BBA 40065

BBA Report

Bicarbonate, not CO₂, is the species required for the stimulation of Photosystem II electron transport

Danny J. Blubaugh and Govindjee *

Departments of Plant Biology, and Physiology and Biophysics, University of Illinois, 289 Morrill Hall, 505 South Goodwin, Urbana, 1L 61801 (U.S.A.)

(Received August 12th, 1985)

Key words: Photosystem II: Bicarbonate effect; Photosynthesis; Electron transport; Quinone; (Spinach chloroplast)

Evidence is presented that the bicarbonate ion (HCO_3^-) , not CO_2 , H_2CO_3 or CO_3^{2-} , is the species that stimulates electron transport in Photosystem II from spinach (*Spinacia oleracea*). Advantage was taken of the pH dependence of the ratio of HCO_3^- to CO_2 at equilibrium in order to vary effectively the concentration of one species while holding the other constant. The Hill reaction was stimulated in direct proportion with the equilibrium HCO_3^- concentration, but it was independent of the equilibrium CO_2 concentration. The other two carbonic species, H_2CO_3 and CO_3^{2-} , are also shown to have no direct involvement. It is suggested that HCO_3^- is the species which binds to the effector site.

Bicarbonate appears to be an allosteric activator of the photosynthetic reduction of plastoquinone (PQ) in plant thylakoids. Warburg and Krippahl [1] demonstrated that the Hill reaction is impaired when CO_2 is removed from thylakoid membranes. It was later shown that this impairment is on the reducing side of Photosystem II (PS II; for a review, see Ref. 2). A number of anions, particularly formate and acetate, have been shown to interact with the binding of bicarbonate (HCO₃⁻) suggesting a more general anion binding site (see e.g., Refs. 3 and 4). However, only HCO₃⁻ has been shown to exert a stimulatory effect on PS II. Although a partial inhibition of the quinone reactions has been observed in CO_2 -depleted thylakoids in the absence of other anions [5], the full inhibitory effect seems to require their presence.

In the presence of formate, electron transfer from the secondary quinone Q_B to the PQ pool is blocked by HCO_3^- depletion [6-8], and electron transfer from the primary quinone Q_A to Q_B is slowed down [7,9]. Herbicides acting at the Q_B site bind less tightly when HCO_3^- is removed, supporting the conclusion that the site of HCO_3^- action is at the quinone level [10-12]. It is now generally accepted that Q_B is a bound PQ which, when fully reduced, exchanges for an oxidized PQ from the PO pool [13,14]. Competitive binding between herbicides and quinones supports this view [15-18]. Our current hypothesis for the HCO_3^- requirement, as noted earlier, is that HCO_3^- acts as an allosteric activator for the reduction of bound PQ, and induces a conformational change which permits the efficient exchange between the bound PQH₂ and an oxidized PQ. Bicarbonate may also be involved in the protonation of PQH_2 [19,20]. The exact mechanism of action, however, is unknown. Before a reasonable mechanistic model

^{*} To whom correspondence and reprint requests should be addressed.

Abbreviations: Chl, chlorophyll; $[CO_2]$, the CO_2 concentration; DCIP, 2,6-dichlorophenolindophenol; $[HCO_3^-]$, the HCO_3^- concentration; PQ, plastoquinone; PS II, Photosystem II; Q_A and Q_B , first and second quinone acceptors of PS II, respectively.

can be formulated, it must be known whether CO_2 or HCO_3^- is the species required.

