to reduce plastocyanin. In addition to this

linear electron flow (LEF), there is also a cyclic electron

flow (CEF) around PS I, where electrons at the end of PS I,

e.g., on reduced Fd flow back to P700 via the Cyt b6-
f complex (see e.g. Munekage et al. 2004). Both non-cyclic

as well as cyclic electron transfer lead to ATP synthesis.

The proton-motive force (pmf) (made up of a pH gradient,

DpH, and a membrane potential, DW), which is generated

during electron flow, is used by ATP synthase to produce

ATP (see e.g., Blankenship 2014).

In this paper, we have used Chl a fluorescence induction

to monitor several photosynthetic events. Chl a fluores-

cence induction, measured under saturating light, shows a

fast multiphasic rise in ls to second (s) range, the O–J–I–P

transient (see e.g., Strasser et al. 1995; Haldimann and

Strasser 1999; and reviews by Stirbet and Govindjee 2011,

2012; Schansker et al. 2014; Stirbet et al. 2014), and a

slow, in s to minute range, the SMT transient (Papageor-

giou 1968; Papageorgiou and Govindjee 1968a, b, 2011).

In dark-adapted photosynthetic samples, QA, an electron

acceptor of PS II, is in the oxidized state at the O level (the

initial, minimum fluorescence). The O–J fluorescence rise

(J being an inflection between O and the peak P) is a

photochemical phase related to the reduction of QA to QA
-,

whereas J–I (I being a second inflection between O and P)

and I–P are thermal phases involved in reduction of the PQ

pool (see e.g., Tóth et al. 2007; Stirbet and Govindjee

2011, 2012) as well as that of the electron acceptor side of

PS I (Munday and Govindjee 1969; Schansker et al. 2006).

At the ‘‘P’’ level, under saturating light, all the electron

carriers between the PS II reaction center and NADP are in

the reduced state. In short, there is a ‘‘traffic jam’’ of

electrons at the ‘‘P’’ level. In the slow fluorescence tran-

sient, the P to S decline in green algae and higher plants

may reflect DpH changes that induce non-photochemical

quenching of Chl a fluorescence (see chapters in Demmig-

Adams et al. 2014), and the SMT phase reflects several

processes including state transitions (Papageorgiou and

Govindjee 2011; Kaňa et al. 2012). We, however, note that

the PS decay is too fast to involve xanthophyll cycle, which

is a much slower process (see chapters in Demmig-Adams

et al. 2014). For a possible relation of conformational

change to the OJIPS transient, see Schanker et al. (2011,

2014).

For optimal photosynthesis, the amount of excitation

energy absorbed by the two photosystems must be balanced

in natural environmental conditions where the quality and

quantity of light undergo fluctuations (Allen et al. 1981;

Mohanty et al. 2012; Rochaix 2014). State transitions (Mu-

rata 1969; Bonaventura and Myers 1969; Allen and Mulli-

neaux 2004; Forti and Caldiroli 2005) are known to balance

absorbed energy between the two photosystems by mobi-

lizing specific light-harvesting complex (LHC) II proteins
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(see e.g., Takahashi et al. 2006; Minagawa 2013; for evo-

lutionary aspects, see Peers et al. 2009). Ünlü et al. (2014)

have found important differences between state transitions in

plants and algae (also see Rochaix 2014). In plants, 10–15 %

of LHC II shuttle between photosystems, whereas in C.

reinhardtii, 70–80 % of LHC II seems to be somehow in-

volved in state transitions (Delosme et al. 1996). However,

only *10 to 20 % of these are actually incorporated in PS I

antenna, whereas the rest form an array that quench Chl

a excited state (Iwai et al. 2010; Nagy et al. 2014).

Molecular events during state transitions have been

described as follows. Preferential excitation of PS II leads

to excess amount of reduced PQ (i.e., PQH2) in the PQ

pool, which when bound to the Qo site of the Cyt b6f,

triggers activation of Stt7 kinase in C. reinhardtii (Zito

et al. 1999), or of STN7 kinase in higher plants (Depege

et al. 2003; Bellafiore et al. 2005). This then results in the

following chain of events: phosphorylation of LHC II

(Bennett et al. 1980), unbinding of phosphorylated LHC II

from PS II, and its migration and attachment to the PS I–

LHC I complex (Andersson et al. 1982). This increases the

antenna size of PS I at the expense of the antenna size of

PS II. This is referred to as state 2 since it was initiated by

excess light in PS II; state 2 has a lower fluorescence yield

since PS I fluorescence yield is lower than that of PS II (see

a review by Papageorgiou and Govindjee 2011). On the

other hand, preferential excitation of PS I leads to an in-

crease in the amount of oxidized PQ pool, which induces

dephosphorylation of LHC II by PPH1/TAP38 phosphatase

(Pribil et al. 2010; Shapiguzov et al. 2010). Dephospho-

rylated LHC II dissociates from PS I–LHC I supercomplex,

and reassociates with PS II supercomplex. The result is the

formation of state 1, which has a higher fluorescence yield

since PS II fluorescence yield is higher than that of PS I.

