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Abstract

The machinery of life has been disclosed in the second half of the 20th century to a degree not in the least envisioned
previously by even the most daring players in this field. It has been extremely rewarding to start out from the
fogs and to enjoy the brightness at the end of one’s active career. Perhaps the most astounding lesson to learn is
how conservative and modular is the construction of key devices. Oxidative and photophosphorylation are carried
out by ATP synthase, which is unique in converting electrochemical, mechanical and chemical forms of energy
within one nano-machine. This complex protein consists of more than 20 polypeptides of at least eight different
kinds. Still, its activity survives in engineered chimerical constructs joining parts from organisms that underwent
billions of years of separate evolution. The path of discovery of its structure and function is sketched here from a
personal viewpoint. It has been a long way from before-structure-bioenergetics to the post-structural one (which
now dominates the biology textbooks), but there is still a long way to go for a rigorous physical understanding. The
author has been privileged to enjoy the friendship, cooperation and competition of excellent scientists from widely
different backgrounds and expertise.

The beginning

I joined photosynthesis research through the Max-
Volmer-Institute of Physical Chemistry at the Tech-
nical University of Berlin, Germany. It was in 1966,
right after I obtained my diploma in physics. Though
in retrospective a lucky move, at the time the transition
was loaded with grief: I had been relegated from phys-
ics because of a musical that four of us students were
commissioned by the director to write and perform at
the Institute’s 1964 Christmas party. Somehow ahead
of its time, the plot was conceived in the spirit of 1968,
and not appreciated by the director, Hans Boersch, an
otherwise impressive scientist and teacher. Searching
for another job, I happened to contact Horst Witt (Fig-
ure 1). He charmed me with challenging ideas, was

anything but embarrassed by my previous ‘miscon-
duct’; and, even better, he offered a salary. Above all,
his lifelong theme, photosynthesis, then seemed, and
has remained, an interesting and wide field to explore.

In 1966 the Max-Volmer Institute was running high
on photosynthetic electron transport, energy transfer,
photoprotection, and water oxidation. Bernd Rumberg
had just begun to tackle ATP-synthesis. The early
version of Peter Mitchell’s chemiosmotic hypothesis
had been published (Mitchell 1961) and was up for
reformulation in order to include the electric portion
of the protonmotive force (Mitchell 1966). The clas-
sical Jagendorf experiments had been performed and
were in its favor [see (Jagendorf 2002) in this series].
For a newcomer from physics, the hypothesis was
easy to grasp. If the hydrolysis of ATP electrifies
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Figure 1. Horst Tobias Witt and his wife, Ingrid Witt. Photo
taken in 1966, in the library of the Max-Volmer-Institute, TU-
Berlin.

nerve membranes, then why should electrochemical
force not drive the synthesis of ATP? The dominating
beliefs among biochemists were the ‘direct’ cou-
pling of ATP synthesis with the electron transport by
an enigmatic phosphorylated intermediate (coined the
‘squiggle’), or the then dubious conformational cou-
pling schemes, and both appeared more complicated.
During the decade-long battle over chemiosmotic and
squiggle phosphorylation which followed, it seemed
often to be ignored that Peter Mitchell had described
the energy flow only phenomenologically, merely
scratching the surface of a molecular mechanism. At
that time the alternatives were chemiosmosis, con-
formational coupling, and squiggle. It took three
decades to appreciate fully nature’s wonderful blend of
the first two. In 1966, the structure and action of pro-
teins was not the common knowledge it is today – the
pivotal book by R.E. Dickerson and I. Geis appeared
only in 1969 (Dickerson and Geis 1969). Furthermore,
membranes were still conceived of as solid devices,
sclerotized by a dense pack of proteins at their sur-
face. In Witt’s institute Werner Kreutz was advocating
and wrongly detailing this concept for the thylakoid
membrane (Kreutz 1972). For us young physicists and
chemists he was the much appreciated source of ba-
sic knowledge in protein biochemistry, and the senior
partner in stimulating discussions on life as an his-
torical event, ruled by ‘Le hazard et la nécessité’
(Monod 1970). Later, Kreutz moved to Freiburg where
he hatched a flock of young infra-red spectroscopists
(Fritz Siebert, Werner Mäntele, and Klaus Gerwert)

now well-known in photosynthesis research. In 1973
I was lucky to inherit Werner Kreutz’s position at
TU-Berlin as associate professor of physical and bio-
physical chemistry. The same position was inherited
by Gernot Renger when I left Berlin for Osnabrück in
1979.

A molecular voltmeter

Back to 1966, and to an environment of enthusiasm,
physical skills and biochemical ignorance. I was com-
missioned to solve the riddles of certain light-flash-
induced absorption transients at the wavelengths of
515 nm, 475 and 648 nm, which had been discovered
by Horst Witt (Witt and Moraw 1959). Observable in
suspensions of purple bacteria, chloroplasts of green
plants, and algae, they were attributed to chlorophyll b
by some (Rumberg 1964) and mainly to carotenoids
by others. For the time being they were ‘spectro-
scopic signals,’ as marginalized by Otto Warburg,
who, at the first, unofficial photosynthesis congress, in
France 1962, pretty single-mindedly asked Horst Witt:
‘Could you tell us how the chemical mechanism of
photosynthesis can be described on the basis of your
spectroscopic observations?’ Again it took decades
to fully appreciate the great potential of spectrosco-
pists, kineticists, biochemists, geneticists and struc-
tural biologists joining forces.

Upon starting, I learned that the rapid rise of ab-
sorption at 515 nm after firing of a flash of light was
linked to the activity of both photosystems, and that
the subsequent decay was at least biphasic, fast and
slow, with the slow phase being not only related in
some way to photophosphorylation (Rumberg et al.
1966), but also sensitive to several electron acceptors
for Photosystem II. This multi-faceted signal seemed
to present, in an unknown way, the ‘missing link’
between electron transport and ATP synthesis. I found
that the relative extent of the slow decay phase varied
between different preparations of fragmented chloro-
plasts. By leaving a diluted suspension of chloroplasts
in the photometer beam over lunch-break, and re-
inspecting the aged sample, I found that the slow
decay phase was converted into the rapid one, while
the total extent of the rise after the flash was unaf-
fected. If simple aging accelerated the decay, what
about other mistreatments? I recalled reading about
a permeabilizing effect of ethanol on biomembranes.
Indeed, a sip of booze drastically accelerated the sig-
nal decay, and this broke the ice. Exposure to hypo- or
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hyperosmolar media or to high temperature, and addi-
tion of ionophoric antibiotics (Horst Witt had obtained
gramicidin from Bert Pressman) all accelerated the
decay. Increasing the concentration of several, chem-
ically different cations accelerated it further, and, with
the ionophore gramicidin, the cation specificity was
the same as that known from model studies. The spec-
troscopic signal seemed related to ion transport across
the thylakoid membrane. Titration of the accelerat-
ing effect as a function of the concentration of added
gramicidin corroborated this notion: as little as 0.1 nM
gramicidin per 10 µM of chlorophyll produced a de-
tectable effect. This implied that the functional unit
behind this signal contains at least 105 chlorophyll
molecules, that is, more than 100 electron transport
chains. That was the expected number of chains in
one thylakoid disk. Taken together, these findings re-
vealed ‘the chl-b reaction as indicator for an electrical
field across the thylakoid membrane’ (Junge and Witt
1968) [for the first report, see Witt (1967)]. The newly
discovered ‘molecular voltmeter’ had an astoundingly
short rise-time of less than 20 ns (Wolff et al. 1967).
The calculated magnitude of the flash-induced voltage
jump was about 50 mV after a single flash, and
over 200 mV under continuous illumination. The es-
timate was based on the known density of reaction
centres and the specific capacitance of biomembranes
(Junge and Witt 1968). These findings gave realm to
the electrical component of the protonmotive force,
and suggested that the transmembrane voltage alone
might present sufficient energy to drive ATP synthesis
in terms of Mitchell’s hypothesis. Soon it became
apparent that both photosystems contributed about
equally to the voltage and also to net proton transfer
(Schliephake et al. 1968). The difference spectrum of
the electrochromic response was shaped as if originat-
ing from electrochromic bandshifts, with contributions
from carotenoids and chlorophyll b (Emrich et al.
1969b). To extract the electrochromic component at
any wavelength from the responses to other events,
the sensitivity of the decay to ionophores served as
a kinetic tag. By the same criterion we discovered
an artificial electrochromic dye, rhodamin-b (Emrich
et al. 1969a), and happily marketed ‘molecular volt-
meters’ as new tools in biophysics (Junge and Witt
1969). Electrochromism in the narrower sense, i.e.,
the prompt response owed to the dipole moments
and/or dielectric polarizability of a dye, has not made
a commercial career as a ‘voltage probe’ outside of
photobiology. Even at very high field strengths, say
107 V m−1 (i.e., 50 mV over 5 nm) the wavelength

shift is only a fraction of 1 Å, and the resulting ab-
sorption change is then too small (�OD< 10−3) for
ready detection – except in photobiological systems
which allow a non-invasive stimulation by light. A
more generally applicable solution to this goal, as it
has turned out later, have been membrane-adsorbed
dyes that undergo a voltage-sensitive isomerization.
Although inferior in time resolution, these yield a
much larger signal.

