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Abstract 

One of the fundamental discoveries of W. Arnold was the detection of thermally stimulated light emission from 
preilluminated photosynthetic material (Arnold and Sherwood (1957) Proc Natl Acad Sci USA 43:105-114). This 
phenomenon, called thermoluminescence (TL), is characteristic of a wide range of materials (semiconductors, 
minerals, inorganic and organic crystals, and complex biological systems such as the photosynthetic apparatus) 
which share the common ability of storing radiant energy in thermally stabilized trap states. 

The original discovery of TL in dried chloroplasts later proved to be a phenomenon common to all photo- 
synthetic organisms: photosynthetic bacteria, cyanobacteria, algae and higher plants. Following the pioneering 
work of Arnold, considerable effort has been devoted to identification and characterization of photosynthetic TL 
components. This work has firmly established the participation of various redox states of the water-oxidizing 
complex and the quinone electron acceptors of Photosystem II in the generation of photosynthetic glow curves. 
Since TL characteristics are very sensitive to subtle changes in redox properties of the involved electron transport 
components, the TL method has become a powerful tool in probing a wide range of PS II redox reactions. In this 
paper, we will review the impact of Arnold's work in initiating and promoting TL studies in photosynthesis and 
will cover the most important developments of this field of research until the present day. 

Abbreviations: Chl-chlorophyll;  DL-delayed luminescence; PS-photosystem; T L -  thermoluminescence 

Introduction 

TL is a well known phenomenon in solid states, which 
can be described as emission of light at characteristic 
temperatures from samples which had been exposed 
to electromagnetic or particle radiation prior to their 
warming up in the dark (Chen and Kirsh 1981). A 
common feature of all TL phenomena is the storage of 
radiant energy in metastable trap states which can be 
released via thermally stimulated radiative detrapping. 
The energetic depth of the traps determines the char- 
acteristic temperatures where the peak of TL emission 
is observed. As a rule of thumb, the higher the peak 
temperature of a TL band the deeper the energetic sta- 
bility of the related trap (provided that the experimental 

conditions, especially the heating rate, are the same). 
The temperature domain where TL can be observed is 
rather wide, starting from -250 °C in photosynthetic 
pigment assemblies and solutions, through the -50 to 
+50 °C region where the most important photosynthet- 
ic TL components appear, up to several hundred °C in 
minerals and other solid states. 

The basic idea that part of the absorbed light ener- 
gy is stored in the photosynthetic apparatus in long 
lived and remarkably stable trap states has already 
been derived from the earlier observation of delayed 
luminescence from chloroplasts by Strehler and Arnold 
(1951). 'So to try to make glow curves from chloro- 
plasts was obvious' (Arnold 1991). The idea was not 
only obvious, but also successful, which led to the dis- 
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covery of photosynthetic TL (Arnold and Sherwood 
1957). In the same year, Tollin and Calvin (1957) also 
reported TL from dried chloroplasts. Later, Arnold 
(1966) showed the presence of TL in intact cells of the 
green alga Chlorella. These early observations were 
followed by a large number of studies which have been 
covered by extensive reviews (Inoue and Shibata 1982; 
Inoue 1983; Sane and Rutherford 1986; Horv~th 1986; 
Demeter and Govindjee 1989; Vass and Inoue 1992; 
Inoue 1996). 

The main characteristics and origin of 
photosynthetic TL bands 

Photosynthetic glow curves contain several 
components 

In their early DL experiments, Arnold's group 
observed that the decay of DL intensity, when depict- 
ed in a double logarithm plot versus time, shows small 
waves which indicated that there are more than one 
energy storage states in the photosynthetic appara- 
tus (Arnold and Azzi 1971; Arnold 1991). This idea 
was evident from the glow curve measurements show- 
ing several peaks (Arnold and Sherwood 1957, 1959; 
Arnold 1966). Later studies have fully confirmed the 
existence of multiple, energy storage states, and iden- 
tified at least 10 different TL components from photo- 
synthetic material (see below, Table 1). 