The anion (HCO_3^-) had been implicated as the active species on the basis of competition by similar anions, such as formate and acetate [3,21]. However, the pH optimum of the requirement falls closely at the pK_a of HCO₃ /CO₂ [21,22], and it has been suggested that both CO_2 and HCO_3^- are required [22]. From the effect of pH on the rate of HCO_3^- binding, it was suggested that CO_2 is involved [23]. Similarly, measurements of the lag time between CO2 vs. HCO3 addition and restimulation of the Hill reaction suggest that CO₂ is required, at least for diffusion to the active site [24,25]. On the other hand, from the concentration dependence at pH 6.8 vs. that at pH 5.8, it was proposed that HCO_3^- is the active species [26]. We have sought to resolve this ambiguity by taking advantage of the pH dependence of the equilibrium concentrations of CO_2 and HCO_3^- , in order to hold effectively the concentration of one species constant while varying the concentration of the other. Here we present evidence that it is the anion HCO_3^- that is required for restimulation of the Hill activity in CO₂-depleted thylakoids. All of the other carbonic species (CO2, H2CO3 and CO_3^{2-}) are shown to have no direct involvement in the stimulatory effect. This work was presented by the authors, in a preliminary fashion, at an international symposium [27].

Broken chloroplasts (thylakoids) were obtained by grinding fresh leaves of spinach (*Spinacia* oleracea L.) in a cold (7°C) grinding medium (0.5% (w/v) bovine serum albumin/1 mM EDTA/50 mM sodium phosphate/50 mM NaCl, pH 7.5) for 10 s in a Waring blender. The filtered homogenate was pelleted at $3500 \times g$ for 7 min. The thylakoids in the pellet were washed once and resuspended in 7°C isolation buffer (50 mM phosphate/50 mM NaCl, pH 7.5). The chlorophyll concentration ([Chl]) was then determined as in Ref. 28.

 N_2 gas, used to purge containers and solutions of CO₂, was passed through a column of CaCl₂ and ascarite to remove any residual CO₂, and then bubbled through distilled H₂O to prevent solution evaporation. The thylakoids were depleted of CO₂ following the procedure in Ref. 22. Under N₂, aliquots of the CO₂-depleted thylakoids were diluted to [Chl] of 12 μ g/ml using reaction medium (50 mM phosphate/100 mM NaCl/5 mM NaHCO₂/5 mM MgCl₂) of appropriate pH. CO₂-depleted thylakoids at four separate pH values (6.3, 6.5, 6.7 and 6.9) were thus prepared, all having identical [Chl], and having gone through the same isolation and CO₂-depletion procedures. The samples were kept on ice, under N₂, throughout the experiment.

The Hill reaction was measured as 2,6-dichlorophenolindophenol (DCIP) reduction at 600 nm [29], using a Cary-14 spectrophotometer. A cuvette with 60 μ M of the anionic form of DCIP was flushed with N_2 , then 4.0 ml of the CO₂-depleted thylakoid suspension was added, and the cuvette tightly stoppered. The gas space left in the cuvette was approx. 150 μ l. This volume is small enough that we could ignore the escape of CO₂ into the gas space after HCO_3^- addition. The samples were illuminated with $1.5 \cdot 10^3 \text{ W} \cdot \text{m}^{-2}$ red light (Corning CS2-59 filter). The photomultiplier was shielded with a 595 nm interference filter. The HCO_3^-/CO_2 was added after 1 min of dark adaptation, and the mixture was allowed to equilibrate for exactly 3 min before measuring the Hill reaction. At room temperature, the equilibration between carbonic species in aqueous solution is complete within 1 min [30], and the diffusion into the membrane and re-equilibration at the binding site was estimated to be over within 2.5 min by following the time-course of restoration by a halfsaturating $[HCO_3^-]$.

At equilibrium, the ratio of CO_2 to HCO_3^- in solution is dependent upon the pH, according to the reaction:

$$CO_2 + H_2O \stackrel{K_1}{\leftrightarrow} H_2CO_3 \stackrel{K_2}{\leftrightarrow} H^+ + HCO_3^- \stackrel{K_3}{\leftrightarrow} 2H^+ + CO_3^{2-}$$
(1)

where $K_1(=(1.4 \pm 0.2) \cdot 10^{-3} \text{ M})$, $K_2(=(3.2 \pm 0.4) \cdot 10^{-4} \text{ M})$ and $K_3(=4.70 \cdot 10^{-11} \text{ M})$ are equilibrium constants [31]. CO₂, in Eqn. 1 refers to dissolved, not gaseous, CO₂. Thus,

$$K_{1} = \frac{[\text{H}_{2}\text{CO}_{3}]}{[\text{CO}_{2}]}; K_{2} = \frac{[\text{H}^{+}][\text{HCO}_{3}^{-}]}{[\text{H}_{2}\text{CO}_{3}]}; K_{3} = \frac{[\text{H}^{+}][\text{CO}_{3}^{2-}]}{[\text{HCO}_{3}^{-}]}$$
(2)