Electrochromism as a voltage probe was soon
thereafter established in biomimetic model systems
(Schmidt et al. 1969, 1971; Reich et al. 1976),
and in purple bacteria by Baz Jackson and Tony
Crofts (Jackson and Crofts 1969, 1971), see the joint
review (Junge and Jackson 1982) and Crofts’ histor-
ical perspective of the Q-cycle, (this issue). As to the
participation in chloroplasts of chlorophyll-b versus
carotenoids, the latter were surely involved. It was ex-
pected that symmetrical pigments without permanent
dipole moment, like β-carotene, produced a quadratic
response to the electric field by their dielectric po-
larizability. The observed pseudo-linear response has
therefore been attributed to their pre-polarization in
van der Waals contact with chlorophyll (see, Sewe
and Reich 1977). This early concept was proven when
the structure of a light-harvesting-complex (LHC)-
antennae protein became available (Kühlbrandt and
Wang 1991).

Anyway, we had one essential element of
Mitchell’s hypothesis, the transmembrane voltage, at
hand, and we were going to exploit it further. Surely
Horst Witt (see Witt, this issue), but what about me?
As indicated previously, I was kind of sceptical about
the rigidity of the German university system.

What made me continue after receiving my PhD in
early 1968 were the following.

(i) The ambitious and competitive spirit in Horst
Witt’s institute and the friends there, to name a
few: Bernd Rumberg, Gernot Renger (see, Renger
2003) and Ulrich Siggel (who have stayed in
the Max-Volmer-Institute); Hannes Stiehl (plasto-
quinone, later owner of a ‘clean room’ manufac-
turing company); Günter Döring (P680, now at
the German Bureau of Standards); Hinnerk Emrich
(MD, now Professor and director of Psychiatry
and Neurology in Hannover); Roland Reich (Pro-
fessor of Physical Chemistry in Berlin); and, last
but not the least, Wolfgang Haehnel (then working
on Photosystem I, now on protein de novo design,
Professor of Biochemistry in Freiburg);
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Figure 2. Outside the Volmer Institute, Berlin, with Govindjee (second, right) and his student Rita Khanna (below, right) visiting in 1976, with
B. Rumberg (first, right), H. Witt (fourth, right), and the author (second, left, below).

(ii) An extraordinary meeting on molecular biology in
the lovely mountainous Schloß Elmau, Bavaria,
in 1968, where Manfred Eigen had gathered the
cream of biophysical chemistry (including a beam-
ing Francis Crick) in a merger with young gradu-
ates; a mind-widening event, really.

(iii) The first official International Congress of Photo-
synthesis in Freudenstadt, Germany, 1968. At this
meeting I gave a short lecture on our data (Junge
et al. 1969) and collided with Britton Chance (see
Chance, this issue), who had adverse views on the
‘carotenoid shifts’ and, at that time, was deeply
suspicious of Mitchell’s hypothesis. The public
clash with an expert of his stature was great for a
freshly-hatched but fearless PhD with better data.
All the more because Brit, despite our disagree-
ment, seemed to enjoy the fight, so much so that
he invited me over to the US straight-on, where we
became friends. The subsequent stays in his lab,
then a focus of worldwide pilgrimage for biophys-
icists and biochemists, young and old, were pivotal
for feeling at home in the wider field.

It was straightforward to use the molecular volt-
meter for studies on ATP synthesis. At the Max-
Volmer-Institute (see Figure 2), this field was Bernd
Rumberg’s, and newly chosen in his attempt to escape

direct competition and confrontation with Horst Witt.
Within the Institute, Horst acted as an ambitious elder
brother rather than a father. Aside from obvious disad-
vantages of this attitude to some, it was advantageous
that Horst accepted, while not necessarily respecting,
his offspring’s strides for independence, and, not the
least, that he himself, and the institute as a whole, have
remained on the wild side of science.

Bernd had established a preparation protocol for
freshly broken chloroplasts and set up the radioactive
assay for ATP synthesis. We collaborated. Whereas
the earlier work was carried out with fragmented and
resealed membranes that were rather leaky to many
ions, in freshly broken chloroplasts the electric leak-
age was greatly reduced. That the interlaced system of
grana and stroma lamellae (see the historical perspec-
tives of Staehelin 2003; Albertsson 2003) was largely
intact was later quantified by Gerald Schönknecht and
Gert Althoff (Schönknecht et al. 1990). They titrated
the functional unit of the electrical discharge in freshly
broken chloroplasts by adding minimal amounts of
gramicidin, and found a detectable acceleration of
the voltage decay by as little as one gramicidin di-
mer per 5 × 107 chlorophyll molecules [compared to
as many as 105 in fragmented chloroplasts (Junge
and Witt 1968)]. This result implies that the whole
thylakoid system of a chloroplast, grana and stroma
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lamellae taken together (believed to contain about
108 chlorophyll molecules total), constitutes one elec-
trically sealed, contiguous sheet. In material of this
quality, the decay-time of the transmembrane voltage
caused by ion leakage is longer than 100 ms. The slow
voltage generation by cytochrome-b6 f is detectable,
but was ignored by us in subsequent work.

ATP synthesis: transmembrane voltage
as both driving force and regulator
of activity – the early approach

In 1969 Hartmut Schröder, Bernd Rumberg and I
studied ATP synthesis under excitation of chloroplasts
with groups of between one and three closely-spaced
flashes of light. The groups were fired repetitively,
with long intervals between them. Hartmut deter-
mined the ATP yield per flash in the same sample for
which I recorded the electrochromic transients. Very
few of our many preparations of spinach chloroplasts
were sufficiently ion-tight for this purpose – growth
season, leaf age, turgor, and speed of handling were all
important factors. The major results were as follows
(Junge 1970; Junge et al. 1970):

(1) Transmembrane voltage as major driving force.
The ATP-yield per flash group was halved by
insertion of a leak conductance for K+ (by valino-
mycin) that exactly matched the one for the proton
(by the ATP synthase);

(2) Threshold voltage. Under phosphorylating condi-
tions, the voltage decay was fast only if the voltage
exceeded a certain threshold. If the starting voltage
(directly after firing the flash) was below threshold
right away, there was neither an accelerated decay
nor ATP formation. This has been interpreted by
either voltage regulation of the enzyme activity,
or a strongly non-linear current–voltage relation-
ship of the enzyme’s proton translocator (Junge
1970);

(3) Proton (charge)-to-ATP-stoichiometry of 3.3. The
total extent of the initial voltage jump was cal-
ibrated against charges per ATP by the known
stoichiometric ratio of photosystems to ATP syn-
thases, and the ATP-yield was directly assayed
by 32P-radiography. At its time (1970) a stoi-
chiometry of 3.3 was off-scale because everybody
else in the community was convinced by a ratio of
two, including Albert Lehninger in his Biochem-
istry textbook (Lehninger 1970).

It is worth considering how the these early insights
have survived the passage of time.