The main mechanism of photosynthetic TL is 
thermally stimulated radiative charge recombination 

The initial idea emerging from the discovery of TL and 
DL was that the photosynthetic apparatus behaves like 
semiconductors (Arnold and Sherwood 1957, 1959; 
Tollin and Calvin 1957). This idea was developed 
into an electron-hole picture of photosynthesis (Arnold 
1965). In this picture a bound electron (to be used in 
the Calvin cycle) and a free hole is formed in reaction 
center A (PS I) as well as a bound hole (to be used in 
water oxidation) and a free electron is formed in reac- 
tion center B (PS II). According to this hypothesis of 
Arnold the recombination of the free hole (from PS I) 
and of the free electron (from PS II) would have been 
the mechanism for the production of delayed light and 
TL (Arnold 1966). The idea of free moving electrons 
and holes in a solid-state like photosynthetic appara- 
tus has not been fully supported by later experiments. 
Arnold and Azzi (1968) modified this model by postu- 

lating that the positive and negative charge traps reside 
within PS II. The main mechanism of TL emission has 
indeed been proven to be thermally induced radiative 
charge recombination from similar charge traps of PS 
II. 

TL and DL are closely related phenomena 

The close relationship of photosynthetic DL (see 
Lavorel 1975) and TL emission was recognized in the 
early experiments based on the analogy with semi- 
conductors that had actually led to the discovery of 
TL (Arnold and Sherwood 1957; Tollin and Calvin 
1957). Following the initial work of Arnold, the rela- 
tionship of TL and DL received general support (Shu- 
valov and Litvin 1969; Malkin 1977; Rutherford et al. 
1984; Hideg and Demeter 1985). This correlation was 
also utilized in the so called temperature jump exper- 
iments where the temperature of the preilluminated 
samples was suddenly raised thereby inducing delayed 
light emission (Mar and Govindjee 1971; Jursinic and 
Govindjee 1972; Malkin and Hardt 1973). 

It is also of note that the correspondence of DL and 
TL is not one-to-one. Each TL component which arises 
from thermally stimulated energy release has a relat- 
ed DL component. However, DL emission may arise 
from temperature independent processes, e.g. recombi- 
nation via electron tunnelling, which have no TL coun- 
terpart. Such DL components have also been observed 
by Arnold (1977). Further details on photosynthetic 
DL can be found in comprehensive reviews (Lavorel 
1968, 1975; Fleishman and Mayne 1973; Malkin 1977; 
Amesz and van Gorkom 1978; Govindjee and Jursinic 
1979; Jursinic 1986). 

The simulation and analysis of photosynthetic glow 
curves can be based on the generalization of simple 
TL models of solid states 

Despite the non complete correspondence of the pho- 
tosynthetic apparatus to solid states in terms of the 
electronic band structure of semiconductors, the basic 
features of photosynthetic TL can be described in the 
framework of the simple model that has been devel- 
oped by Randall and Wilkins (1945) to explain TL 
from solid states. The Randall - Wilkins model was 
used to calculate activation energies without modifi- 
cation (Arnold and Sherwood 1959; Arnold and Azzi 
1968; Lurie and Bertsch 1974b; Tatake et al. 1981) 
and was later generalized for biological systems (Vass 
et al. 1981; deVault et al. 1983). 



Table 1. The peak temperature and origin of photosynthetic TL bands 

TL component Peak temperature (°C) Origin/charge pair 

Low temperature bands I -250, -220, -200 Energy storage 
in aggregated Chls ! 

Z-band 2 ~ -  160 Chl + (?)Chl - ( ?)3 
Zv-band 4 Variable (-80 to -30) P68!)+(ChI+ ?)QA -5 
A-band 6 ~-15 S3QA -7 
AT-band 8 ~ -  15 His + QA- 9 
Q-band 1° ~+5 S2QA- I I 
Bt-band 12 ,-,+30 to +40 S2QB - 13 
B2-band 12 ,~+30 S3QB - 13 
C-band 14 ,,~+50 TyrD+QA - 15 
High temperature bands 16 ~+50 to +70 Oxidative 

