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Abstract Chlorophyll a (Chl a) serves a dual role in

oxygenic photosynthesis: in light harvesting as well as in

converting energy of absorbed photons to chemical energy.

No other Chl is as omnipresent in oxygenic photosynthesis

as is Chl a, and this is particularly true if we include Chl a2,

(=[8-vinyl]-Chl a), which occurs in Prochlorococcus, as a

type of Chl a. One exception to this near universal pattern

is Chl d, which is found in some cyanobacteria that live in

filtered light that is enriched in wavelengths [700 nm.

They trap the long wavelength electronic excitation, and

convert it into chemical energy. In this Viewpoint, we have

traced the possible reasons for the near ubiquity of Chl a

for its use in the primary photochemistry of Photosystem II

(PS II) that leads to water oxidation and of Photosystem I

(PS I) that leads to ferredoxin reduction. Chl a appears to

be unique and irreplaceable, particularly if global scale

oxygenic photosynthesis is considered. Its uniqueness is

determined by its physicochemical properties, but there is

more. Other contributing factors include specially tailored

protein environments, and functional compatibility with

neighboring electron transporting cofactors. Thus, the same

molecule, Chl a in vivo, is capable of generating a radical

cation at ?1 V or higher (in PS II), a radical anion at -1 V

or lower (in PS I), or of being completely redox silent (in

antenna holochromes).
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Abbreviations

Chl Chlorophyll

Pheo Pheophytin

PS Photosystem

RC Reaction center

TMH Transmembrane helix

‘‘Man cannot give a true reason for the green under

his feet Why it should be green rather than red or any

other colour.’’

Sir Walter Raleigh

Introduction

Chlorophylls (Chls) are ubiquitous participants in photo-

synthesis and this prompted Mauzerall (1973) to ask ‘‘Why

Chl?’’ While various Chls function as light-harvesting
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pigments, only one of them, Chl a, depending on its protein

environment, functions either as a light harvester or as a

redox participant in electronic excitation trapping (primary

charge separation) and electron transporting events in the

reaction centers of Photosystems II and I (PS II, PS I) of

oxygenic organisms. Only Chl a (see Section ‘‘Is chloro-

phyll d a match for chlorophyll a everywhere?’’ below for a

discussion on Chl d) is indispensible for oxygenic photo-

synthesis; it is the only member of the Chl family that is

present in all organisms that carry out oxygenic photo-

synthesis, from primitive cyanobacterial cells to sequoia

trees. Depending on their evolutionary ancestry, various

taxa of photosynthetic organisms contain different sets of

light harvesting Chls. Thus, Chl a occurs in red algae and

glaucophytes, Chls a, b, d and [8-vinyl]-Chls a and b in

cyanobacteria, Chls a and b in green algae and higher

plants, and Chl a and c in chromophytic algae (Govindjee

and Satoh 1983; Green and Parson 2003; Larkum et al.

2003; Zapata et al. 2003; Murakami et al. 2004; Papa-

georgiou 2004; Grimm et al. 2006; Scheer 2006). Here, we

do not consider the bacteriochlorophylls that are found in

anoxygenic photosynthetic bacteria.

That a single type of molecule has become so domi-

nating in oxygenic photosynthesis is surprising,

considering the enormous variation in the living world, and

the long time that evolution of photosynthesis has been

going on (Olson and Blankenship 2004). Why Chl then,

and particularly, why Chl a?

Trying to answer this question is important for attempts to

look for life and photosynthesis on far away planets. Earth-

like photosynthesis appears to be unique in our Solar System,

but is it so elsewhere in the space? What we must be looking

for and what can we expect to find there (Kiang et al. 2007a,

b)? We consider here different answers to the question, and

we classify them into three categories (not mutually exclu-

sive): Historical (‘‘accidental,’’ due to how evolution

happened to proceed—Section ‘‘Historical’’); Spectral

(Section ‘‘Spectral’’); and Chemical (Section ‘‘Chemical’’).

Historical

Before photosynthesis arose, there was already electron

transport mediated by metal porphyrins; thus, much of the

biosynthetic pathway for Chl was already in place. Under

certain circumstances light can drive electron transport

between such molecules (Widell and Björn 1976; Qin and

Kostic’ 1994). Once the evolution via porphyrins to chlo-

rins had gone on for a while, new alternatives would be at a

disadvantage in the competition. To be successful, how-

ever, this evolutionary path had to end in Chl a because it is

the only redox-active Chl form in vivo found in oxygenic

organisms so far. And this was achieved quite early in the

course of evolution (Björn and Govindjee 2008). Further,

the molecular machinery for assimilation of carbon dioxide

was in place before the advent of photosynthesis (Björn

and Govindjee 2008).

Spectral

A light-harvesting pigment must absorb in a spectral region

where radiant energy is available, and where quanta are

energetic enough to move electrons uphill from a high

potential electron donor to a low potential electron acceptor

molecule. On the present Earth, and probably when the

Earth was young as well, this means light of 300 to about

1200 nm wavelength. In considering the combination of

photon availability in unfiltered sunlight and the photon

energy content, Björn (1976) suggested1 an optimal loca-

tion for the absorption peak of a light-harvesting pigment

of about 700 nm. Absorption of light at the low frequency

end of the visible spectrum requires a fairly extensive

system of conjugated bonds and this means a fairly large

molecule (see below). Several absorption transitions will

be the consequence.