(1) That transmembrane voltage can be the major driv-
ing force of ATP synthesis was corroborated in a
drastic experiment by Horst Witt and his cowork-
ers who showed that CFOCF1-doped proteolipo-
somes synthesize ATP in response to an externally
applied electric field pulse (Witt et al. 1976). That
protons are taken in by the enzyme, and appear
at the other side in synchrony with the voltage
decay, has been shown by combining the elec-
trochromic voltmeter with kinetically competent
pH-indicating dyes for both sides of the membrane
(Junge 1987).

(2) The existence of voltage-regulation of the chloro-
plast enzyme was extensively studied in Berlin
(Rumberg and Becher 1984; Bauermeister et al.
1988; Junesch and Gräber 1991) and elsewhere
(Strotmann and Bickel-Sandkötter 1984). The ox-
idized enzyme is activated by both components of
the protonmotive force, �pH and �ψ , and this
is physiologically useful. The down-regulation of
the enzyme at insufficient protonmotive force, un-
der conditions where the electron transport chain
of the chloroplast goes oxidized, serves to pre-
vent ATP hydrolysis in the dark. Responsible for
this regulation is an extra-loop of the γ -subunit
of the enzyme carrying two apposed cysteines
(Moroney et al. 1982; Hisabori et al. 1998, 2002).
A voltage threshold has also been established for
the activity of an Na+-translocating ATP synthase
(Laubinger and Dimroth 1987; Kaim and Dimroth
1999; Dimroth et al. 2000).

(3) The proton-to-ATP stoichiometry has remained a
matter of debate for more than three decades. It
has been determined both under static head (quasi-
equilibrium) conditions and under off-equilibrium
conditions. Published figures increased over the
decades from two to three or four. The last fig-
ure is the résumé of several groups (van Walraven
et al. 1996), and has been corroborated recently
by technical improvements which seemed to avoid
possible pitfalls of previous approaches (Turina
et al. 2003). Today, however, this figure is dif-
ficult to reconcile with the supposed structure of
this enzyme. One expects the H+/ATP-ratio to
conform to the symmetry ratio between FO and
F1. By atomic force microscopy, a ring of 14
c-subunits has been found in isolates from chloro-
plast FO (Seelert et al. 2000), whereas the number
of catalytic sites on F1 is 3 (Abrahams et al. 1994).
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The expected ratio based on the structure is there-
fore 14/3 = 4.7, which is incompatible with 4 as
determined by thermodynamic and kinetic experi-
ments. This discrepancy has not yet been solved.
The common belief BS (‘before structure’) was
that the stoichiometry must be an integer. But it is
obvious that non-integral stoichiometric ratios are
feasible if an elastic power transmission smoothes
the non-matching symmetries between the ionic
(FO) and the chemical motor/generator (F1) (Junge
et al. 2001; Cherepanov and Junge 2001; Pänke
et al. 2001).

The results of 1970 were ahead of their time: they
proved the electrical aspect of Mitchell’s theory and
indicated the voltage regulation of the enzyme under
oxidizing conditions. Because the experiments were
carried out on chloroplasts, and based on a spectro-
scopic probe that was not generally applicable, they
appeared as a kind of off-side to the biochemical ma-
jority in Bioenergetics. This majority worked with
mitochondria and bacteria, and its late ‘conversion’
eventually gave Peter Mitchell the Nobel prize in
1978. One episode may illustrate the neglect we felt.
Peter Mitchell knew the Berlin group very well, and in
1976 he had received his first honorary degree from the
Technische Universität Berlin. We sustained a regular
correspondence that I loved for its science, humanity
and style. In 1990 we were invited to join the celebra-
tion of Glynn’s 25th anniversary, a marvellous event in
his laboratory and home, in Cornwall (see Figure 3).
A map was posted in the library whereon red wool-
len threads linked Glynn House near Bodmin with any
place in the world which had contributed to the success
of the chemiosmotic theory. The map was compre-
hensive with one exception, Berlin. I mention this
episode as illustration of the interlacing of scientific
‘truth’ and social acceptance. The multi-authored pa-
per wherein Peter Mitchell was jammed, alphabet-
ically, between his former adversaries, who insisted
on their alternative contributions, also illustrates this
point (Boyer et al. 1977). G. Gilbert and M. Mulkay’s
only thinly camouflaged sociological coverage of the
chemiosmotic versus squiggle discourse (Gilbert and
Mulkay 1984), and, fundamentally, Karl Popper’s
Logik der Forschung (Popper 1935) are worth read-
ing in this context. It is favorable that the lifetime of
personal or social bias in science is usually very short.

Thereafter, I left ATP synthesis for a while, one
reason being that Bernd Rumberg continued, the other
being that Horst Witt promptly hired gifted post-docs
just for this topic, i.e., Peter Gräber (now Professor

Figure 3. Peter Mitchell and Peter Rich at the Glynn Lab an-
niversary, in 1990.

of Physical Chemistry at Freiburg) and Eberhard
Schlodder (still at the Max-Volmer). What followed
was a migration through different topics within and
outside of photosynthesis. In retrospect, there was
some logic in the way we later returned to studies of
ATP synthesis.

Roaming around: places, topics and methods

In 1979 I moved with my group from the Technical
University of Berlin to the Chair of Biophysics at the
University of Osnabrück. This move was kind of
necessary on the one hand, but risky on the other.
‘Going to German Siberia’ was Nathan Nelson’s com-
ment. The move liberated us from the tight com-
petition in Horst Witt’s institute, we were endowed
with an unusually large start-up investment, and
we changed gradually into another life-style; from
the feverish, culturally booming, but sequestered
West Berlin, to this lovely old town in northwest-
ern Germany with hills, fields and fens around. The
university, founded only in 1974, was still in a frag-
mentary state. To begin with, we had to convert
into labs a suite in a multi-purpose cardboard-and-
steel building, a replica of which decorates Mo-
scow’s international airport. The great crew of gradu-
ate students and post-docs that had moved over
from Berlin mastered these tasks in short time and
brought widely different research topics from Berlin
to Osnabrück: Benjamin Kaupp studied visual trans-
duction in vertebrate rods; Ulrich Kunze, cytochrome-
c-oxidase; Helmut Schaffernicht, Photosystem I;
Richard Wagner, ATP synthase; and Verena Förster,
water oxidation. Hawi Trissl joined us with the light
gradient technique, Yu Qun Hong (from Shanghai,
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Figure 4. Berliners in Osnabrück 1980. Left: almost serious (from rear to front, from left to right): Helmut Schaffernicht, Paul Schnetkamp,
Richard Wagner, Hawi Trissl, Yu-Qun Hong, Ulrich Kunze, unidentified, unidentified, Erneste Junge, Margret Offermann, Dorle Trissl,
Benjamin Kaupp, Verena Förster, and the author. Right: a little wilder.

China, now in Brookhaven, New York) worked on
proton uptake and release, and Paul Schnetkamp (from
Nijmegen, The Netherlands) on vision (see Figure 4).
In the beginning we did not believe in the longev-
ity of this university, but pleasant new buildings for
Biology (we were part of this unit) and Physics,
they were finished in 1983, turned the fate. Soon
thereafter, together with my collegues Karlheinz
Altendorf (Microbiology), Joseph Lengeler (Genetics),
and Wolfgang Lueken (Zoophysiology) and others, we
founded a collaborative research unit on cellular mem-
brane transport (Sonderforschungsbereich 171). This
large, institutional grant, was funded by the Deutsche
Forschungsgemeinschaft with three years’ revision, it
lasted over 15 years, until 1999, and I served as its
chairperson.

Of the different topics and systems that I had start-
ed in Berlin, Philadelphia, and later in Osnabrück,
some were unrelated to, others methodically paving
the way or directly aiming at the mechanism of ATP
synthesis.

Let me briefly mention two lines of research of
the first category: Benjamin Kaupp (now Professor of
Biophysics in Köln and Jülich) studied visual trans-
duction in vertebrate rods. We disproved the Ca2+-
transmitter hypothesis (see e.g., Kaupp and Junge
1977; Kaupp et al. 1980; Schnetkamp et al. 1981;
Kaupp and Junge 1982) and the tools derived in
these studies helped Benjamin to establish c-GMP
instead of Ca2+ as the second messenger. Stud-
ies on photosynthetic water oxidation and Photosys-
tem II are still going on and have involved great
graduate students, post-docs and collaborators. We

focussed on the electrostatic balance and the inter-
play of electron and proton transfer in the cata-
lytic centre (see, e.g., Förster and Junge 1985;
Lübbers et al. 1993; Haumann and Junge 1994a;
Haumann et al. 1994, 1997a, b, 1999; Bögershausen
and Junge 1995; Hundelt et al. 1997; Ahlbrink et al.
1998; Clausen et al. 2001, 2004; and reviews in
Lavergne and Junge 1993; Haumann and Junge 1999;
Junge et al. 2002).