chemiluminescence 17 

The references given as superscripts in the first column refer to the observation 
of the components, whereas the references indicated as superscripts in the third 
column refer to the interpretation of their origin, t(Noguchi etal. 1992), 2(Arnold 
and Azzi 1968; Shuvalov and Litvin 1969), 3(Sonoike et al. 1991), 4(Ichikawa et 
al. 1975; Desai et al. 1977), 5(Vass et al. 1989; Chapman et al. 1991), 6(Rubin and 
Venediktov 1969; Desai et al. 1975; Inoue 1981), 7(Demeter et al. 1985a; Koike et 
al. 1986), 8(Inoue et al. 1977; R6zsa and Demeter 1982), 9(Ono and Inoue 1991; 
Kramer et al. 1994), l°(Rubin and Venediktov 1969; Lurie and Bertsch 1974a), 
l l (Rutherford et al. 1982. If DCMU is added after the flash excitation, the S3Q A 
recombination also results in the Q band, Demeter et al. 1982), 12(Arnold and 
Azzi 1968; Rubin and Venediktov 1969; Lurie and Bertsch 1974a; Inoue 1981), 
13(Rutherford etal. 1982; Inoue 1983; Demeter and Vass 1984). 14(Rubin and 
Venediktov 1969; Desai et al. 1975), 15(Demeter et al. 1993; Johnson et al. 1994), 
16(Sane etal. 1977; R6zsa et al. 1989; Hideg and Vass 1992), 17(Vass et al. 1989; 
Hideg and Vass 1993). 
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The present view of photosynthetic TL from 
charge recombination in PS II is summarized in Fig- 
ure 1. Light-induced charge separation in the PS II 
reaction center produces the singlet radical pair of 

l[P680+Pheo-]. (Details of electron transport in PS 
II are reviewed by Andersson and Styring 1991 and 
Debus 1992.) This step is followed by sequential stabi- 
lization of the separated charges forming a pair of oxi- 
dized donor (D +) and reduced acceptor (A- ) .  During 
this process part of the free energy increase, induced 
by light absorption, is lost and stabilizes the separated 
charge pair against recombination. 

The recombination of the D+A - pair proceeds 
through intermediate charge stabilization states via a 
series of equilibrium reactions (deVault et al. 1983; 
deVault and Govindjee 1990) until the P6s0+Ph - rad- 
ical pair is formed. The recombination of the radical 
pair results in the formation of singlet excited P680". 
Light emission from P680" or from the coupled anten- 
na system leads to the appearance of delayed light. As 
a simple approximation, the multistep recombination 
can be treated as a single step process using the first 

order kinetic equation of the Randall-Wilkins model. 
For the intensity of thermoluminescence, 

dn cnk(T)  
I T L ( T )  ---- - -¢~-~ - -  

(T: temperature, c: proportionality factor, n: concen- 
tration of trapped charges, /3: heating rate), k(T) is 
the overall rate constant of detrapping which is giv- 
en by k(T) = A exp ( -  EalkBT) (Ea: activation energy, 
kB: Boltzmann's constant, A: preexponential or fre- 
quency factor). The frequency factor can be described 
for a thermally activated biological electron transport 
reaction by the A = (KkBT/h) exp(AS*/ka) expression 
(see Marcus and Sutin 1985) (h: Planck's constant, 
K: transmission coefficient, whose value is 1 if the 
process is adiabatic, but falls between 0 and 1 if the 
process is nonadiabatic, AS*: entropy of activation). 
By using this expression for k(T), an explicit expres- 
sion was derived for the intensity of TL as a function 
of temperature (Vass et al. 1981). The combination 
of this formalism with mult icomponent curve fitting 
enabled the resolution of overlapping TL bands yield- 
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Figure 1. The scheme of TL emission arising from charge recombination in PS II. DI ,...,Di and Al,...,Ai represent various donor and acceptor 
components of PS II, respectively. For the Q band Ai is Q~ and Di is S2, whereas for the B band Ai is QB and Di is $2(S3). AG* is the free 
energy of activation for the radiative charge recombination of the particular charge pair, which approximately equals the free energy loss during 
charge separation and stabilization. The dashed arrow indicates non-radiative charge recombination. The shape and peak position of a TL band 
is determined by the AG* value. A higher peak position indicates a higher AG*, i.e. a deeper stabilization of the charge pair. 

ing the activation parameters Ea; AS* and AG* = (Ea - 
TAS*) of the various trap states (assuming an adiabatic 
recombination process). More recently a graphical and 
numerical analysis method of glow curves was devel- 
oped by Ducruet and Miranda (1992), which is based 
on the numerical solution of the Randall-Wilkins-type 
differential equation. 