This is true, indeed, for Chls. In particular, the absorp-

tion spectrum of Chl a in diethyl ether shows four bands on

the red side of the spectrum (Q-region, at 660, 612, 572,

and 519 nm) and another four on the blue side (Soret or B-

region, at 428, 409, 379, and 326 nm; Fig. 1). According to

the four-orbital model of Gouterman (1961), these bands

originate from singlet p–p* transitions between the two

highest occupied molecular orbitals (HOMO) and the two

lowest unoccupied molecular orbitals (LUMO; Weiss et al.

1965; reviewed by Shipman 1982). These transitions are

strong and polarized along the X and Y axes of the

asymmetric porphyrin ring and are assigned as follows:

660 nm Qy(0,0), 612 nm Qy(1,0), 572 nm Qx(0,0),

510 nm Qx(1,0), and 428 nm (Bx(0,0) plus By(0,0). The

absorption bands below 428 nm are attributed to mixed

transitions (Houssier and Sauer 1970; Weiss 1972; re-

viewed by Papageorgiou 2004). See also Gouterman (1978)

1 The calculation of 700 nm was based on, among others, the

following assumptions and approximations: (1) The sunlight spectrum

was approximated as a Planck 6000 K blackbody spectrum, modified

by a factor depending on the solar system geometry. (2) The shape of

the long-wavelength band of the photosynthetic pigment was

approximated by a Gaussian function. (3) The photosynthetic system

was considered to be at 300 K. (4) The maximum chemical potential

that can be extracted from the photons was accepted as described by

Ross and Calvin (1967). (5) A limiting value for the oscillator

strength can be accommodated within a certain volume. (6) The

maximum extractable power (energy per time) is the product of

chemical potential achieved by the photon absorption and the rate of

photon absorption. For details, see Björn (1976); and for basics, see

Knox (1969).
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for details on the relationship between optical spectra and

electronic structure of all porphyrins (including chlorins

and bacteriochlorins).

Blue photons contain more energy than red photons due

to the Planck relation, E = hc/k, where E is the energy of

the photon, h is Planck’s constant, c is the speed of light in

vacuum, and k is the wavelength of light. Excited states

resulting from absorption of blue photons are degraded,

within subpicoseconds, to the level of the red ones before

they are used (Fig. 2). In this process, energy is degraded

intramolecularly, by internal conversion, as heat. In addi-

tion, the ability to absorb only blue light could not have

worked as a selective advantage in the evolutionary

development of the Chl a because all its biosynthetic pre-

cursors absorb blue light strongly and red light weakly

(Larkum 2006). We may ask the question: Why did nature

not choose blue-light absorbing pigments to do photosyn-

thesis? In the 4.5 Ga lifetime of Earth, no other blue, or

green, or red light absorber has challenged the dominance

of Chl a. Chls use only red photons/excitons to drive water-

splitting and ferredoxin-reducing photochemistry, no matter

what other wavelengths of light they absorb. Clearly, only

Chl a absorbs strongly in the red (Mauzerall 1976; for Chl d,

see below). There are two reasons for this strong absorption

(Kee et al. 2007; Fig. 3):

(1) The system of conjugated bonds, representing the

‘‘p-electron box’’ determining the wavelength of

absorption bands, is extended in the Y direction by

the CH2=CH– substituent in the 3 position and the

carbonyl in the 13 position of the closed tetrapyrrole

ring (cf. Björn and Ghiradella 2008).

(2) The asymmetry of the p-electron system in the X and Y

directions makes possible multiple absorption transi-

tions. The porphin nucleus, present in Chls c (c1, c2,

c3), with double bonds in ‘‘the backs’’ of all four

pyrrole rings, has fourfold symmetry. This results in

Fig. 1 Relative absorption (blue line) and fluorescence spectra (red
line) of Chl a in diethyl ether. Spectral band maxima are indicated in

nm and the two spectra are displayed after normalization of the

660 nm absorption and 666 nm fluorescence bands to equal heights.

The millimolar absorptivity (extinction coefficient) of the 428 nm

band is 111.7 mM-1 cm-1. An energy scale in eV, corresponding to

the wavelength scale, is shown at the top. Data obtained from http://

ww.photochemcad.com; figure modified from Papageorgiou (2004)

Fig. 2 A ‘‘Jablonski diagram’’ of the energy levels in a Chl molecule

and the transitions between them. Independently of what kind of light

that is absorbed, the molecule will reach the first excited singlet state

before part of its energy will be used in photosynthesis. Photosyn-

thesis competes with radiationless energy dissipation as heat,

fluorescence emission, and intersystem crossing to the first excited

triplet state. The vertical scale is uncalibrated, since it is different for

different Chl molecules (a, b etc.) and depends on the protein

environment. Energy dissipation for photosynthesis includes energy

transfer to other Chl molecules, which is how Chl in the antenna

proteins contributes to photosynthesis

Fig. 3 A comparison between molecular structures and absorption

spectra (in toluene) of magnesium chlorin (MgC) and Chl a (Chl a).

Note how the addition of the E ring and the side chains increase the

red/blue absorbance ratio (Source: Kee et al. 2007)
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very weak red absorption bands. If the biosynthetic

pathway imitates, in a way, the course of evolution,

then the importance of Chl a must lie in its ability to

absorb red light efficiently (see Granick 1965).

Larkum (2006), on the other hand, points out that strong

absorption in the blue region would be advantageous for

organisms living under the filtering action of water. Stomp

et al. (2007) have eloquently summarized how the filtering

properties of water have modified light, resulting in different

optima in different environments. All these environments

have been exploited by various organisms, with suitable

modifications of the light-harvesting Chls but not of the Chl a

molecules of the reaction centers of PS I and of PS II.