Fig. 1 A schematic representation of the interactions between

electron transfer flows and carbon assimilation in the chloroplast of

C. reinhardtii and metabolic reactions driven by mitochondria.

Chemicals used in this study for different treatments of the algal cells

are shown close to the processes affected by them. See the main text

for explanation. AOX, alternative oxidase; CEF, cyclic electron flow;

Cyt, cytochrome; DCMU, 3-(3,4-dichlorophenyl)-1,4-dimethyl urea;

FCCP, carbonyl cyanide p-trifluoromethoxyphenylhydrazone; LEF,

linear electron flow; NADP, nicotinamide adenine dinucleotide

phosphate; NDA2, Type II NADPH dehydrogenase; PC, plastocyanin;

PG, n-propyl gallate; PQ, PQH2, plastoquinone, plastoquinol; pmf,

proton-motive force; PTOX, plastid (or plastoquinol) terminal

oxidase; SHAM, salicylhydroxamic acid. A few caveats are (1)

DCMU is known to inhibit reduction of PQ to PQH2, but this happens

not in the membrane, but inside PS II, at the QB site (see text); (2)

proton uptake (nH?) from the stroma matrix between ‘‘NDA2’’ and

‘‘PTOX’’ and its release in the lumen are related to ‘‘chlororespira-

tion’’; and (3) CEF includes electron flow from NADPH to NDA2.

The scheme shown here was modified from that by Alric (2010)
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Further, abiotic stress conditions, such as high temperature

and anaerobiosis, also trigger state transitions (Sane et al.

1984; Mohanty et al. 2002; Nellaepalli et al. 2011, 2012;

Marutani et al. 2014). In C. reinhardtii, cyclic electron

flow, around PS I, has also been associated with state

transitions (Hemschemeier and Happe 2011).

We note that cyanobacteria display a prominent SM rise,

with the M level much higher than the P level, which is not

blocked by DCMU (i.e., under conditions where PS I keeps

the PQ pool in the oxidized state; Papageorgiou and

Govindjee 1968b). Because of this, the SM fluorescence

rise was attributed to a state 2 to state 1 transition (see e.g.,

Papageorgiou et al. 2007), a concept that was further con-

firmed by the relative contributions of PS II and PS I in the

77 K fluorescence spectra of cyanobacteria, and by cells

locked in state 2 (Stamatakis et al. 2007). In addition, Kaňa

et al. (2012) demonstrated, using a RpaC- mutant of Syne-

chocystis PCC6803, that the SMfluorescence rise was due to

state 2 to state 1 change, since this mutant (which is locked in

state 1) and the wild type, when kept in state 2, did not have

the SM rise. We emphasize here that cyanobacteria are

usually in state 2 in darkness; in addition, they have a high PS

I-to-PS II ratio, which provides an effective means to induce

state 2 to state 1 transition upon illumination.

Here, we have used both the wild type and its stt7mutant

of the green alga C. reinhardtii (Depege et al. 2003) to in-

vestigate the possible reasons for the S to M fluorescence

rise. Our results, obtained using a series of Chl afluorescence

inductionmeasurements onC. reinhardtii cells, demonstrate

that state 2 to state 1 transition plays amajor role in the S toM

rise. To further understand the nature of the SM fluorescence

rise, we used (1) 3-(3,4-dichlorophenyl)-1,4-dimethyl urea

(DCMU), an inhibitor of electron transport between PS II

and PS I; (2) n-propyl gallate (PG), an inhibitor of alternative

oxidase (AOX) in mitochondria and of plastid terminal

oxidase (PTOX) in chloroplasts; (3) salicylhydroxamic acid

(SHAM), an inhibitor of AOX in mitochondria; and (4)

carbonyl cyanide p-trifluoromethoxyphenylhydrazone

(FCCP), an uncoupler of electron transport from phospho-

rylation, which dissipates proton gradient (see scheme in

Fig. 1). A preliminary report of this work was presented in a

poster by Kodru et al. (2013); here, we present all the ob-

servations of the above-mentioned experiments.