It is important to note that the shape and peak tem- 
perature of a TL band is not determined by the activa- 
tion energy (more precisely activation enthalpy) alone. 
Full description of the energetics of charge recombi- 
nation and the related TL component requires the free 
energy of activation (AG*), which reflects the redox 
potential difference of the stabilized charge pair. The 
work of deVault and his coworkers, including contri- 
bution of Arnold (deVault et al. 1983; deVault and 
Govindjee 1990) provided a theoretical background 
for the approximation of the multistep recombination 
with a hypothetical single step. They have shown that 
the free energy of activation, that can be calculated 

from a TL band assuming a single step recombination, 
approximately equals the sum of the free energies of the 
involved equilibrium reactions plus the free energy of 
activation for the final P680+Ph - recombination. How- 
ever, the correct calculation of the entropy contribution 
is hampered not only by the multistep recombination 
process, but also by the extent of adiabacity of the final 
recombination step. In case of a non-adiabatic electron 
transfer the calculated entropy may be underestimat- 
ed. Despite its simplicity and limitations, this approach 
resulted in good predictions for the stabilization free 
energies and room temperature halftimes of different 
charge pairs of PS II (see Vass et al. 1981; Vass and 
Inoue 1992). 

A further development in the description of pho- 
tosynthetic TL curves was the application of so called 
general order kinetics models, instead of the first order 
kinetics Randall-Wilkins model, by Vidyasagar et al. 
(1993). However, the kinetic orders obtained from this 
approach were in the range of 1.1, which are prac- 
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Figure 2. The main photosynthetic thermoluminescence (TL) bands. 
Top graph: A (-15 °C); Q (+5 °C); and C (+50 °C) bands. Bottom 
graph: Zv (-60 °C); and B(BI + B2) (+30 °C) bands. The curves do 
not represent actual measurements; instead, they show the approx- 
imate shape and peak temperature of the most important TL bands 
related to the back reaction of photosynthetic electron transport. See 
Table 1 for the charge storage states involved in the origin of these 
TL bands. 

tically the same as in the first order kinetics of the 
Randall-Wilkins approximation. 

Assignment of thermoluminescence bands to known 
reactions of the photosynthetic apparatus 

The early experiments of Arnold, which were per- 
formed using various combinations of filters and pho- 
tomutipliers with different spectral sensitivity, indicat- 
ed that chlorophyll is involved in absorption and emis- 
sion of the light in the glow curves (Arnold and Sher- 
wood 1956) and in delayed luminescence (Arnold and 
Davidson 1954; Arnold and Thompson 1956). These 
findings provided strong support for the origin of TL 
and DL from the light energy converting photosystems. 
Identification of PS II as the main source of photo- 
synthetic TL was based on experiments with purified 
preparations and mutants which contained either P S I  
or PS II (Arnold and Azzi 1968; Lurie and Bertsch 
1974a; Ichikawa et al. 1975; Sane et al. 1977). These 

experiments verified that the TL components which are 
related to photosynthetic electron transport arise from 
PS II. (The approximate shape and peak temperature 
of these bands is shown in Figure 2.) In contrast, no 
TL component has been confirmed to originate from 
electron transport processes in PSI .  Although TL is 
emitted from PS I, these components seem to originate 
from energy storage in the antenna pigment system 
(Sonoike et al. 1991; Noguchi et al. 1992) or light 
emission by oxidative chemiluminescence (Hideg and 
Vass 1993). Origin of the main TL bands from PS II 
is further supported by high resolution measurements 
of spectral distribution of the emitted light (Sonoike et 
al. 1991). This is also in agreement with the spectral 
distribution of the related DL components (Hideg et al. 
1991). 

Identification of the source of positive charges 
which participate in the TL yielding recombination was 
initiated by the observations that the major TL bands 
were missing in dark-grown gymnosperm leaves, 
angiosperm leaves greened under widely spaced inter- 
mittent illumination or in algae cells grown in Mn- 
deficient medium. When the latent water-oxidizing 
complex in the above systems was photoactivated by 
continuous light or closely-spaced flashes, the TL 
bands were also induced, which indicated that the 
oxidation states of the water-oxidizing complex are 
involved in the generation of TL as positive charge 
reservoirs (Ichikawa et al. 1975; Inoue 1976; Inoue et 
al. 1976). This idea was confirmed by the finding of 
a period-four oscillation in the intensity of the main 
TL component when excited by single turnover flash- 
es (Inoue and Shibata 1977) that could be simulated 
by assuming that charge recombination involved the 
$2 and $3 oxidation states of the water-oxidizing com- 
plex (Rutherford et al. 1982; Inoue 1983; Demeter and 
Vass 1984). 