At first glance, the weak absorption of Chl in the green

region could be regarded as a disadvantage. One might think

that an ideal pigment should be black to absorb all available

energy. Some cyanobacteria (e.g., Oscillatoria sp.) do, in

fact, appear almost black, partly because of the phycobili-

proteins they contain, and they do absorb almost all visible

light (Fig. 4). Furthermore, many higher plant leaves are

dark green (almost black) because the absorption of green

light is increased by having many layers of thylakoid

membranes containing both Chl a and Chl b, leading to 95%

absorption even in the green (Fig. 5). So indeed, plants are

effectively black. Thus, the perception of green color is not

an accurate measure of the true optical properties of leaves.

The green ‘‘trough’’ in the absorption spectrum of chloro-

phyll thus does not prevent plants from utilizing green light,

but rather helps to distribute the energy more evenly

throughout the leaf. Various methods have been developed

for measuring the distribution of light within plant leaves

(Vogelmann and Björn 1984; Vogelmann 1993; Vogelmann

and Evans 2002; Seyfried and Fukshansky 1983).

We may raise the question as to why higher plants did not

continue to use phycobilisomes (present in cyanobacteria

and red algae) to capture green light. The answer may lie in

the suggestion that on land there was plenty of light available

and in the interest of conservation of energy, there was no

need to use phycobilisomes. Because of their high nitrogen

content and the high energy cost of nitrogen fixation, phy-

cobilisomes are expensive to produce whenever nitrogen is

limiting. However, plants evolved to have multiple layers of

thylakoids to capture quite a bit of green light (Nishio 2000).

The simultaneous presence of highly stacked thylakoids and

phycobilisomes would also appear to be mutually exclusive,

since the bulky phycobilisomes prevent the close appression

of multiple stacked membranes.

We must recognize the quantum nature of photosynthesis,

i.e., that it uses energy that comes in packets (quanta) of finite

size. The absorption spectrum of Chl does, in fact, drop very

rapidly for photon energies below what is required for

driving photosynthesis. This is the declining ‘red edge’ of the

absorption spectrum; the inverse of absorption spectrum is

transmission spectrum, and, thus, equivalent to the rising red

edge in it. This prominent ‘‘red edge’’ could be one of the

biosignatures people will look for in exoplanet spectra.

In fact, Kiang et al. (2007b) have discussed the co-evo-

lution (and/or retention) of Chl a, absorbing in the red: it

relates to the absorption edge of the oxygen molecule in the

Fig. 4 The cyanobacterium Oscillatoria princeps is almost black,

due to the presence of both Chls and phycobiliproteins. The sample,

shown here, was collected by David Krogmann (Purdue University)

and Mark Schneegurt (Wichita State University) from a road side

pond in Auburn, South Carolina; the hand is that of Krogmann (From

Cyanosite : http://www-cyanosite.bio.purdue.edu; available at http://

www.biologie.uni-hamburg.de/b-online/library/webb/BOT311/Cyano-

bacteria/Cyanobacteria.htm, accessed July 16, 2008)

Fig. 5 Spectral distribution of absorbed, transmitted, and reflected

light from a maize leaf. Redrawn and modified by Hyunshim Yoo and

Govindjee from Chapter 9 in Taiz and Zeiger (2006)
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atmosphere, which matches the transmission red edge of

Chl a in vivo. However, this would be important only after

accumulation of substantial amounts of oxygen, and Chl a

must have been selected before that occurred. Furthermore,

the P680 referred to by Kiang et al. (2007a, b) is the special

cluster of 4 Chl a molecules in PS II (see Dekker and van

Grondelle 2000, and cited literature) while antenna pig-

ments (which have evolved already at the anoxygenic stage)

have, in general, absorption bands at shorter wavelengths.

Finally, even in the present high-oxygen terrestrial atmo-

sphere, oxygen absorbs only a small fraction of the incident

light at 687.5 nm. Thus, light absorption by oxygen may not

have contributed significantly to evolution’s choice of Chl a.

The absorption band of water at 725 nm may have con-

tributed to making absorption by a photosynthetic pigment

above 700 nm less useful.

Accessory antenna pigments can extend the spectral

range. Such pigments have evolved many times, not only in

photosynthetic systems, but also in others. Among others,

they occur in photolyases (Fujihashi et al. 2007), in vision

(Gemperlein et al. 1980; Vogt and Kirschfeld 1983, Douglas

et al. 1999), and in light-driven proton pumping (Lanyi and

Balashov 2008); further, energy transfer between pigments

also takes place in some cases of bioluminescence (Ruby and

Nealson 1977; Ward and Cormier 1976, 1978; Ward et al.

1980). The possibility of extending the spectral range in this

way may have made the spectral properties of chlorophyll

less critical than they would otherwise have been.

Chemical

Chlorophylls in solution

What should a molecule have if it were to act the role of

Chl in photosynthesis? According to Mauzerall (1976):

(i) It should be fairly large (to allow for a large

‘‘p-electron box,’’ allowing absorption of long-wave-

length light).

(ii) It’s p-system should preferably be asymmetric so it

will have a strong absorption band in the red

(in addition to that in the blue, cf. above, and see

Figs. 1 and 3).

(iii) Its lowest excited singlet state should be sufficiently

long-lived (*1 ns) to allow its direct involvement in

redox reactions.

(iv) Its lowest excited state should be separated by a

sufficiently large energy gap from the ground state in

order to make radiationless de-excitation (or non-

photochemical quenching) less probable, and also in

order to be able to deliver enough energy for

photosynthesis.