Based on results presented in this paper, and in the lit-

erature (see above), we suggest that the P to S decline, as well

as the S toM rise, and theM toTdecline inChl afluorescence

transient, are due to superimposition of at least two phe-

nomena: qE dependent non-photochemical quenching

(NPQ) of the excited state of Chl, and state transitions.

However, other processes may also contribute to the SMT

phase, besides those mentioned above (see discussion on the

slow SMT phase and Chl fluorescence oscillations in Stirbet

et al. (2014)). Papageorgiou et al. (2007) and Bernát et al.

(2014) have shown that in cyanobacteria, the M to T decline

may be due to photoinhibition; however, we do not know if

the same is true for C. reinhardtii. For a discussion on the

relation of photoinhibition to state changes, seeCanaani et al.

(1989) and Finazzi et al. (2001).

Materials and methods

Growth conditions

Cells of wild type C. reinhardtii strain CC125 and of the

stt7 mutant were grown at 25 �C in TAP (tris-acetate

phosphate) medium (Gorman and Levine 1965), under

continuous white light (60–70 lmol photons m-2 s-1), to

an optical density of *1.0.

Chemical treatment

Actively growing cells were harvested, and transferred into

a test tube; this cell suspension was kept in dark for 30 min

at room temperature. One ml of this dark-adapted sus-

pension was transferred to the sample tube of the fluores-

cence instrument (see below) and used as control, or mixed

thoroughly with (1) 10 lM Diuron, DCMU, or (2) 1 mM

PG, or (3) 1 mM SHAM, or (4) 10 lM FCCP. These

samples were then kept in dark for 10 min before

fluorescence measurements (see below). The chosen con-

centration, as well as time with each chemical, was based

on earlier research, cited under ‘‘Results and discussion’’.

The OJIPSMT Chl a fluorescence transient

measurements

Chlorophyll a fluorescence induction measurements of these

dark-adapted C. reinhardtii cells were made with Handy PEA

(Plant Efficiency Analyzer) fluorometer (Hansatech, King’s

Lynn, Norfolk, UK). In the OJIPSMT transient (see Introduc-

tion),O is for theminimumfluorescence (also referred to asFo),

measured as soon as light is turned on, J (FJ) and I (FI) are two

inflections, P (FP) is the peak (maximumfluorescence, orFm in

saturating light), S is for semi-steady state, M is for another

maximum, and T is for terminal steady state. (For a discussion

of nomenclature, see Govindjee 1995, 2004, and for analysis,

see Strasser et al. 2004.) Dark-adaptedC. reinhardtii cells were

excited with 650 nm light (1,000 lmol photons m-2 s-1),

obtained fromLEDs.These sampleswere not stirred before and

during measurements. In order to compare measurements on

different samples,F(t), fluorescence at time twasnormalized as

V(t) = [F(t) - Fo]/(Fm - Fo), where V(t) represents relative

variable fluorescence (see e.g., Stirbet and Govindjee 2011).

Such a method allowed us to compare kinetics in different

samples.
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Results and discussion

SM rise in OJIPSMT fluorescence transients

Chl a fluorescence transients were recorded on dark-

adapted (see ‘‘Materials and methods’’) wild type and stt7

mutant C. reinhardtii cells by illuminating them with

650-nm light of 1,000 lmol photons m-2 s-1 (Fig. 2). In

wild type cells, we observe both the faster OJIP (up

to *200 ms) and the slower PSMT (P to S decline, fol-

lowed by SMT, the second wave lasting up to *300 s)

phase of the transient. Under our experimental conditions,

the appearance of the SM rise was prominent when

recorded with 1,000 lmol photons m-2 s-1 light (see

Fig. 2), while at higher light intensities (e.g., 3,000 lmol

photons m-2 s-1), the SM phase was less evident (data not

shown). This was expected since the two phases (OJIP and

SMT) have different reactions that control them (the fast

phase by the electron flow and the slow phase by other

regulatory events; see e.g., Stirbet et al. 2014); further, it is

in agreement with earlier results on Chlorella (see Papa-

georgiou and Govindjee 1968a; Munday and Govindjee

1969). Since the focus of this study is the SM rise phase of

the fluorescence induction curve, we chose 1,000 lmol

photons m-2 s-1 light (Fig. 2) for all fluorescence induc-

tion measurements.