Three lines of earlier work that have technically
paved our way to investigate the molecular mechanism
of ATP synthesis are: (a) polarized spectrophotometry;
(b) the integration of biochemistry and molecular bio-
logy in the lab; and (c) improved techniques to monitor
proton transfer.

(a) Polarized spectrophotometry. After my futile at-
tempts to implement the ‘molecular voltmeter’
into Britton Chance’s mitochondria in Philadelphia
(signals were obscured by too large mixing arte-
facts) I embarked on polarized photobleaching
and recovery to study the rotational mobility of
cytochrome-c-oxidase in the cristae membrane of
mitochondria (Junge 1972; Junge and DeVault
1975; Kunze and Junge 1977) and later em-
ployed this technique to unravel the spectroscopic
band structure of P700 in Photosystem I of green
plants (Junge and Eckhof 1974; Junge et al. 1977;
Schaffernicht and Junge 1981, 1982). In compar-
ison with fluorescence depolarization, polarized
photobleaching and recovery is not limited to a
time range of nanoseconds, but, with a triplet
probe such as eosin, it extends into milliseconds
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[for studies on the F1-ATPase (see Wagner and
Junge 1980, 1982; Wagner et al. 1982)], and
to even longer times with a chemically reactive
probe such as the transiently oxidized P700 in
PSI (Schaffernicht and Junge 1982, 1981). Mak-
ing use of a permanently photobleached state of
the probe eosin we later extended this technique
to record rotational motion within the F-ATPase in
the range of seconds (Sabbert et al. 1996, 1997).
In principle, polarized photobleaching and recov-
ery yields information on chromophore symmetry,
resonant energy transfer and rotational motion in
the time domain from nanoseconds to seconds.

(b) Integration of biochemistry and molecular bio-
logy. Biochemistry was brought to us by Nathan
Nelson (then Professor of Biochemistry in Haifa,
now in Tel Aviv) (see Figure 5 and Nelson and
Ben-Shem 2002, this series) and the late Noun
Shavit (Professor of Biochemistry in Beersheba).
Roland Schmid learned to extract and reconsti-
tute F1 in thylakoid membranes (Schmid et al.
1976). Nathan taught Helmut Schaffernicht how
to purify and immobilize Photosystem I for polar-
ized spectroscopy on the band structure of P700
(Junge et al. 1977). Dear memories of that time
in Berlin are: Noun’s lab-filling charm, as still
remembered from his melodious calls for ‘Elsa,’
our technician Ilse Columbus; Nathan’s improvisa-
tions in a chemically inadequately equipped lab,
including his special low-pressure liquid chroma-
tography (LPLC, two beakers, silicone tubes, one
column, and gravity); and our transiently wife-
less living together in my home at the bank of
the river Spree. Later, Nathan and Hannah Nelson
trained Holger Lill (now Professor of Structural
Biology in Amsterdam) in molecular biology, and
Holger seeded these skills into our Osnabrück lab
after returning back from Nathan’s ‘lab of unlim-
ited resources’ at the Roche Institute, Nutley, New
Jersey.

(c) Improved techniques to monitor proton transfer.
Proton transfer has been a topic in my lab right
from the beginning. pH-transients can be detected
with very high time resolution in both compart-
ments which are separated by the thylakoid mem-
brane. It is pivotal that the total buffering power
of the very thin lumen (typical thickness 100 nm)
and of the macroscopic suspending medium are
about equal in magnitude, although the cumula-
tive volume-ratio between out and in is about 1000
in a typical experiment. In the absence of ad-

Figure 5. Nathan Nelson (center), Dick McCarty (left) and the
author in 1996.

ded buffer, buffering is mainly attributable to the
proteins and lipids at both surfaces of the mem-
brane, where the densities of buffering groups are
of about equal magnitude. The drastically different
size of the respective inner and outer volume is
negligible because water is such a poor buffer (see
Junge and McLaughlin 1987). The photometric de-
tection with high time resolution of pH-transients
in the suspending volume of thylakoids is straight-
forward by using hydrophilic pH-indicating dyes
(Schliephake et al. 1968; Ausländer and Junge
1974; Junge and Ausländer 1974). Even if pen-
etrating into the lumen, the sheer volume ratio
of internal/external, 1/1000, makes the response
from the few inside-located dye molecules irrel-
evant. Winfried Ausländer found a way to re-
cord flash light induced pH-transients also in the
nanometer-wide lumen of thylakoids (Ausländer
and Junge 1975). When neutral red, an amphiphilic
and membrane adsorbed pH-indicator, is added to
thylakoids, it produces two, oppositely-directed
absorption transients in response to excitation of
photosynthesis by a short flash of light: one at-
tributable to the pH-transient in the suspending
medium (alkalinization); and the other one in
the lumen (acidification). The response of neutral
red to the pH-transient in the lumen is extracted
by adding a non-permeating buffer, e.g., bovine
serum albumin (BSA), to the suspending medium
(Ausländer and Junge 1975). Only later did it be-
come apparent that non-permeant buffers smaller
than BSA, e.g., phosphate, are required for high-
speed quenching of pH transients in the narrow
space between tightly appressed grana thylakoids,
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into which BSA does not readily enter (Lavergne
and Rappaport 1990; Jahns et al. 1991). When
correctly applied, use of neutral red allows a very
high time resolution of proton release at the lu-
men side of the thylakoid membrane. In studies
on water oxidation, Michael Haumann observed
proton transfer to neutral red in 10 µs (Haumann
and Junge 1994a). The high velocity of the proton
transfer is owed to the bimolecular collision of the
surface-mobile proton acceptor, neutral red, with
the fixed intrinsic proton donor(s). This mecha-
nism is apparent from the pseudo-linear depen-
dence of the relaxation rate on the concentration
of this dye. In studies on water oxidation, the
mechanism allowed us to discriminate by kinetic
criteria the chemical release of protons, which is
limited by an intrinsic time constant, from electro-
statically triggered and immediate proton release
at the protein periphery [membrane Bohr effects
as reviewed in Junge et al. (2002)]. We deter-
mined the internal buffering capacity of thylakoids
for protons (at pH 7, about 1/20 mol/mol chloro-
phyll) (Junge et al. 1979), and the magnitude of
the pH-transient per short flash of light (at pH
7, about 0.06 pH-units) (Hong and Junge 1983).
The response of neutral red was sensitive to the
surface potential at the lumenal side of the mem-
brane (Hong and Junge 1983). In other words, in
kinetic experiments with thylakoids under flash ex-
citation, neutral red behaves as a surface adsorbed
and laterally mobile proton carrier and indicator
for the lumenal side of the membrane. On the
other hand, its use as an indicator for slower pH
transients in mitochondria and chloroplasts is com-
plicated by its redistribution between the luminal
and the external sides of the membrane and by di-
merization (see, Luvisetto et al. 1991). In the time
domain of milliseconds, however, the photomet-
ric probes have given a comprehensive view of the
transmembrane and the lateral protonic relaxation
under the influence of fixed and mobile buffers
(Junge and Polle 1986; Polle and Junge 1986a,
b, 1989; Junge and McLaughlin 1987). Hemi
Gutman (Tel Aviv), Stuart McLaughlin (Stony
Brook) and Jérôme Lavergne (Paris) were critical
partners during this work and friends.

Electrochromism and neutral red helped us to
better understand the ionic side of ATP synthase,
as discussed later (for reviews on the work on chlo-
roplasts and purple bacteria till the early 1980s, see
Junge 1977, 1982; Junge and Jackson 1982).