(v) It should be capable of losing or gaining electrons

photochemically, and thereby providing ‘‘a rich

supply of redox potentials.’’

(vi) In spite of its complexity, it should be a fairly stable

molecule, at least under the influence of a suitable

scaffold, such as protein.

Mauzerall (1976) discussed Chls in solution in general,

and indeed all of them do fulfill these prerequisites but not

exactly to the same extent. For example, according to

Table 1 and compared to the Soret absorption band, the red

band of Chl c molecules is insignificant. On the other hand,

Chl d has the strongest red absorption, but its photonic

energy is significantly lower than that of the next best red

light absorber, Chl a. In the particular case of Chl a (see i,

ii, above), it has strong absorption both in the blue and in

the red, plus several weaker absorption bands in-between

(Fig. 1); (iii) the natural singlet excitation lifetime of Chl a,

that is calculated from its absorption spectrum, is approx-

imately 15 ns, but its mean measured excitation lifetime

in vivo ranges between 0.3 and 0.4 ns (Brody and

Table 1 Main absorption maxima and corresponding photonic energies of chlorophylls in solution

Chlorophyll Solvent Absorption maxima, nm [photonic energy, eV] Band ratio (red/blue)

Blue band Red band

Chl a (i) Diethyl ether 430 [2.888] 662 [1.876] 0.79

[8-Vinyl]-Chl a (ii, iii) Acetone 438 [2.836] 664 [1.870] 0.73

Chl b (i) Acetone 457 [2.718] 646 [1.923] 0.35

[8-Vinyl]-Chl b (ii, iii) Diethyl ether 468 [2.654] 651 [1.909] 0.41

Chl c1 (iv, v) Acetone 446 [2.785] 628 [1.978] 0.01

Chl c2 (iv, v) Acetone 449 [2.766] 629 [1.975] 0.07

Chl c3 (iv, v) Acetone 451 [2.754] 626 [1.984] 0.03

Chl d (vi) Diethyl ether 447 [2.779] 688 [1.805] 1.17

(i) Scheer (2006); (ii) Bazzaz (1981); (iii) Shedbalkar and Rebeiz (1992); (iv) Govindjee and Satoh (1983); (v) Zapata et al. (2003);

(vi) Kobayashi et al. (2007)
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Rabinowitch 1957; Schmuck and Moya 1994; Schilstra

et al. 1999; Morales et al. 2001; Brody 2002). We also note

that this excitation lifetime exceeds, by one order of

magnitude, the time required for charge separation in the

PS II-RC (5–7 ps; Greenfield et al. 1997; Miloslavina et al.

2006; Broess et al. 2008) and in PS I-RC (1–2 ps; Savikhin

et al. 2001; Holzwarth et al. 2005); and (iv) its lowest

excited singlet state (cf. Fig. 2) is *1.8 eV above the

ground state (about the same for all Chls; see Table 1).

Furthermore, (v) all porphyrins are capable of photo-

chemical oxidoreduction in solution if there is an electron

acceptor or donor nearby. However, this is not a desirable

property in vivo, and it should be kept under strict regu-

lation, if photo-oxidative damage is to be avoided. Highly

elaborate systems have evolved to protect antenna Chls

(Adams and Demmig-Adams 2004; Gilmore 2004; Golan

et al. 2004) and reaction center Chls (Amarie et al. 2007;

Kirilovsky 2007; Vass et al. 2007) from the destructive

effect of excess excitation. On the other hand, only few

Chls a-type pigments—and none of the other Chls—take

part in excited state and ground state electron transfers.

And (vi) according to Mauzerall (1976) ‘‘the stability of

porphyrins is legendary,’’ but this of course is not the case

for Chls in solution. In vivo, Chls are more stable because

they are coordinated and hydrogen-bonded to proteins.

Indeed, there are reports of how Chls in vivo, or derivatives

thereof, have persisted over tens of millions of years in

plant fossils (Treibs 1934; Niklas and Giannasi 1977;

Keely 2006). This stability must have provided selective

pressure in the process of evolution and must have helped

in the survival of the system during extreme and fluctuating

environments.

Objections can be raised to some of the above prereq-

uisites. With regard to (iii), see above, we know now that

the only redox reactions in which Chls are involved are

those occurring in the RCs. Although according to

Mauzerall (1976) triplets are ‘‘the source of most solution

photochemistry,’’ they are unnecessary and potentially

dangerous in the RCs where redox reactions are not dif-

fusion-limited.

As noted in this Viewpoint, the great majority of Chls a

in vivo are neither photoactive nor redox active. All Chls

(be it a, b, d or 8-vinyl ones) attach to antenna and reaction

center proteins with phytyl chains, while Chl c uses other

groups. Certainly, it is not phytyl that makes a few Chls

photoactive or redox active in vivo. However, in addition

to serving as a lipophilic anchor in apoproteins, the phytyl

probably helps in maintaining the central Mg2? in the

5-coordinate state, and thus stereochemically affecting

H-bonding interactions. Although most of the properties

are due to the conjugated ring system, phytyl may ulti-

mately influence excited state properties of Chls (Fiedor

et al. 2008).

Obviously, the above-described prerequisites are not

enough. The fact is that there has never been a photosyn-

thetic organism found that contained only Chl b, or c, or d.

In contrast, organisms having only Chl a have existed and

still exist (most cyanobacteria, red algae, and glauco-

phytes). Therefore, the question what does Chl a have that

other Chls do not, still remains unanswered.