Fast and slow fluorescence transients; link between SM

rise and state transitions

Spalding et al. (1984), Govindjee et al. (1991), and Sri-

vastava et al. (1995) have published O(JI)PS transients in

wild type as well as in various PS II mutants of C. rein-

hardtii. Here, we have measured OJIPSMT transients in

both wild type and stt7 mutant of C. reinhardtii, the latter is

known not to show state transitions (Depege et al. 2003)

since it is locked in state 1. As noted above, Fig. 2 shows

fluorescence transients in these two samples when cells

were exposed to 1,000 lmol photons m-2 s-1 of 650 nm

light. The fast fluorescence transient (OJIP) in the wild type

and in the stt7 cells showed some differences (see discus-

sion below), but had similar general features (see Fig. 2A,

plotted on logarithmic time scale). However, after the P

level, the slow SMT phase in the two strains differed sig-

nificantly (see Fig. 2B, plotted on a linear time scale).

As can be seen in Fig. 2A, the fast OJIP phases in wt and

stt7 differ in their initial slopes of the OJ rise (calculated as

Mo & (DV/Dto)/VJ), where DV = (F0.3 ms - Fo)/(Fm - Fo),

Fo = F0.02 ms, Dto = 0.28 ms, and VJ = (F2 ms - Fo)/

(Fm - Fo); Strasser et al. 2004), as well as in (the relative)

fluorescence levels at J (2 ms) and I (30 ms). The initial slope

of the OJ rise in wt was less steep than in the stt7 mutant (0.6

vs. 0.94), which suggests a lower PS II absorption cross

section, r(PS II), in the wild type (see e.g., Stirbet and

Govindjee 2011). Further, the J level was lower in wt (0.2 vs.

0.28 in stt7), which indicates a lower QA
- accumulation at this

step, due to lower light excitation resulting from smaller

PS II absorption cross section. Finally, the I level was

lower in wt compared to stt7 (0.5 vs. 0.6). (For discussion,

see Ceppi et al. 2012.) The above results suggest that after

dark-adaptation, the wt cells might be in a state closer to

state 2, since they had a lower inferred PS II absorption

cross section, and a higher PS I activity than the stt7 cells,

which are locked in state 1.

We note that Nellaepalli et al. (2013) have also reported

differences in fast Chl a fluorescence transients (OJIP)

under state 1 (high fluorescence state) and state 2 (low

fluorescence state) in Arabidopsis thaliana. We speculate

Fig. 2 (A) Chl a fluorescence transient (OJIPSMT) in wild type (wt)

and stt7 mutant C. reinhardtii cells, plotted on logarithmic time scale;

and (B) the same on a linear time scale. (Data are double normalized

at the O and P levels.) Excitation of samples was with 1,000 lmol

photons m-2 s-1 650 nm light (here as well as in Figs. 3, 4, 5, 6). One

of the several possible components involved in quenching or

stimulation of fluorescence are shown in red

Photosynth Res (2015) 125:219–231 223
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that this may have been due to insufficient oxygen level (or

slightly anaerobic condition) during the dark-adaptation

period in TAP medium, since the cells were not stirred.

Indeed, C. reinhardtii cells, grown mixotrophically, attain

state 1 only through vigorous stirring (Wollman and Le-

maire 1988; Takahashi et al. 2013). Further, Madireddi

et al. (2014) reported LHC II phosphorylation in wild type

C. reinhardtii cells grown in TAP medium under low light

conditions indicating that these cells were in state 2 under

those conditions. These results support our conclusion that

the wild type C. reinhardtii cells were, most likely, in state

2 at the beginning of our fluorescence measurements.

The P to S fluorescence decline was observed during

0.2–2 s, the S to M rise from 2 to 70 s, and the MT decline

from 70 to 300 s. There are remarkable differences be-

tween the wt and the stt7 mutant during their P to S decline.

The decrease in fluorescence from P to S is larger and

reached a lower semi-steady state S level in wt compared to

that in stt7 cells (Fig. 2). The PS phase has been often

correlated partly with qE, the energy-dependent NPQ of the

excited Chl (Demmig-Adams 1990), which has been sug-

gested to be initiated by protonation events, as inferred

from the work of Briantais et al. (1979, 1980, 1986). This

quenching, however, may not involve xanthophyll cycle.

For earlier observations on the OPS transient in wild type

C. reinhardtii and their NPQ mutants, see e.g., Govindjee

and Seufferheld (2002) and Holub et al. (2007).