Localized versus delocalized coupling between
proton pumps and ATP synthase

After the chemiosmotic hypothesis had become almost
generally accepted in 1978, the properties of the en-
zyme still did not come into focus since there was so
little structural information available. As a ‘left-over’
the debate over localized-versus-delocalized coupling
between proton pumps and proton translocating ATP
synthase absorbed quite a bit of energy in this field.
It dated back to the early sixties. R.J.P. Williams
(1961) was probably the first to emphasize a special
role of the proton by stating that ADP and Pi in a
solution at extremely low pH, would react to yield
ATP, by kind of enzyme-free mechanism. Later, when
Mitchell had formulated his less dramatic version of
how protons might be used for the synthesis of ATP,
Williams argued that Mitchell’s mechanism cannot
hold for the following reason: the outwardly direc-
ted proton pumping in a photosynthetic or respiring
bacterial cell could never, of course, acidify the Pa-
cific Ocean, which, by dilution, presents an almost
infinite sink for protons (Williams 1978, 1988). These
arguments were valid and they stimulated a wealth of
literature on ‘localized energy coupling’ and ‘micro-
chemiosmosis’ (see, e.g., Kell 1979; Westerhoff et al.
1984; van der Bend et al. 1985). In the chloro-
plast field, it was mainly Dick Dilley (this issue)
who published experiments that, in his view, proved
that ATP synthesis in chloroplasts is driven by some
localized pH-difference, and not by the bulk-to-bulk
pH-difference between the lumen and the suspending
medium (see, e.g., Ort and Dilley 1976; Ort et al.
1976; Dilley et al. 1982; Laszlo et al. 1984; Nagle
and Dilley 1986; Dilley 1991).

We held fast against Dick’s arguments by mon-
itoring the release of protons into the lumen, and
their uptake from it, by the ATP synthase, at some
10 µs time resolution. Using neutral red as indica-
tor we found that this dye reports on: (i) the rapid
ejection of protons into the lumen, e.g., by water oxid-
ation (Ausländer and Junge 1975; Haumann and Junge
1994a); (ii) ready equilibration with intrinsic and ex-
ternally added buffers (Junge et al. 1979; Hong and
Junge 1983); followed by (iii) proton uptake by the
ATP synthase (Junge 1987), or by its proton translo-
cator, FO (if F1 is removed) (Schönknecht et al. 1986).
It proved that both the pumps and the ATP synthase
operate on the lumen, operationally defined as the
neutral red accessible space, and on the suspending
medium. Strictly speaking, our experiments proved
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that a delocalized chemiosmotic mechanism operates
in thylakoids in the presence of neutral red.

However, it is obvious that neutral red, which acts
as a mobile proton carrier along the membrane sur-
face and between surface and ‘bulk,’ accelerates the
equilibration of protons. Perhaps neural red just cre-
ated Mitchellian behavior? Even we, as enthusiasts for
Mitchell’s concept, observed phenomena that might be
interpreted by local proton trapping (Theg and Junge
1983; Polle and Junge 1986c; Jahns and Junge 1990a,
b, 1993), and by the existence of energy barriers for
protons at the membrane–water interface (Haumann
and Junge 1994b; Gopta et al. 1999). These ques-
tions have prompted Armen Mulkidjanian and Dmitry
Cherepanov, post-docs from Moscow, to resume this
topic. They arrive at the conclusion that there is
an energy barrier for the passage of ions over the
membrane–water interface, because the dielectric per-
mittivity of surface water is lower than that of bulk
water (Cherepanov et al. 2003, 2004). Under continu-
ous operation of proton pumps and the ATP synthase
and with a calculated barrier height of 60 mV the inter-
facial pH at the p-side (whereto protons are delivered
by the primary pumps) can rise up to 6 units. If this
surface acidity existed at the outer side of an alkali-
philic bacterium it might explain, for the first time,
how these organisms may synthesize ATP by a ba-
sically chemiosmosis mechanism (Cherepanov et al.
2003, 2004). The positive surface of alkaliphilic bac-
teria faces a bulk at pH 10 whereas the cytoplasmic
pH is clamped around neutrality. Because these or-
ganisms do not generate a membrane potential greater
than −200 mV, their bulk-to-bulk protonmotive force
in the steady state is insufficient for a chemiosmotic
mechanism of ATP synthesis (Guffanti and Krulwich
1992). Our new results have emphasized the surface-
to-surface protonmotive force for chemiosmotic ATP
synthesis in these organisms. However, this feature
is probably not of general importance. In thylakoids,
for instance, the positive side of membrane faces the
nanoscopic lumen, which is not an infinite proton sink
such as the ‘Pacific Ocean.’ Because of the smaller di-
mensions, the proton equilibration between the surface
and the thylakoid lumen is rapid, and the formation un-
der steady turnover of a sizeable pH-gradient between
the surface and the lumen is not predicted.

ATP synthase: the structure comes into sight

The proton translocating ATP synthase, F-ATPase, is a
bipartite enzyme: it has a membrane-intrinsic, proton

translocating portion, FO; and a peripheral portion,
F1, which processes the nucleotides. It is now estab-
lished that both FO and F1 are rotary motor/generators.
They are mounted on a common central shaft, and
held together by an eccentric stator (see Figure 7).
Depending on the predominant driving force, which
may be a protonmotive force across the coupling mem-
brane or a high phosphate potential in the solution
facing F1, one portion drives the other as a motor,
and the other operates as a generator, producing ATP
– or, when running backwards, protonmotive force. It
is now generally accepted that the construction prin-
ciples of FOF1 are the same in the three kingdoms of
life (Archaea, Bacteria, and Eukarya – see Woese, this
issue). Today’s comprehensive view of this enzyme
has emerged from various research objects. Studies on
chloroplasts and photosynthetic bacteria have contrib-
uted precise kinetic and thermodynamic data, mainly
on the ionmotive aspects, studies on other objects have
contributed crystal structures (mitochondria, yeast);
mutational analysis (Escherichia coli); a novel video-
graphic rotation assay (thermophilic Bacillus PS3);
and information on Na+-transport (Propionigenium
modestum).

In the early 1980s we resumed our earlier investi-
gations (Schmid et al. 1976) on the chloroplast proton
conductor, CFO. It was supposedly composed of four
types of subunits, I–IV (Nelson et al. 1980). In the cur-
rent nomenclature, which has been shaped after that
for E. coli–FO these subunits are named a, b, b′, and c,
respectively. Their relative proportions were unknown
in the 1980s; there was no structure for FO in sight.
One early stronghold concerned subunit c, present in
several copies; then, supposedly, six, by titration with
a covalently binding inhibitor (Sigrist-Nelson et al.
1978); today, 14, by atomic force microscopy (Seelert
et al. 2000). CF1 was believed to be composed of
five types of subunits, α–δ, in stoichiometric ratio of
3:3:1:1:1 (Suess and Schmidt 1982). These subunits
could be extracted as a whole to yield the soluble
five-subunit CF1 which, when added back to exposed
CFO, plugged its high proton conductance (Schmid
et al. 1976). Subunits αβ formed the core of F1 and
interacted with nucleotides. All subunits of FO (a, b2
and cn) were needed for proton conduction by E. coli
FO(EFO) (Schneider and Altendorf 1985). The func-
tion of subunits δ and ε was under contention. They
were interesting because the coupling between FO and
F1, and of proton flow to ATP synthesis, was the
most enigmatic part of the function of this bipartite
enzyme.
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Subunit δ at the interface between FO and F1