Chlorophylls in the environment of thylakoid

membrane proteins

To advance our understanding of the answer to our ques-

tion ‘‘Why Chl a?’’ we must recognize that Chls associate

with particular proteins specifically and stoichiometrically

and that these associations and the immediate protein

environment critically modify their properties. The great

majority of Chls a, and all Chls b and c exist in the light

harvesting Chl-protein complexes of the peripheral anten-

nae (Lhc, Pcb) and of the core antennae (CP43, CP47;

CP43’) (Bibby et al. 2003; Green and Parson 2003; Liu

et al. 2004). These antenna Chls do not eject an electron

when they are electronically excited, neither does Chl a in

solution. Only 4 Chls a (or, including the pheophytins a,

Pheo a, 6 Chl a-type pigments) in PS II RC (Dekker and

van Grondelle 2000; Ferreira et al. 2004; Loll et al. 2005;

Barber 2008; see Fig. 6, left) and 5 Chls a and 1 13-C2

epimer of Chl a (Chl a0) in PS I RC (P700; Jordan et al.

2001; Fromme et al. 2001; Grotjohann and Fromme 2005;

Amunts et al. 2007; see Fig. 6, right) do somehow coop-

erate in moving electrons from electronically excited states

to an electron acceptor strategically placed near it; thus,

electrons are transported to the ground state of the acceptor

molecule and, in this way, stabilized ground state cation–

anion radical pairs are produced. We may add the possi-

bility that one of the major tasks of a protein may be to

exclude or position functionally compatible electron

donors or acceptors, depending upon whether the complex

will act as an antenna or a reaction center. If one decides to

count the electron acceptor Pheo a, the number of redox-

active chromophores in PS II RC would simply increase by

one, but not the number of Chls a.

In both RCs, the primary electron donor is thought not to

be a special pair Chl a (i.e., PD1/PD2 in PS II and PA/PB in

PS I) but an accessory Chls a (ChlD1, ChlD2 in PS II RC

and Chl AA, Chl AB in PS I RC) that are located closer to

the respective primary electron acceptor (Pheo a, and A0A,

A0B; Holzwarth et al. 2006a, b). However, the stabilized

Chl a cation radicals are located on the special pairs of PS

II (PD1/PD2 in P680) and PS I (PA/PB in P700). Actually, in

the PS II RC only 2 Chls a (ChlD1 and PD1) and 1 PheoD1 a,

all attached to protein, D1 can reduce the plastoquinone

acceptor QA(D2) to QA
- (D2) (active branch). The 6 Chls a

of the PS I RC are also arranged in two electron

90 Photosynth Res (2009) 99:85–98
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transporting branches on the core proteins A and B but in

this case both branches are active although unequally (for

literature, see reviews in the books edited by Wydrzynski

and Satoh (2005), and by Golbeck (2006) for PS II, and PS I,

respectively).

Of the several hundreds of chlorins a (i.e., Chls and

Pheos) that are present in the photosynthetic units of

oxygenic organisms, only 4 Chls a and 2 Pheos a per PS II

RC monomer and 6 Chls a per PS I RC monomer are

actually redox active. Recent evidence indicates that even

this six-plus-six chlorin a minimum can be further pared

down by replacing Chls a with Chls d, though perhaps the

PD1 Chl a of the PS II RC is irreplaceable (vide infra).

There is also one Chl a in the Cyt b6f complex, which is

involved neither in light harvesting nor in transporting

electrons (reviewed by Cramer et al. 2005).

If only 10, or fewer, redox-active Chls a in PS II and in

PS I do really make the difference, then it is quite

intriguing to speculate how this came about, or how dif-

ferent protein environments tune their properties

differently from, let us say, those of the antenna Chls a.

Chls bind to proteins in at least three ways: (1) by forming

coordinate covalent (or semi-polar) bonds with their central

Mg atom (the electron acceptor) and with unshared elec-

tron pairs donated by N, O, and S atoms (the donor) of

amino acid side chains, peptide backbones and water

molecules; (2) by forming H-bonds with their keto and

ester carbonyl oxygens as acceptors and –OH, –SH, and

–NH groups of amino-acid side chains as donors; and (3)

by binding to the phytyl chain. Probably there is at least

one more component interacting with the p-electrons of the

macrocycle. These various kinds of ligands plus the dif-

ferences in the electron shielding of the central Mg, due to

the presence of different electron donating (alkyls) and

electron withdrawing (formyl) peripheral substituents,

afford a wide range of possibilities for selective Chl

binding. Our knowledge is only fragmentary, although

elegant laboratory demonstrations do exist in the literature

(Rau et al. 2001; Chen et al. 2005; Chen and Cai 2007;

see also Hoober and Argyroudi-Akoyunoglou 2004, and

Hoober et al. 2007 for reviews). There is no easy way to

know why the different RC Chls have totally different

properties. Although the dominant force is H-bonding, the

overall electronic milieu must have the greatest contribu-

tion (see Table 2 for differences).