The first indication for the identity of the negative 
charge reservoir came from the observations of Rubin 
and Venediktov (1969), who found the interconversion 
of two TL components by DCMU, an electron trans- 
port inhibitor that interrupts electron transport between 
the first, QA, and the second, QB, quinone electron 
acceptor of PS II. This observation was extended by 
a number of studies on the effect of various electron 
transport inhibitors acting between QA and QB (Lurie 
and Bertsch 1974a; Ichikawa et al. 1975; Demeter et al. 
1979), which led to identification of the semiquinone 
states of these two quinone electron acceptors (Q~ 
and Q~) as the main, negatively charged participants 
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of TL yielding recombinations (Rutherford et al. 1982; 
Demeter et al. 1982; deVault et al. 1983). 

Besides the TL components which originate from 
charge recombination in PS II, there are further bands 
at low temperatures, between -250 and -160 °C 
(Noguchi et al. 1992); at -160 °C (Arnold and Azzi 
1968; Shuvalov and Litvin 1969), which are related to 
energy storage in the pigment assemblies of PS II and 
PSI  (Sonoike et al. 1991; Noguchi et al. 1992). Other 
components which appear at high temperatures (in the 
+50 to + 80 °C range) most likely arise from oxidative 
chemiluminescence of protein bound pigments (Hideg 
and Vass 1993). 

It has to be noted that some of the originally 
observed TL bands from dried chloroplasts, which 
appear above +90 °C (Arnold and Sherwood 1957, 
Tollin and Calvin 1957), have no clear counterparts 
in intact systems. Even though these high tempera- 
ture components are undoubtedly related to photosyn- 
thetic electron transport their origin is not clear. They 
are probably characteristic only for the dried state of 
chloroplasts. 

TL emission can also be observed from photo- 
synthetic bacteria (see Arnold and Thompson 1956). 
Fleishman (1971) found two TL peaks under aerobic 
conditions, and one peak under anaerobic conditions in 
Rhodopseudomonas viridis. The band was suggested 
to arise from the recombination of P960 +, the oxidized 
primary donor, with a reduced secondary acceptor, 
probably QB (see Sane and Rutherford 1986). Govind- 
jee et al. (1977) also reported TL from photosynthetic 
bacteria, which was shown to arise from magnesium 
protoporphyrin IX, a precursor of bacteriochlorophyll. 

The peak temperature and origin of the main pho- 
tosynthetic TL bands are listed in Table 1. Among the 
components, the assignments of the B and Q bands are 
the most solid, and these bands are used most frequent- 
ly in probing PS II photochemistry. The assigments of 
the other bands are sometimes less clear as indicated 
by question marks in the third column of Table 1. 

Probing the redox reactions of Photosystem H by 
thermoluminescence 

The main redox components that participate in TL 
emission are the reduced forms of the QA and QB 
quinone electron acceptors, the $2 and $3 redox states 
of the water- oxidizing complex and Tyr-D + (Table I). 
Consequently, TL provides a powerful tool to monitor 
the function and activity of the above redox compo- 
nents in various plant materials, which range from 

isolated PS II reaction center complexes through PS 
II enriched membranes and thylakoids to intact leaves 
and whole cells of cyanobacteria or algae. 

One field of application covers the energetic sta- 
bility of the reduced quinone electron acceptors. Since 
various electron transport inhibitors, including agricul- 
turally important herbicides like atrazine and diuron, 
block the QA to QB electron transfer, which result in 
the conversion of the so-called B band into the Q band, 
the TL method can be utilized in studying the mode 
of action of different inhibitors (Demeter et al. 1982; 
Vass and Demeter 1982), testing and identifying new 
chemicals and potential herbicides (Asami et al. 1988; 
Koike et al. 1989). A related area of research is the 
study of resistance against photosynthetic herbicides. 
A number of naturally selected or genetically created 
mutants are known, which exhibit increased resistance 
against various herbicides acting at the QB site. These 
mutants have one or more amino acid changes in the 
QB binding region, which decreases not only herbicide 
binding but in many cases also the binding affinity of 
QB and the energetic stability of Q~. This latter effect 
results in the shift of the B band to lower tempera- 
tures that can be conveniently studied by TL and can 
be used to identify and characterize herbicide resistant 
biotypes (Demeter et al. 1985b; Etienne et al. 1990; 
Gleiter et al. 1990). The sensitivity of the TL method is 
well demonstrated by the fact that a 50-70 mV redox 
potential difference between the QB/Q~and QA/QA 
couples results in about 25-30 °C difference in the 
peak temperature of the corresponding B and Q bands 
(Demeter et al. 1985b). 