Siggi Engelbrecht and Holger Lill concentrated on the
role of subunit δ ‘at the interface between proton flow
and ATP synthesis’ (see review in Engelbrecht and
Junge 1990). When we started in the early 1980s, the
association of subunit δ with CF1 had already been
established, but there were also reports on the interac-
tion of subunit δ with CFO (Andreo et al. 1982; Roos
and Berzborn 1983). Our approach to this discrepancy
exemplifies the difficulties and errant paths of research
before the advent of a molecular structure. In collab-
oration with Alexandro Viale in Ruben Vallejo’s lab
in Rosario, Argentina, Yu-Qun Hong observed that
the extraction of the four-subunit CF1 from thylakoids
did not produce the proton leakage through CFO, that
was known to occur after the extraction of five-subunit
CF1. Instead, there was a cooperative transient pro-
ton trapping, which was attributed to the central acid
residue on the multi-copy subunit c (Junge et al. 1984).
In a series of articles, Siggi Engelbrecht and Holger
Lill established that the purified subunit δ, when added
back to CF1-extracted thylakoids, blocks proton leak-
age by CFO (Engelbrecht et al. 1986, 1989b, 1990;
Engelbrecht and Junge 1987, 1988, 1990; Lill et al.
1988). The same role of δ has been found in chimeric
constructs, with E. coli δ bound to Spinacia CFO,
and Spinacia δ bound to E. coli EFO (Engelbrecht
et al. 1989a). This cross-activity of the δ-subunits
was surprising given the low sequence identity, 23%,
between these proteins with a length of 177 (E. coli)
and 187 (Spinacia) amino acids. The clearly docu-
mented ability of δ to plug-up proton conduction by
CFO led us to the speculate about a role of δ as a
conformational energy transducer between FO and F1
(Engelbrecht and Junge 1990), rather than as a pro-
ton conductor between FO and F1. The structural basis
for either function, however, remained enigmatic. Be-
cause the first crystal structure of mitochondrial F1
(MF1) (Abrahams et al. 1994) showed no mitochon-
drial equivalent of δ (named OSCP), its position was
revealed only later, by other techniques. Crosslinking
of δ with αβ (Lill et al. 1996), fluorescence resonant
energy transfer (Engelbrecht et al. 1998), and elec-
tron microscopy (Wilkens et al. 2000; Rubinstein and
Walker 2002) have all located δ at the very top of F1,
far away from FO. It sits at the end of the stator of
rotary FOF1, binding with very high affinity [a sub-
nanomolar dissociation constant to αβ and to the tip
of subunit b (Häsler et al. 1999; Weber et al. 2002,
2003a, b). Therefore δ belongs to the F1 portion of the

enzyme, connecting FO and F1 as an essential element
of the stator. The earlier, rather speculative concept of
δ binding directly to, and acting as a plug of, CFO,
was too simple. It remains conceivable, though, that δ,
although primarily binding to the extended subunit b,
may contact the c-ring by virtue of the floppy structure
of b. Later, we found that δ was not the only F1-subunit
fooling us, since added β and γδε diminished proton
flow through FO, too.

The magnitude of proton conduction by FO

Figures reported in the literature for the proton con-
ductance of FO have been scattered over four orders
of magnitude, from 0.1 fS to 1 pS (1S = 1 A/V). Insuf-
ficient time resolution (e.g., of glass electrodes) and
uncertainty over the proportions of conducting and
non-conducting FO have caused under- and over-
estimates, respectively.

The figures in the earlier literature are in the
range of 0.1 fS, which is equivalent to a rate of
62 protons s−1 at a driving force of 100 mV (Negrin
et al. 1980; Friedl and Schairer 1981; Schneider and
Altendorf 1982; Sone et al. 1981). This rate is 10
times too low if FO is able to cope with the turnover
of the coupled holoenzyme, FOF1. Our first studies
on chloroplast FO were carried out with high time
resolution, using electrochromism and pH-indicators.
They produced a 100-fold higher figure, 9 fS (or
5600 protons s−1 at 100 mV), which is compatible
with the maximum turnover rate of the coupled en-
zyme. This estimate is based on the assumption that
all exposed FO molecules (after removal of F1) con-
tribute to the relaxation of the transmembrane voltage
(Schönknecht et al. 1986). Later, we obtained circum-
stantial evidence for a major proportion of inactivated
FO, which raised the conductance up to a figure of
1 pS (Lill et al. 1986; Althoff et al. 1989). Such high
values are hardly compatible with the diffusive proton
supply to FO, as then noted, and it has remained ques-
tionable whether the underlying assumption is correct.
At the same time, a conductance of similarly high
magnitude was reported in our institute for CFOCF1
in a lipid bilayer formed by the ‘dip-stick technique,’
which is related to patch clamp (Wagner et al. 1989).
Gated single channel currents were observed. They
peaked at 0.55 pA (at 180 mV), implying a conduct-
ance of 0.4 pS, and channels were gated with a sharp
activation above 100 mV. The authors attributed this
voltage-gated conductance to the proton (Wagner et al.
1989). It remains an open question, whether this
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attribution is correct, in particular because the pro-
teoliposomes, which contained the purified c-subunit
alone, reveal unspecific cation channels (Schönknecht
et al. 1989).

The lack of information on the number of ac-
tive FO per membrane area was obviously the major
obstacle to a reliable estimate of its proton con-
ductance. Studies on isolated chromatophores from
the photosynthetic bacterium Rhodobacter capsulatus
(Feniouk et al. 2001, 2002) have recently paved the
way to overcome the ambiguity over the proportions
of active and inactive FO. The clue was to prepare
vesicles so small as to contain, on average, less than
one copy of FO. Then, any rapid relaxation of the
transmembrane voltage is attributable to the subset
of vesicles containing a single FO molecule, and the
conductance of a single FO can be calculated.

Boris Feniouk prepared chromatophore vesicles
with 28 nm mean diameter containing average of 0.3
copies of FO. Again, a voltage step was generated by
a flash of light and its relaxation monitored by electro-
chromic absorption transients of intrinsic carotenoids,
as well as the proton flow by pH-indicating dyes
(Feniouk et al. 2003). The rapid phase of the relax-
ation is attributed to vesicles containing a single copy
of FO. This implies a maximum conductance of 10 fS
(at pH 8), which is equivalent to the translocation of
6400 protons at 100 mV. This value was determined,
for the first time, without ambiguity concerning active
and inactive copies of FO. The relaxation time is in-
dependent of the voltage, in other words, the conduct-
ance is Ohmic. FO conducts protons independently of
the nature of the driving force, whether of electrical
(transmembrane voltage) or entropic (pH-difference)
origin. Both this property, and the Ohmic behavior
under electric driving force alone, proves the absence
of voltage gating of FO. The electrical gating of the
holoenzyme in chloroplasts (Junge 1970; Junge et al.
1970; Gräber et al. 1977; Witt et al. 1977; Schlodder
and Witt 1980, 1981; Schlodder et al. 1982; Junge
1987) and in P. modestum (Kaim and Dimroth 1998,
1999; Dimroth et al. 2000) is probably attributable to
the interaction of F1 with FO, but not to FO proper.
The specificity of FO for protons over other cations
was>107, both in the purple bacterium (Feniouk et al.
2003) and in thylakoids from green plants, as pre-
viously studied (Althoff et al. 1989). The specificity
is lessened in organisms that operate on gradients of
Na+, instead of H+ (Dimroth 1997). We interpret the
properties of FO in terms of the current rotary model
for proton conduction, described below. This model is

based on two proton conducting half channels linking
the respective bulk phases by means of the rotating
ring of 10–14 copies of subunit c, with its acid residue
(Glu or Arg) sitting in the middle of the membrane.
The observed Ohmic conduction implies that the two
relay groups with widely spread pK-values are each
located close to one of the respective membrane–water
interfaces. This conclusion is a testable prediction for
structural experiments aimed at high resolution of the
c-ring and its partner in the membrane, the a-subunit.

A model for torque generation by a rotary proton
translocator

Around 1990, the ATPase community was almost cer-
tain of an alternating mechanism of ATP hydrolysis
that involved the cooperation of at least two reaction
sites on F1. This concept owed to the pioneering work
of Paul Boyer, who coined the term ‘binding change
mechanism,’ and of Harvey Penefsky, Alan Senior and
Richard Cross, to name but few (Boyer et al. 1973;
Boyer 1979, 1993; Boyer and Kohlbrenner 1981;
Cross et al. 1982; Grubmeyer et al. 1982; Penefsky
1985a, b; Rao and Senior 1987). A ‘rotary mechan-
ism’ involving three catalytic sites, mechanistically
still rather diffuse, was also considered as an option
by some.