In the protein environment of the PS II reaction center

(Fig. 6, left), the redox-active Chls a PD1, PD2, ChlD1, and

ChlD2 are all excitonically coupled and share, at room

temperature, the energy of a 680 nm photon (see review by

Dekker and van Grondelle 2000) with which they generate

stable oxidant PD1
?• (Em(PD1

?•/PD1) *1.1–1.3 V; see

Rappaport et al. 2002; Grabolle and Dau 2005; Ishikita

Fig. 6 Structures of the photosynthetic reaction centers, as viewed

from the stromal side of the thylakoid membrane and parallel to the

membrane normal. Carbon-to-carbon bonds are colored green in Chls

a, gray in non-polar amino acids, cyan in polar amino acids, and blue

in positively charged amino acids. O, N, and S atoms are shown in

red, blue, and yellow. Left, detail of PS II RC. The polypeptide

backbones of proteins D1 and D2 are represented as yellow and

orange ribbons, the two special pair Chls a are identified as PD1 and

PD2, and the two accessory Chls a as ChlD1 and ChlD2. The central Mg

atom of PD1 forms a covalent coordinate bond with His-198(D1), and

of PD2 with His-197(D2). In addition, PD2 has a possible interaction

with D1-Ser 282. Further, ChlD1 (the primary electron donor) has an

environment very different from that of PD1 and PD2, and ChlD2 (see

Table 2). Right, detail of the PS I RC. The polypeptide backbones of

proteins A and B are represented as yellow and orange ribbons, the

special pair PA and PB are Chl a0 (13C2-epimer) and Chl a,

respectively, the two accessory Chls a are identified as AA and AB and

the two stable Chl a anions as A0A and A0B. The central Mg atoms of

PA and PB form coordinate covalent bonds with His residues, A-His

680 and B-His660, respectively. In addition, there is the possibility of

H-bond interaction of PA with A-Tyr735, and of PB with B-Tyr 727.

ChlAA and ChlAB coordinate with water molecules, which are further

hydrogen-bonded to A-Asn-591and B-Asn604, and of A0A and A0B

Chls a with A-Met-668 and B-Met-668; after Grotjohann and

Fromme (2005). Structural water molecules are shown as red spheres.

In all cases, RC Chls have, within van der Waals distances, different

sets of hydrophobic amino acids, with different polarity (see Table 2).

The figure shown here is courtesy of Jan Kern; it was made by using

PyMol and is based on pdb coordinates of 2 AXT file (Loll et al.

2005) for PS II, and of 1JBO file (Jordan et al. 2001) for PS I
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et al. 2005) and reductant Pheo a- (Em (Pheo a-/Pheo a)

-0.60 to -0.65 V; Klimov et al. 1979; Rutherford et al.

1981). Furthermore, these redox-active chlorins a exist at

short distances from other cofactors, such as to TyrZ and

TyrD (*13.5 Å, center-to-center) and to QA(D2)

(*13.1 Å center-to-center; Ferreira et al. 2004; Loll et al.

2005). Edge-to-edge distances, which are more relevant for

intermolecular electron exchanges, are of course shorter. It

should be noted that the widest difference of the above

redox potentials (*1.3 - (-0.65) = 1.95 V) exceeds the

energy of the 680 nm photon (1.826 eV); therefore, the

narrower difference (*1.1 - (-0.60) = *1.70 V) seems

more reasonable. For uncertainties in the estimation of

redox potentials, see Ishikita et al. (2005) and Rappaport

and Diner (2007).

In the protein environment of the PS I reaction center

(Fig. 6, right), the 6 redox-active Chls a (and other electron

transporting cofactors) are linked to the the 5 central

transmembrane helices (TMH; RC domain) of the core

proteins A and B, while antenna Chls a are linked to the

remaining 6 TMH (antenna domain) of these 11-TMH

proteins. The similarities of the A, B proteins of PS I to the

5 TMH (D1, D2) and the 6 TMH (CP43, CP47) proteins of

the PS II core prompted hypotheses of a linear evolutionary

relation (branched from a common precursor) between the

two photosystems, either by gene fission (PS I first) or by

gene fusion (PS II first; see Grotjohann and Fromme (2005)

and cited literature). Details of the cofactor arrangement in

PS I, however, is remarkably dissimilar to that in PS II.

Thus, in contrast to PS II in which P680 comprises a

special pair of 2 identical Chl a molecules and only 1 of the

2 electron transporting branches that originate from it is

active (that on D1), the special pair of PS I (P700) is

heterodimeric (Chl a0/Chl a) and both electron transporting

branches originating from it are active, although to dif-

ferent degrees. The asymmetry of P700 and the presence of

the epimeric Chl a0 are considered to be essential for the

function of PS I, which uses the energy of a 700 nm photon

(1.774 eV) to produce a weak oxidant (P700?; Em =

0.423 V in Thermosynechococcus elongatus, 0.468 V in

spinach; Nakamura et al. 2005) and a very strongly reducing

Chl a anions (A0A
-, A0B

-; Em = -1.05 V; Kobayashi

et al. 2007). Here the energy fraction stored as redox

potential difference after the primary charge separation is

1.43–1.47 eV, about 83–86% of the photonic energy.

For the chlorophylls and bacteriochlorophylls, Haehnel

et al. (2009) point out that it is the coordinatively unsatu-

rated central Mg that has the best established interaction

with the proteins. Mg has an extra ligand, and in 50% of

natural binding sites, the amino acid is histidine; in other

Table 2 Amino acid environment of reaction center chlorophylls of PS II (PD1; PD2; ChlD1;ChlD2) and of PS I (PA; PB; Ao (A): ChlA (A branch);

Ao (B): ChlA (B branch))a

RC Chls Amino acids within H-bonding

distance, ligands

Amino acids within van der Waals distance

PS II PD1 D1-His198 D1-Met183; D1-Phe186; D1-Gln187; D1-Leu193;

D1-Gly201; D1-Val205; D2-Leu205, and some more

PS II PD2 D1-His197 D2-Val156; D2-Gln186; D2-Trp191;

D1-Ser282 D2-Thr192; D2-Gly200; D1-Phe206, and some more

PS II ChlD1 – D1-Val157; D1-Phe158; D1-Met172;

D1-Thr179; D1-Phe182; D1-Met183;D2-Met 198, and some more

PS II ChlD2 – D1-Gln199; D1-Val202; D2-Phe157;D2-Phe181; D2-Leu182,

and some more

PS I PA A-His680 A-Phe611; A-Trp683; A-Thr742; A-Thr743;

A-Phe746, and some moreA-Tyr603(?)