The S to M rise, during fluorescence transient, has been

related to structural changes in the thylakoid membrane by

Papageorgiou (1968) and Papageorgiou and Govindjee

(1968a); see a review by Papageorgiou and Govindjee

(2011). In our experiments, we observed that the SM rise is

essentially absent in the stt7 mutant (Fig. 2), which is

locked in state 1. This suggests that the SM rise in the wild

type C. reinhardtii is due to state 2 (low fluorescence state,

larger antenna in PS I) to state 1 (high fluorescence state;

larger antenna in PS II) transition. Such a state change has

been shown to take place as a result of LHC II kinase

inactivation induced by high light, when LHC IIs are de-

phosphorylated and migrate from PS I to PS II region

(Rintamaki et al. 2000). Holub et al. (2007) did observe,

using 2,750 lmol photons m-2 s-1, SM rise in wild type

and npq1 (violaxanthin accumulating) mutant, but not in

npq2 (zeaxanthin accumulating) mutant. However, based

on lifetime (and fractional amplitude) fluorescence ana-

lyses, they were unable to reach any conclusion as to its

relation to state changes.

Finally, in analogy with the P to S decline, we suggest

that the M to T decline that follows the SM rise (Fig. 2)

may be also partly due to qE. In the stt7 mutant, which is

locked in state 1, the MT decline can not be affected by

state transition, and therefore appears more pronounced

than in wt cells (Fig. 2). However, we note that photoin-

hibition (Adir et al. 2003; Papageorgiou et al. 2007; Murata

et al. 2012) can also contribute to this decline, as shown in

Synechocystis PCC 6803 (Bernát et al. 2014).

The concept that SM rise is a state 2 to state 1 transition

is supported, as noted earlier, by the fact that Synechocystis

mutant (RpaC-), locked in state 1, does not show S to M

fluorescence rise (Kaňa et al. 2012). Moreover, in a non-

photochemical fluorescence quenching study of C. rein-

hardtii, Allorent et al. (2013) found that wt cells, which

were initially in state 2, after high light adaptation, showed

a transient increase in fluorescence during illumination,

which they assigned to a state 2 to state 1 transition, as it

was absent in the stt7-9 mutant (locked in state 1) and the

phosphorylation level of LHC II decreased upon illumi-

nation. Since this transient fluorescence increase in light-

adapted sample, and the SM rise observed in our ex-

periments, are related, these results reinforce our conclu-

sion that SM rise is due to state changes. Thus, we suggest

that measurements on SMT transient may be used as a

quick monitor of state changes in green algae as already

known for several cyanobacteria (Papageorgiou et al. 1999,

2007; Kaňa et al. 2012). For discussion of state changes in

an atypical cyanobacterium Gloeobacter violaceus, see

Bernát et al. (2012).

Role of the redox state of PQ pool on the SM rise

The redox state of PQ pool is an important factor in the

regulation of several processes, such as LHC II phospho-

rylation during state transition, metabolic adjustment, or

translation of gene expression (Dietz and Pfannschmidt

Fig. 3 Chl a fluorescence transient (OJIPSMT) in wild type C.

reinhardtii cells (Control) and those that had been for 10 min in

darkness, with 10 lM DCMU (3-(3,4-dichlorophenyl)-1,4-dimethyl

urea) (?DCMU). Data are double normalized at the O and P levels

and plotted on logarithmic time scale. DCMU is known to block

electron flow beyond QA in PS II by displacing QB (Velthuys 1981)
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2011). Mus et al. (2005) have studied the effect of various

inhibitors on the redox status of PQ in C. reinhardtii; thus,

we tested, although indirectly, the role of the redox state of

the PQ pool in the SM phase of Chl a fluorescence transient

as follows.

DCMU (Diuron)

It is well known that high level of Chl fluorescence in the

presence of Diuron (DCMU) is due to the closure of re-

action center II, which is caused by the presence of high

concentration of QA
- (see Duysens and Sweers 1963). This

is because DCMU binds to the QB site and displaces it

(Velthuys 1981; Lavergne 1982), and, thus, inhibits elec-

tron transport from reduced QA to the PQ pool (see Fig. 1;

in this scheme, we do not show the precise location where

DCMU functions, but only its effect). Photosystem I would

oxidize PQH2 during illumination and the cells would go in

state 1 (high fluorescence state; see e.g., Allorent et al.

2013) because a phosphatase would be activated leading to

movement of mobile LHCII from PS I to PS II (see e.g.,

Minagawa 2013). (For earlier work, see e.g., Wollman and

Delepelaire 1984; Delepelaire and Wollman 1985; Woll-

man and Bulté 1990.)