At the 7th European Bioenergetics Conference in
Helsinki in 1991, John Walker and Peter Petersen
engaged in a battle over their emerging, and still un-
published, structural models for F1, which both hinted
at a rotary mechanism. Being interested mainly in the
proton side of ATP synthesis, I was searching for a
viable model to explain torque generation by proton
flow. Stimulated by Howard Berg’s (Meister et al.
1987, 1989) work on the protonic drive of the bac-
terial flagellae, with a series of eight ‘linear’ motor
elements operating on the large perimeter of a cent-
ral disk, I came up with a model for a rotary drive
in the much smaller FO. This model is illustrated in
Figure 6.

According to this model, the ion transporting and
rotary function of FOF1 ATP synthase is based on two
structural elements, then probable and now corrobo-
rated: a ring of several copies of the small subunits c,
each carrying one carboxylic residue (Asp or Glu) in
the middle of the membrane; and facing this ring, a
single copy of the large subunit a. Torque is generated
by three properties of this construct: (i) Electrostatic
constraints which enforce the protonated state of the
acid residues on the ring when facing the lipid core,
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Figure 6. The proton motor of FO (Junge et al. 1997). See the
animation in www.biologie.uni-osnabrueck.de/biophysik/junge.

and the deprotonated state when facing subunit a; (ii)
The creation of handedness by the non-colinear place-
ment of two proton access-channels to the carboxylic
residues; (iii) Brownian rotational fluctuations of the
ring relative to the large subunit a (for a review, see
Junge et al. 1997). In 1991, I did not publish this
model right away, because the late Klaus Lakomiak
and I had embarked on an ambitious experiment to
prove it. The idea was to block the full rotation of
the ring by a covalent reaction with one molecule of
N,N′-dicyclohexylcarbodiimide (DCCD), and to trig-
ger limited proton conduction in one direction by
light-induced voltage (in chloroplasts). We expected
that the ring came to a halt as the attached DCCD
molecule hit subunit a. We planned then to generate
protonmotive force in the opposite direction by pho-
tolyzing ‘caged proton’ in the suspending medium,
hoping to detect limited flow of protons in the opposite
direction until the ring hit its DCCD nose again, but
now at the other end of subunit a. Although nicely con-
ceived and technically mastered (both the generation
of alternating protonmotive force and the detection
worked well) this experiment failed to produce the ex-
pected result. We were terribly frustrated. When, in
1993, at an EMBO conference in Freiburg, Germany,
John Walker presented his still unpublished struc-
ture of F1, somebody reapproached him by stating
that there was then no viable mechanism for torque-
generation by FO, and I projected a drawing of the un-
published model and explained its features. John and
others immediately went for it. John asked for permis-
sion to use it in his lectures. I agreed, on the condition
that he tagged my name to it. This he consistently did,

apparently even in a lecture at the South Western Med-
ical Center in Dallas, Texas (September 1994). From
there the model made its way, without the tag, into
a paper by Steve Vik (Southern Methodist University
in Dallas) and his coworker (Vik and Antonio 1994),
and became known in the US, the big market, as the
‘Vik-model.’ George Oster and his coworkers (Elston
et al. 1998) treated the model by statistical mechanics
and later adapted it to the then believed other structure
(one access channel, only) in Na+-translocating PFO
(Dimroth et al. 1999). I emphasized that both versions,
as, in essence, the concept for the flagellar motor
proposed by Meister et al. (1989), shared the three
properties that were outlined in Junge et al. (1997).
The three common properties are: Brownian relative
motion between two proteins; electrostatic constraints;
and two non-colinear access-routes to acid groups on
the rotor (Junge 1999).

ATP synthase: the structure, eventually, and
proving rotation

When the first detailed crystal structure of F1 from
beef heart mitochondria finally appeared in 1994
(Abrahams et al. 1994), a rotary mechanism of catal-
ysis was immediately apparent. Today’s concept of the
structure of FOF1 is given in Figure 7 and three meth-
ods to prove rotational motion in F1 are illustrated in
Figure 8. The early structural model of F1 showed the
three catalytic sites each in a different state: with an
ATP-analogue; with ADP; and empty. The cranked
central shaft, subunit γ, in the middle of the (αβ)3
pressed against a lever on one copy of subunit β,
keeping its nucleotide binding site open, and thereby
empty. Having been given advanced access to some
structural details, Dirk Sabbert, Siggi Engelbrecht and
I were trying to prove inter-subunit rotation by po-
larized spectrophotometry. It was advantageous that
chloroplast CF1 carried a cysteine as the penultim-
ate residue at the C-terminal end of subunit γ, the
central rotary shaft in John Walker’s structure. By a
maleimide function the triplet probe eosin was cova-
lently attached to this residue. The enzyme body was
immobilized on ion exchange globules, as in our pre-
vious studies with Photosystem I (Junge et al. 1977;
Schaffernicht and Junge 1981 1982). While we were
at full speed in these experiments, Richard Cross (see
Figure 8) and his coworkers published first evidence
for the functional rotation of subunit γ relative to
(αβ)3 (Duncan et al. 1995). Using cleavable crosslinks
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between γ and a in hybrid enzymes composed of ra-
dioactively labeled and unlabelled subunits, their data
proved some mobility in minutes, but not on the time
scale of the catalytic turnover, and not giving the angu-
lar range and directions. In the meantime, we observed
rotation with a half-time of 100 ms. When the immob-
ilized but active preparation of F1 with eosin linked to
the end of γ was excited with a linearly polarized laser
flash, a small fraction (0.6%) of the dye was irrevers-
ibly bleached, which gave rise to a stepped absorption
transient. Low energy was chosen for the linearly po-
larized laser in order to create a preferentially oriented
ensemble by photoselection. We found that the polar-
ization anisotropy decayed in 100 ms from a figure of
0.1 to almost 0.02. This decay happened only if the
enzyme was active, but not when it was blocked by
AMP-PNP. This decay implied the functional rotation
of subunit γ relative to (αβ)3 in the time domain of
catalytic turnover: the conservative estimate for the
angular domain was 200◦. The publication appeared
in March 1996 (Sabbert et al. 1996).

Howard Berg contacted me soon thereafter and
argued that the then expected continuous and uni-
directional rotation should give rise to an oscillation
of the polarization anisotropy rather than to its relax-
ation, as we observed. I argued that the assumption of
continuous rotary motion in proteins was unrealistic,
and that an ensemble of stepped rotors, although ini-
tially phase-synchronized by the exciting laser flash
(photoselection), becomes rapidly dephased by the
stochastic nature of the stepped chemical reactions.
Dirk Sabbert and I sent him a theoretical manu-
script, which he communicated to Proceedings of the
National Academy of Sciences, USA (Sabbert and
Junge 1997). Therein we had simulated rotary step-
ping by a Markovian chain reaction, and found that
rotary two- and three-steppers produced a relaxation
of the polarization anisotropy without appreciable os-
cillation, whereas a six-stepper gave a damped but
detectable oscillation. The oscillation was, of course,
more pronounced in a rotary motor with, e.g., 50 steps.
The obvious conclusion was that F1 carries out ATP-
hydrolysis by a three-stepped process. We did not
know at this time that Howard Berg’s group was also
working on this matter, aiming at the stepping in the
flagellar motor. Shortly after our paper appeared, they
published a similar analysis which they had obtained
by a different algorithm (Samuel and Berg 1997).

The full paper on the rotational relaxation of F1
in March 1997 (Sabbert et al. 1997) contained the
following additional features: (i) Brownian rotational

diffusion of FOF1 in the thylakoid membrane with a
relaxation time of 200 µs, making the assignment of
subunits to ‘rotor’ and ‘stator’ an arbitrary choice;
(ii) vibrational fluctuation of the probe around its bond
axis with subunit γ in nanoseconds within a narrow
angular domain; (iii) and in 30 µs in a wider angular
domain (probably 360◦) as facilitated by domain flex-
ibility at the N-terminal ends of (αβ)3; (iv) the above-
mentioned functional, and probably three-stepped,
rotation, in 100 ms in the presence of ATP; (v) a
limited rotation in the absence of nucleotides.

The last feature was a complication. It could be
rationalized, however, in the context of previous work
on ‘proton slip’ in the holo-enzyme, FOF1. If the con-
centration of ADP and ATP is kept below 100 nM,
then the chloroplast enzyme conducts protons in a
decoupled mode (Groth and Junge 1993). This was in-
terpreted as a release of the ‘clutch’ on the F1-portion
(Fritsche and Junge 1996). This interpretation was in
line with the observation of a more open structure of
the (αβ)3-hexagon in the absence of nucleotides than
in their presence (Shirakihara et al. 1997).