From these equations, the equilibrium (eq) con-

centrations of CO_2 and HCO_3^- can be calculated if the pH and the initial (i) total concentration of carbonic species are known:

$$[HCO_{3}^{-}]_{eq} = \frac{[HCO_{3}^{-}]_{i}}{\frac{[H^{+}]}{K_{1}K_{2}} + \frac{[H^{+}]}{K_{2}} + 1 + \frac{K_{3}}{[H^{+}]}}$$
(3)

$$[CO_2]_{eq} = \frac{[H^+]}{K_1 K_2} [HCO_3^-]_{eq}$$
(4)

Fig. 1 shows the rate of DCIP reduction, expressed as a percentage of the fully restored rate, by CO_2 -depleted thylakoids as a function of $[CO_2]_{eq}$. It is apparent that $[CO_2]$, at which the restored rate is a half maximal, is dependent on the pH. On the other hand, when the same data are plotted against $[HCO_3^-]_{eq}$ (Fig. 2), there is no apparent pH dependence; although the ratio of CO_2 to HCO_3^- at equilibrium varies nearly 4-fold over the pH range of the experiment, each curve falls on top of the others. From Eqn. 4 it is obvious that the ratio of CO_2 to HCO_3^- is constant at any given pH, but changes proportionately with

Fig. 1. The rate of DCIP reduction in CO₂-depleted thylakoids, expressed as a percentage of the control rate, as a function of the equilibrium CO₂ concentration. The reduction of DCIP was calculated from the decrease in absorbance at 600 nm. Illumination began 3 min after the addition of NaHCO₃. The control rate was determined separately for each curve by adding a saturating amount of HCO₃⁻ (2.5 mM) to the CO₂-depleted samples. The control rates, in μ mol DCIP reduced per mg Chl per h, for each pH, were: pH 6.31, 209 (\Box); pH 6.54, 212 (\Diamond); pH 6.67, 191 (\bigcirc); and pH 6.87, 192 (\triangle). Inset: the effect of the equilibrium HCO₃⁻ concentration on the Hill activity, with the CO₂ concentration held constant at 0.1 mM.

any change in $[H^+]$. The lack of pH dependence in Fig. 2 means that $[CO_2]$ has no apparent effect on the degree of restoration, whereas the pH dependence in Fig. 1 indicates that $[HCO_3^-]$ is important. The inset in Fig. 1 shows that the Hill activity increases with increasing $[HCO_3^-]_{eq}$ with $[CO_2]_{eq}$ constant at 0.1 mM. From the inset in Fig. 2, which shows the effect of $[CO_2]_{eq}$ on the Hill activity, with $[HCO_3^-]$ constant at 0.2 mM, it is clear that the stimulatory effect of HCO_3^- is independent of the CO_2 level.

The other two carbonic species, H₂CO₃ and CO_3^{2-} , present at extremely low concentrations, can be ruled out as having any involvement. The H_2CO_3 -to-CO₂ ratio at equilibrium is equal to K_1 of Eqn. 1 and is independent of pH. Since [H₂CO₃] is directly proportional to [CO₂] at all pH values, identical arguments apply for H₂CO₃ as made above for CO₂. Thus, H₂CO₃ cannot be the required species. The ratio of CO_3^{2-} to HCO_3^{-} at equilibrium, on the other hand, is equal to $K_3/[H^+]$. Since this ratio is inversely proportional to [H⁺], the data in Fig. 2 would be expected to show a pH dependence if CO_3^{2-} were involved in stimulating the Hill reaction. As was the case with CO₂, the lack of such pH dependence suggests that CO_3^{2-} is not involved.