A-Tyr735 (?)

PS I PB B-His660 A-Leu654; B-Phe656; B-Trp663; B-Tyr723

B-Tyr727

PS I Chl AA (Chl A on

A branch;Nr 1012)

– A-Leu 677; A-Ala684; B-Leu531;

B-Trp588; B-Asn591; B-Trp663

PS I Chl AB (ChlA on

B branch;Nr. 1022)

– A-Phe456; A-Phe544; A-Trp601; A-Trp683; B-His660; B-Ala664

PS I A0A (Ao on A

branch; Nr. 1013)

A-Met 688; A-Tyr 696; A-Phe681; A-Ala 684; A-Trp697;

B-Ser429; B-Trp 588 B-Ser426; B-Phe587

PS I A0B (Ao on B

branch; Nr 1023)

B-Ala664; B-Threo665; B-Trp677;

A-Asp446; A-Val548; A-Ile 552; A-Phe600B-Met668

a Data provided by Jan Kern, using pdb file 2AXT (Loll et al. 2005) and 1 JBO (Jordan et al. 2001)
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cases, the binding may be to glutamine, asparagine, rarely

cysteine, as well as the backbone C=O groups, N-terminal

formyl groups, and also water. This information becomes

important when we begin to build artificial pigment-protein

complexes in order to further understand the role played by

the protein environment in determining the chemistry of

the native chlorophylls.

Is chlorophyll d a match for chlorophyll a everywhere?

Judging only from the energy of the photons absorbed

(approx. 1.8–2.0 eV; see Table 1) and from the energy

stored as redox potential difference after the primary charge

separation (roughly 1.2 eV), there is no reason why another

Chl could not replace Chl a in the RC environments.

However, we do not know if this alternate Chl could be

tuned by the protein environment to produce an oxidant

above *1 V in one case (PS II RC), a reductant below

*-1 V in another (PS I RC), and be redox silent in a third

(antenna holochromes). In the case of Acaryochloris-like

cyanobacteria Chls d are known to replace Chls a both in the

antenna and the reaction center proteins. These cyanobac-

teria occur in habitats in which far red light (k[ 700 nm)

predominates and they are either free-living organisms

(Miller et al. 2005) or they are attached on red, green, or

brown macroalgae (Murakami et al. 2004; Ohkubo et al.

2006). Recently, Chl d has been detected chemically, always

together with Chl a, in the sediments of various oceanic and

lake environments that span a range of salinities and

temperatures. Thus, the habitats of Chl d- containing

organisms may be more extensive and widespread than it

was supposed hitherto (Kashiyama et al. 2008).

The most extensively and intensively studied case of a

Chl d-containing cyanobacterium is that of Acaryochloris

marina (Swingley et al. 2008). Its PS I complex contains per

each PS I RC monomer 97 Chls d, 1 Chl d0, and 2 Chls a

(Tomo et al. 2008a). Two Chls a are assigned to the primary

electron acceptors A0A and A0B; Itoh et al. 2007), the spe-

cial pair is a Chl d/Chl d0 heterodimer (named P740 by Hu

et al. 1998) and the 2 accessory Chls AA and AB are again

Chls d (Itoh et al. 2007). Primary photochemical charge

separation occurs between AA and A0A in one branch and

AB and A0B in the other and yields stable low potential

anions A0
- (Em *-1.02 V; Brettel 1997). On the other

hand, the complex that consists of PS II RC plus the core

antenna proteins CP430, CP47 in A. marina contains 55 Chls d,

3 Chls a, and 2 Pheos a (Tomo et al. 2008b).

There is consensus that in the Acaryochloris PS II RC,

the primary charge separation occurs between accessory

Chl d (D1) as donor and Pheo a (D1) as acceptor (Itoh et al.

2007; Schlodder et al. 2007; Tomo et al. 2008b), but there

is disagreement whether the special pair PD1/PD2 is a Chl

d(D1)/Chl d(D2) homodimer (Itoh et al. 2007; Tomo et al.

2008b) or a Chl a(D1)/Chl d(D2) heterodimer (Schlodder

et al. 2007; Renger and Schlodder 2008). Interpretations

are based on flash induced difference absorption spectra,

light–dark difference absorption spectra, FTIR difference

spectra, and pigment stoichiometries. The resolution of this

dilemma is crucial for the absolute exclusiveness concept

of Chl a. In any case, it appears that in A. marina, Chl d

does not totally substitute for all reaction center chlorins a.

Exempted are seven chlorins a: The two A0, when reduced

by PS I, serve as strong reductants in electron transporting

branches of PS I; a third that possibly serves as strong

oxidant in PS II RC; two Chls a, which have not yet been

assigned, although they have been recognized as redox-

active species in the PS II RC-core antenna complex

(Tomo et al. 2008b); and two Pheos a.