The TL method has also been useful in studying 
removal and reconstitution of the QA and QB quinone 
electron acceptors from PS II (Wydrzynski and Inoue 
1987; Chapman et al. 1991). A further application 
of TL concerning acceptor side characteristics is the 
study of protonation events at or around the QB site. 
The upshift of the BI band, arising from the S2Q~ 
recombination, at low pH is assigned to protonation 
induced stabilization of Qff, providing an approach 
to study protonation effects (Rutherford et al. 1985; 
Vass and Inoue 1986). This topic is also related to the 
effect of bicarbonate in modifying electron transport 
between QA and QB as well as the protonation of Q~ 
(Govindjee et al. 1984; Sane et al. 1984; Garab et al. 
1988; Demeter et al. 1995). 

The participation of the $2 and $3 states of the 
water-oxidizing complex in the B band provides an 
easy tool to study S-state turnovers, in particular the 
formation and interconversion of these redox states 



under various conditions which affect the redox cycling 
of the S states. This approach has been applied to study 
the temperature dependence of the particular S-state 
transitions (Inoue and Shibata 1977; Koike and Inoue 
1987); the effect of the so called ADRY agents in desta- 
bilizing the higher S states (Renger and Inoue 1983); 
the effects of water analogs on the S-state turnovers 
(Ono and Inoue 1988; Vass et al. 1990); the role of 
the inorganic cofactors, Mn 2+ (Inoue et al. 1977; Ono 
and Inoue 1985), C1- (Homann et al. 1986; Vass et al. 
1987; Homann 1993) and Ca 2+ (Ono and Inoue 1989), 
in the S-state cycling; the function of the extrinsic 
polypeptides, especially of the 33 kDa protein, associ- 
ated with the water-oxidizing complex (Ono and Inoue 
1985; Vass et al. 1987). 

Due to its applicability to intact systems, TL has 
proven a useful method of probing PS II activity in 
intact leaves (Rutherford et al. 1984; Krieger et al. 
1993; Johnson and Krieger 1994) or even in lichen 
thalli (Sass et al. 1996). 

With the recent development of genetic engineer- 
ing techniques in studying structure-function relation- 
ships of PS II electron transport, various algal and 
cyanobacterial mutants are being constructed in a 
steadily increasing number. TL is especially suitable 
to characterize the function of PS II in such mutants 
since it can be applied in intact cells without the need 
of time consuming and costly isolation procedures (for 
examples see Vass et al. 1992; Burnap et al. 1992; 
Mayes et al. 1993; Gleiter et al. 1994, Miienp~i~i at al. 
1995; Nixon et al. 1995). 

Since PS II is a sensitive site of the photosynthetic 
apparatus which is easily affected by various environ- 
mental factors, TL has proven a very useful method 
in studying the damaging mechanisms of a number of 
environmental effects. These include the mechanism 
of photoinhibition by visible light (Ohad et al. 1988, 
1990; Vass et al. 1988) and ultraviolet radiation (Desai 
1990; Hideg et al. 1993), the mode and site of action of 
heavy metals, like Cu 2+, Co 2÷, Ni 2+, Zn 2+ (Mohanty 
et al. 1989) and acclimation to elevated temperatures 
(Govindjee et al. 1985). 

Concluding remarks 

Studies on the phenomenon of photosynthetic TL dur- 
ing the almost 40 years since its discovery have clar- 
ified the origin of many TL components, and proved 
the usefulness of TL method in the studies of many 
of the redox reactions in PS II. This method has the 
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advantage of a relatively simple instrumentation and 
easy applicability to study almost all redox compo- 
nents of PS II in intact and isolated systems. Since the 
most important TL components appear between 0 and 
+40 °C, harmful effects of nonphysiological tempera- 
tures can be avoided. However, as other methods (see 
Govindjee 1995 for fluorescence), TL also has limita- 
tions and disadvantages. Due to its origin from charge 
recombination, only pairs of donor-acceptor compo- 
nents can be studied with a single TL band. Thus, 
characterization of changes in a particular donor or 
acceptor can be achieved only by comparing two dif- 
ferent TL bands, which have a common acceptor or 
donor component, respectively. Because of the com- 
plexity of the underlying processes it is not always 
straightforward to utilize the full potential of energetic 
information from the measurements. Taking together 
its benefits and limitations, TL is a useful and informa- 
tive method which will keep helping us in exploring 
a number of current and future problems of photosyn- 
thesis research. It is expected that the application of 
TL will extend not only in stress physiology, but also 
in studies on the impact of global climate changes (UV, 
CO2, temperature increase, etc.) on ecosystems. 
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