Our experiments confirm that upon addition of 10 lL
DCMU, fluorescence yield increases very rapidly, reaching

maximum fluorescence (Fm) without showing the distinc-

tive J and I inflections (see Fig. 3) that are present in un-

treated samples (Strasser and Govindjee 1992). During the

entire measurement, fluorescence yield remains relatively

close to maximum, decreasing only slightly, and the tran-

sient does not show the PSMT phase (Fig. 3). Similar re-

sults were obtained in DCMU-treated stt7 cells (data not

shown). However, we note that in contrast, the SM rise in

cyanobacteria is enhanced in the presence of DCMU due to

increased energy transfer from phycobilisomes to PS II that

induces a high fluorescence state 1 (Tsimilli-Michael et al.

2009; Kaňa et al. 2012; Stamatakis and Papageorgiou

2014).

n-Propyl gallate

n-Propyl gallate inhibits both the AOX in mitochondria

(Siedow and Bickett 1981), as well as the plastid (or

plastoquinol) terminal oxidase (PTOX) in chloroplasts

(Cournac et al. 2000a, b); this inhibition leads, for example,

to *60 % inhibition of O2 uptake rate in Vicia faba leaves

(Yoshida et al. 2006). AOX is a non-energy conserving

terminal oxidase in the mitochondrial electron transport

chain of algae and higher plants, which directly couples the

oxidation of ubiquinol with the reduction of O2 to H2O (see

a review by Vanlerberghe 2013). PTOX participates in

chlororespiration (Bennoun 1994; Nixon 2000; Peltier and

Cournac 2002; see Fig. 1), which involves electron dona-

tion from NADPH to PQ via Ndh (i.e., NAD(P)H dehy-

drogenase in plants; Rumeau et al. 2007) and NDA2 (type

II NADPH dehydrogenase in C. reinhardtii; Jans et al.

2008, Desplats et al. 2009), and PQH2 oxidation (coupled

with O2 reduction to H2O) by PTOX (Bennoun 1982;

Houille-Vernes et al. 2011). With PTOX inhibited by PG

treatment, non-photochemical reduction of the PQ pool

will be promoted (Cournac et al. 2000a, b; Bennoun 2001;

Peltier and Cournac 2002), and the cells will have a ten-

dency to remain in state 2 (low fluorescence state; see e.g.,

Forti and Caldiroli 2005). Moreover, Yoshida et al. (2006)

showed that in light-adapted PG-treated V. faba leaves, non

photochemical quenching of Chl a fluorescence was in-

creased, while the photodamage induced under high light

was accelerated.

Fig. 4 (A) Chl a fluorescence transient (OJIPSMT) in wild type C.

reinhardtii cells (Control) and those that had been for 10 min in

darkness, with 1 mM n-propyl gallate (propyl 3,4,5-trihydroxyben-

zoate) (?PG)—plotted on logarithmic time scale; and (B) the same

on a linear time scale. (Data are double normalized at the O and P

levels.) PG inhibits both the alternate oxidase (AOX) in mitochondria

(Siedow and Bickett 1981) and the plastid terminal oxidase (PTOX)

in chloroplasts (Cournac et al. 2000a, b)
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Chlorophyll a fluorescence measurements in samples

with 1-mM PG showed that the M level reached faster, but

was much lower than in the control (see Fig. 4). These

changes in the slow fluorescence phase suggest a relation

of the SM rise to the redox state of the PQ pool, and, thus,

to state transitions. The non-photochemical reduction of

PQ pool in the presence of PG is indicated in the fluores-

cence curves by an increased J level compared to that in

untreated cells (Fig. 4A), since a higher J level was shown

to reflect a higher reduced state of PQ pool, established in

darkness prior to the measurement (Haldimann and Strasser

1999; Tóth et al. 2007; Tsimilli-Michael et al. 2009). Thus,

these results further support the origin of SM rise to be due

to state 2 to state 1 transition. However, the P to S decline

was found to be similar in both control and PG-treated

samples (Fig. 4B), indicating that qE-NPQ was not af-

fected by PG treatment. Finally, during the MT phase in wt

cells, and after the S level in cells with PG present,

fluorescence remained relatively constant in both the

samples (Fig. 4), which might suggest that qE was already

at its maximum under these conditions.