In general, no replacement of Chls a in RCs by a dif-

ferent Chl, either in nature or in the laboratory, has been

reported up to now. In one remarkable experiment, Sato

et al. (2001) transformed cyanobacterium Synechocystis

that synthesizes only Chl a with the chlorophyllide a

oxygenase gene of Arabidopsis thaliana, a higher plant that

synthesizes both Chl a and Chl b. The transformant did

synthesize Chl b which, however, replaced Chls a only in

the core antenna complexes of PS II and PS I. In contrast,

Vavilin et al. (2003) succeeded in replacing Chl a with Chl b

in the PS II RC of a Synechocystis mutant that was first

deprived of the PS I complex, then transformed with the

lhcb gene that codes for the peripheral light harvesting

complexes (LHC) of eukaryotic plants, and lastly with the

chlorophyllide a oxygenase gene. Although the Chl b of PS

II RC Chl b was reported to be redox active, there was no

evidence that it could photogenerate a high-potential cat-

ion, analogous to PD1
?• of Chl a. As far as we know, this

remarkable report is the first proof that Chl b can be made

redox active in vivo.

The answer, therefore, to the question in the subsection

heading is that Chl d is indeed a good match for Chl a, but

not everywhere. Chl a, in general, appears unique and

irreplaceable (at least on our planet), particularly if global

scale photosynthesis is considered. In all likelihood, this is

due to its physicochemical properties as Mauzerall (1973,

1976) had suggested, which however are greatly modified

by its various ligations to protein (via axial ligands and H-

bonding) and by the immediate proximity of functionally

compatible redox cofactors and p-electron systems (qui-

nones, aromatic amino acids, etc.). Upon extraction with

diethyl ether, or with another solvent, all Chl a molecules

become indistinguishable, regardless of their origin (but

Chl a0 and other Chls of course maintain their chemical

characteristics). In antenna holochromes, excited Chls a do

not eject electrons, probably because of the lack of a

compatible nearby redox cofactor. In contrast, the prox-

imity of high potential redox cofactors (TyrZ, CaMn4) must
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be conducive to the formation of the high redox potential

Chl a? or P(D1)? cation in PS II RC and the proximity of a

low potential redox cofactors (A1, FX) conducive to the

formation of the two low potential Chl a anions Chl a- (A0

(A)- and A0 (B)-) in PS I RC.

Evolution of PS II RC and of PS I RC

Protein structure similarities between type II (BII-R) and

type I (BI-R) bacterial reaction centers and the plant

reaction centers PS II and PS I suggest that all have

descended from a common ancestor (Rutherford and

Faller 2002; Ben Shem et al. 2004; Olson and Blanken-

ship 2004; Raymond and Blankenship 2004; Sadekar

et al. 2006). This ancestor was more bacteria-like because

its light transducer chromophores formed homodimers and

not heterodimers like those of Chls a and d in the PS

I-RCs (and perhaps in the PS II-RCs) of plants and of

the cyanobacterium A. marina. According to Rutherford

and Faller (2002) heterodimeric transducers handle

incoming photons more efficiently and more safely and so

they afford an evolutionary advantage. In addition, the

change from BChls to Chls a would enable (a) the Type

II-RCs to achieve oxidation potentials of *1 V, or

higher, in excess of what is needed to oxidize water at

slightly acidic pH (0.89 V/e-; Pecoraro and Hsieh 2008);

and (b) the Type I-RCs to achieve reduction potentials

of *-1 V, or lower, in excess of what is needed to

reduce low potential nonheme iron sulfur centers (e.g., FX

at -0.73 V; Demeter and Ke 1977).

We can imagine (after Allen and Martin 2007) an

ancestral symbiont of such Type II and Type I bacteria (a

protocyanobacterium) capable of switching between the

one or the other one-step photoreaction, and in which the

loss of the switching ability would be lethal (because of

accumulated oxidants) unless it occured simultaneously

with the incorporation of the charge accumulator, the

Mn4Ca cluster, in its PS II-RC. This would enable the

biphotonically powered electron transport to be coupled on

one side to water as electron donor and on the other to

slowly autoxidizable low potential electron acceptors, such

as pyridine nucleotides (Asada 2000).

Concluding remarks

Why is, then, Chl a so unique, at least on the Earth? Here,

we summarize our views.

First, its omnipresence must derive from the fact that it

appeared ahead of Chl b on the Earth. Also, the absorption

spectrum of Chl b is less suitable when not combined with

that of Chl a. Chl c may have preceded Chl a, but it was

less suitable for oxygenic photosynthesis due to its weak

absorption in the red region of the spectrum (Table 1; see

Larkum 2006 for discussion of the evolution of Chls).

Second, neither in vivo nor in vitro the 6 Chls a of the

PS I RC and the 6 Chls a of PS II RC were ever replaced

completely by another Chl, in spite of the long ancestries

and the great varieties of photosynthetic organisms. Even

in the exceptional case of the Acaryochloris-like cyano-

bacteria, the primary stable low potential anion in RC I is

formed either on acceptor A0A or acceptor A0B, both Chls

a, while most probably (but not yet certainly) the high

potential cation in RC II PC is formed on the PD1 Chl a (see

Section ‘‘Is chlorophyll d a match for chlorophyll a

everywhere?’’). Indeed, RC Chls a can be replaced partly

by redox-active Chls d, but the Chl d-containing organisms

were probably never a challenge to the dominance of the

Chl a-containing organisms.

Third, excited Chls a become redox active as long as

compatible redox-active cofactors exist at short distances

from them. This is the case in the protein environments of

PS I RC and PS II RC, but not in the protein environments

of the core and peripheral antenna complexes.

We conclude that the uniqueness of Chl a stands

unchallenged in our Earth. In the wider space, which

encompasses the recently discovered exoplanets, and as far

as carbon-based life is concerned, still Chl a can be either

unique, or one of the very rare solutions that are chemically

and energetically feasible.
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