We set out to investigate stepping by a single-
molecule approach, polarized confocal microscopy,
again with a probe on subunit γ and with the enzyme
body immobilized. Three orientations were detected
that were sequentially occupied in a stepped fashion
(Häsler et al. 1998) but the data were of poor quality
because of the limited photostability of the dye.

The spectroscopic data proving intersubunit-
rotation in F1 had been available since 1996, and were
presented, and discussed intensively, in several confer-
ences. Enthusiastically greeted by some, they were not
readily accepted by certain top players in photophos-
phorylation – Heinrich Strotmann and Dick McCarty
(see Figure 5) (McCarty and Evron 2000) to name
just two. The unavoidable theoretical background of
our approach might have been one obstacle; a general
dislike of ‘chemistry out – mechanics in,’ another.

A major problem with our data was the difficult
and tedious way in which they were obtained. This
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Figure 7. Model of ATP synthase, based on the work by Paul Boyer
(left), John Walker (right) and of many other contributors.

Figure 8. Three methods aiming at proving the rotation of subunit
γ in F1. Left: by cleavable cross-linkers (Duncan et al. 1995),
middle: by polarized photobleaching and recovery (Sabbert et al.
1996, 1997) and by video-micrography (Noji et al. 1997). Top, left:
Richard Cross; top, right: Masasuke Yoshida.



213

Figure 7

Figure 8
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was a subject of major concern in our group. In or-
der to record functional rotation in, say, 100 ms, one
had to rely on the permanent bleaching of the probe
eosin. While the quantum yield of the triplet, the start-
ing state for bleaching, was high (70%), the yield of
bleaching was low and the signals were small. Aiming
to resolve small differences between polarized absorp-
tion transients, several thousand signals had to be av-
eraged, each resulting from more than 100 samples, all
with careful control of the deliberately non-saturating
laser output energy. In short, the gruesome feeling
of being subject to Cantor’s dilemma (Djerassi 1991)
forced me back into the lab with Benjamin Junge,
my eldest son, lending a hand. In the end, we re-
produced the data of Dirk Sabbert’s original tour-
de-force, without matching fully his signal-to-noise
ratio.

It came as a great relief to the community that a
Japanese team recorded the hydrolysis-driven rotation
of subunit γ directly, by videomicrography, using a
µm-long actin filament as a visible reporter (Noji et al.
1997). The Nobel prize acknowledging the pioneer-
ing contributions of Paul Boyer and John Walker (see
Figure 7) followed in the same year. The laboratories
of Masasuke Yoshida (see Figure 8) and Katsuhiko
Kinosita soon released a series of excellent papers
proving the stepped nature of the rotation (Yasuda
et al. 1998, 2001, 2003; Adachi et al. 2000). Their
experiments were carried out on F1 from the thermo-
philic Bacillus PS3. Siggi Engelbrecht visited them in
Japan, collaborated on the E. coli F1 (Noji et al. 1999),
and imported their published technique to Osnabrück
for studies on an elastic power transmission between
the two motor/generators of the holoenzyme.

ATP synthase: the nanomachine

The ATP synthase is a rather robustly functioning en-
zyme. Although its various models in pro- and eu-
karyotic organisms are the product of separate paths
of evolution over billions of years, chimeric constructs
have been engineered and prove to be functional.
Moreover, the enzyme tolerates rather severe artificial
modifications [reviewed in Junge et al. (2001) and, for
two drastic recent examples, see Cipriano et al. (2002);
Prescott et al. (2003)]. And the enzyme copes with
the symmetry-mismatch between its two motors: CFO,
supposedly with 14 c-subunits (Seelert et al. 2000)
drives CF1, with three αβ-pairs.

To account for these features we have specu-
lated about an elastic power transmission between
the two motors (Junge et al. 1997), and treated
the consequences of such a transmission theoreti-
cally (Cherepanov et al. 1999), as has Oliver Pänke
(Pänke and Rumberg 1999) who joined us from Bernd
Rumberg’s lab to carry this idea further. We extend-
ed the video-micrographic assay to the holoenzyme
by attaching an actin filament to the c-ring of FO by
means of engineered Strep-tags� (Pänke et al. 2000).
The goal was to investigate the mechanical properties
of the enzyme as a ‘nanomachine.’ We aimed at the
torque, as generated by ATP hydrolysis in F1, and de-
livered to its natural recipient, namely the rotor of the
ion motor, FO. Knowing that F1 progresses in three
steps, we expected a smooth, angular progression at
FO if there was an elastic power transmission, and a
stepped one if it was rigid. A typical actin filament,
3 µm long, is visco-elastically too strongly damped
to sense any stepping when moving in water, be-
cause its relaxation time is some 100 ms (Cherepanov
and Junge 2001). When driven by the rotary enzyme,
however, the filament becomes deformed, and by
its curvature it can be used as a spring balance to
calibrate the torque. Dima Cherepanov worked out
the viscoelastic theory (Cherepanov and Junge 2001)
and Oliver Pänke led the experiments (Pänke et al.
2001) to determine the average torque and the angular
torque profile as provided at the output. We found an
average torque of 50 pN nm. This was greater than val-
ues (20–40 pN nm) inferred previously from the rate
of rotation, and based on the debatable assumption
that the filament feels the viscous drag of bulk water
(Yasuda et al. 1998). A filament of length 3 µm and
radius 5 nm, moving at a height of 20 nm, over the
solid support is not only subject to friction by direct
encounter with the support, but, even when moving
in the fluid, it feels a greater viscosity because of
flow-coupling with the adjacent surface. In contrast
to previous claims of ‘100%-efficiency’ (Yasuda et al.
1998; Kinosita et al. 2000; Elston et al. 1998; Wang
and Oster 1998), which related the lower torque to
unrealistically low free energies of ATP hydrolysis
in their experiments, our greater figure of 50 pN nm
(50 pN nm × (2π/3) × NA = 63 kJ mol−1) matched the
phosphate potential in these experiments, 64 kJ mol−1.
The estimated ‘100%-efficiency’ of F1FO is kind of
trivial, because the filament slows the enzyme a 1000-
fold, almost to stalling point where, essentially, it
operates close to thermodynamic equilibrium (Junge
et al. 2001). The efficiency of the enzyme is, of course,
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lower if it free-wheels without external load, being
subject to kinetic control.

The angular profile of the torque at the output
was most interesting. Although F1 is a three-stepper
when running freely, the torque profile under load, and
measured at FO, is rather flat, with a weak periodicity
of three per round (Pänke et al. 2001). Theoretical
considerations reveal that the smoothing can be un-
derstood in terms of an elastic power transmission.
If the two motors work against each other, as under
physiological conditions, the enzyme turnover be-
comes faster as the internal torsional rigidity of the
power transmission becomes smaller. In summary, the
elastic transmission is responsible for the kinetic com-
petence of the enzyme under load, and its robustness to
structural modifications (Cherepanov and Junge 2001;
Junge et al. 2001; Pänke et al. 2001).

Up to this point, the enzyme seems to be described
sufficiently for undergraduate textbooks. What has re-
mained open is the detailed chemistry in the nucleotide
binding pockets (see Senior et al. 2002), the mech-
anical throughput from the swinging lever on the β-
subunits into this pocket, and the details of the proton
motor; in short, the nanoscopic physics of this twin-
motor-enzyme. Recent progress in its description (in
nanoseconds) by molecular dynamics (MD) is encour-
aging. It has remained a major challenge for the future
to bridge the time gaps between MD-simulations over
nanoseconds, protein domain motion in microseconds,
and enzyme turnover in milliseconds. The mechanism
of ATP synthase will remain a major topic of biophys-
ics for the decade to come. There is no other motor
protein which compares with ATP synthase by com-

Figure 9. A 1998 photograph of Govindjee (center) in one of his
favored activities, bringing people together, here Yosepha Shahak,
Tel Aviv, Israel (right) and the author.

plexity of function yet simple construction, and by fair
accessibility to genetical, biochemical, kinetical and
structural analysis.
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