Salicylhydroxamic acid

SHAM is known to inhibit AOX pathway in mitochondria

(Elthon and Mcintosh 1987; Siedow and Umbach 2000;

Fig. 1), leading, for example, to *60 % inhibition of O2

uptake in V. faba leaves (Yoshida et al. 2006). However,

the effect of SHAM on PTOX is extremely low in C.

reinhardtii cells, even at high concentrations (Cournac

et al. 2002). Photosynthesis and mitorespiration have been

shown to interact through ATP, NADPH, and metabolite

exchange between chloroplasts and mitochondria (Hoef-

nagel et al. 1998; see Fig. 1). It is now known that mito-

chondrial metabolism influences photosynthetic performance

(see a review by Araújo et al. 2014). Inhibition of AOX by

SHAM was shown to trigger NADPH accumulation in

chloroplasts that causes over-reduction of both the electron

acceptor side of PS I and the PQ pool due to NDA2 activity

(Yoshida et al. 2006; Zhang et al. 2012), which can keep

the algal cells in state 2, as stated earlier (for the relation

between respiration and state transitions in C. reinhardtii,

see Cardol et al. (2009)). Moreover, studies on SHAM-

treated V. faba leaves (Yoshida et al. 2006) showed that,

during the light-adapted state, the photochemical quench-

ing (i.e., qP), of the excited state of chlorophyll, was

markedly suppressed, while the photodamage induced

under high light was accelerated.

Here, we have examined the effects of 1-mM SHAM on

Chl a fluorescence transient (see Fig. 5). We observed a

significant increase in the initial fluorescence Fo and the J

level, and the OJ rise was followed by a dip before

fluorescence reached Fm (Fig. 5A shows only the normal-

ized data). Further, the SM rise was abolished, with

fluorescence decreasing slightly after the S level (Fig. 5B).

We note that changes observed in the OJIP phase in the

presence of SHAM are similar to those reported in samples

kept under anoxic conditions (i.e., high Fo, J level even

higher than the I level, and low IP phase (see Fig. 5A and

results published by Haldimann and Strasser 1999; Antal

et al. 2001; Tsimilli-Michael et al. 2009; Hohmann-Mar-

riott et al. 2010); these reflect a highly reduced PQ pool

and, thus, state 2. We note that Hohmann-Marriott et al.

(2010) had used a mutant that does not assemble PS II and

PS I core complexes (therefore, it has no QA), yet its PQ

pool suppresses Fo when it is oxidized, and increases it

when reduced. We do not yet know the mechanism behind

it. Changes in fluorescence induction in SHAM-treated

cells observed here are also related to the PQ pool reduc-

tion, which is accompanied by oxidation of excess NADPH

Fig. 5 (A) Chl a fluorescence transient (OJIPSMT) in wild type C.

reinhardtii cells (Control) and those that had been for 10 min in

darkness with 1 mM salicylhydroxamic acid (?SHAM), plotted on a

logarithmic time scale; and (B) the same on a linear time scale. (Data

are double normalized at the O and P levels.) SHAM is known to

inhibit alternative oxidase (AOX) in mitochondria (Elthon and

Mcintosh 1987; Siedow and Umbach 2000)
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(catalyzed by NDA2; see Fig. 1) that is generated as a

result of AOX inhibition (Yoshida et al. 2006; Zhang et al.

2012; Araújo et al. 2014); under these conditions, cells

have the tendency to remain in state 2. Therefore, the

above results support the idea of a connection between

mitorespiration and state transitions in C. reinhardtii (see

also Cardol et al. 2009), and show that even the inhibition

of AOX pathway by SHAM treatment can diminish or even

eliminate the SM rise.

Carbonyl cyanide trifluoromethoxyphenylhydrazone

FCCP is an ionophore that uncouples electron flow from

phosphorylation by dissipating DpH gradient (see Fig. 1),

so that a decrease of the ATP level in the cell is expected.

A series of events that influence the balance of chlorores-

piration follow this decrease in the ATP level (see Fig. 1

and Bulté et al. 1990; Wollman 2001): (a) glycolysis in

cytoplasm would be stimulated (Rebeille and Gans 1988);

(b) inter-organelle transport of reducing equivalents be-

tween chloroplasts and mitochondria through the oxaloac-

etate-malate shuttle would occur (Bulté et al. 1990;

Bennoun 1994; see Fig. 1) leading to increased NADPH

levels in the chloroplast; this in turn (c) would reduce the

PQ pool via NADPH oxidation by NDA2 (see e.g., Jans

et al. 2008), thus keeping the algal cells in state 2 (see e.g.,

Allorent et al. 2013).

FCCP (10 lM) has been shown to inhibit the SM rise in

Anacystis nidulans, and to abolish the MT decline in

Chlorella pyrenoidosa (Papageorgiou and Govindjee 1968a,

b). Also, as discussed above, excess NADPH that is gener-

ated due to FCCP treatment reduces the PQ pool (via NDA2)

and induces a transition to state 2 in C. reinhardtii cells (see

Fig. 1; Bulté et al. 1990;Houille-Vernes et al. 2011;Allorent

et al. 2013). Our results show that 10 lM FCCP largely

inhibits the SM rise (Fig. 6A). Since FCCP is an uncoupler of

proton gradient, thus, affecting the redox state of PQ pool,

these data are in agreement with the thesis that state 2 to state

1 transition is involved in the SM rise. The increased J level,

observed in the FCCP-containing sample, compared to that

in the controls (see Fig. 6A), may suggest that FCCP induces

non-photochemical reduction of the PQ pool in darkness,

which slowsQA reoxidation during illumination and leads to

QA
- accumulation at the J level. Further, our fluorescence data

show only a slightly smaller PS decline in FCCP-containing

samples than in the controls (Fig. 6B), which may suggest

that 10 lM FCCP was not sufficient to completely abolish

the pH gradient (and thus qE). The effect of uncoupling on

the kinetics and redox level of PQ, however, remains to be

measured. On the other hand, we have also observed a

steeper fluorescence decrease during the MT phase

(Fig. 6B), whichmay reflect an increased photosensitivity of

samples to FCCP, leading to photoinhibition.

The above results on the effect of chemicals, which

change the redox state of the PQ pool, strongly support the

concept that the SM rise has a significant contribution from

state 2 to state 1 transition. Together with the absence of

SM rise in stt7 mutant, our conclusion is that the SM rise is

indeed a signature of state 2 to state 1 transition in C.

reinhardtii.

Concluding remarks

Using the stt7 mutant, and various inhibitors (DCMU, PG,

salicylhydroxamic acid, and FCCP), we conclude that the

slow SM Chl fluorescence rise can be used as a signature of

state 2 to state 1 transition in the green alga C. reinhardtii.

It is now necessary to extend this work (1) to see the

effect of an osmolyte glycine betaine, as was used by

Fig. 6 (A) Chl a fluorescence transient (OJIPSMT) in wild type C.

reinhardtii cells (Control) and those that had been for 10 min in

darkness with 10 lM FCCP (carbonyl cyanide p-tri-

fluoromethoxyphenylhydrazone) (?FCCP), plotted on logarithmic

time scale; and (B) the same on a linear time scale. (Data are double

normalized at the O and P levels.) FCCP is an uncoupler of proton

gradient that decreases ATP level in cells (Bulté et al. 1990)
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Papageorgiou and Stamatakis (2004) in cyanobacteria;1

and (2) to see its relation to RNA helicase involved in

energy redistribution, also in cyanobacteria (Sireesha et al.

2012).

Further, we suggest that the entire PSMT fluorescence

transient is due to a superimposition of several processes in

which qE (energy-dependent NPQ of Chl fluorescence), as

well as state changes play an important role. Moreover, the

possible involvement of photoinhibition during the MT

decline must not be ignored.

Further research with mutants blocked in different steps

of these processes is expected to lead to a better under-

standing of how Chl fluorescence could be further ex-

ploited to obtain insights into the physiology of

cyanobacteria, algae, and plants.
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Prašil O (2014) The very slow M to T chlorophyll fluorescence

decay in cyanobacteria reflects photoinhibition. In: 9th European

workshop on the molecular biology of cyanobacteria, Texel (the

Netherlands), 7–11 September 2014, p 160

Blankenship RE (2014) Molecular mechanism of photosynthesis, 2nd

edn. Blackwell, Oxford

Bonaventura C, Myers J (1969) Fluorescence and oxygen evolution

from Chlorella pyrenoidosa. Biochim Biophys Acta

189:366–383

Briantais J-M, Vernotte C, Picaud M, Krause GH (1979) A

quantitative study of the slow decline of chlorophyll a fluores-

cence in isolated chloroplasts. Biochim Biophys Acta

548:128–138

Briantais J-M, Vernotte C, Picaud M, Krause GH (1980) Chlorophyll

fluorescence as a probe for the determination of the photo-

induced proton gradient in isolated chloroplasts. Biochim

Biophys Acta 591:198–202

Briantais J-M, Vernotte C, Krause GH, Weis E (1986) Chlorophyll

a fluorescence of higher plants: chloroplasts and leaves. In:

Govindjee, Amesz J, Fork DC (eds) Light emission by plants and

bacteria. Academic Press, Orlando, pp 539–583
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