The conclusion that CO_2 (or to a lesser extent, H_2CO_3) may be required for diffusion to the

Fig. 2. The rate of DCIP reduction in CO_2 -depleted thylakoids, expressed as a percentage of the control rate, as a function of the equilibrium HCO_3^- concentration. The symbols and the protocol are the same as in Fig. 1. Inset: the effect of the equilibrium CO_2 concentration on the Hill activity, with the HCO_3^- concentration held constant at 0.2 mM.

active site [24,25] is not disputed by the data presented here, since our measurements were made under equilibrium conditions and do not reflect the kinetics of HCO_3^- or CO_2 binding. While $[HCO_3^-]_{eq}$ is shown here to be a critical factor, $[CO_2]$ could be an important kinetic consideration if the binding site is buried beneath a hydrophobic domain.

The binding constant for HCO_3^- has been determined to be 80 μ M [32,33]. Since [CO₂] in photosynthesizing chloroplasts is estimated to be only 5 μ M [34], it was suggested that under normal conditions all of the binding sites are empty, and there may be no real role for HCO_3^- in vivo [32]. However, since HCO_3^- , not CO₂, is the activating species, there is no good reason to assume that the binding sites are empty. For example, if, in the vicinity of the binding site, pH = 8 (as it is in the stroma), then [HCO₃⁻] in equilibrium with 5 μ M CO₂ is 220 μ M, well above the binding constant.

It is apparent from the data presented here, that HCO_3^- , not CO_2 , H_2CO_3 or CO_3^{2-} , is the species required for PS II electron transport. This conclusion is consistent with the observed competition by anions, such as formate (HCO_2^-) and acetate $(CH_3CO_2^-)$, which closely resemble HCO_3^- [3]. In fact, HCO_2^- , by itself, has been shown to inhibit electron transport in a manner similar to CO₂-depletion, presumably by outcompeting HCO₃⁻ for its binding site [35]. This effect of HCO_2^- was most pronounced at lower pH values, where the $[HCO_3^-]$ is diminished. Recently, nitrite (NO_2^-) , but not nitrate (NO_3^-) , has been shown to be as effective as formate at inhibiting PS II, apparently by competition with HCO_3^- [4,27]. It appears that the charge density on the oxygens may be an important parameter affecting the affinity of an anion to the HCO₃⁻ binding site. NO₃⁻ and CO₃²⁻, which resemble each other in this respect, are both ineffective in stimulating electron transport. The effective NO_2^- , on the other hand, has the same degree of charge delocalization as does HCO_3^- and HCO_{2}^{-} .

Both HCO_2^- and HCO_3^- have a carboxyl group. However, only HCO_3^- has an hydroxyl group, which may be the functional moiety, while the carboxyl group could be involved in binding. The hydroxyl group, we speculate, could be involved in H^+ mediation during electron transfer from Q_A to Q_B and subsequent release of PQH₂, or it may be important as a source of H bonding to effect a conformational configuration necessary for efficient electron transfer.

Shipman [36] has suggested, as one possibility, that CO₂ may be complexed with a lysine residue to form a carbamate. However, the Q_B apoprotein, whose primary sequence has recently been elucidated (for a review see, e.g., Ref. 37) and where HCO_3^-/HCO_2^- seem to act [2,6,7,8,10,35], contains no lysine. The absence of lysine in the Q_B apoprotein is thus consistent with the conclusion that CO_2 is not the activating species. In view of our earlier results [2,6,7,8,10,35] the Q_B apoprotein seems to be a likely binding site for HCO_3^- . From the secondary structure of the Q_B apoprotein, based on hydropathy plots, arginine-257 appears to be within the hydrophobic matrix [37], and its positive charge is uncompensated by any nearby counter charge. Shipman had suggested [36] that HCO₃⁻ complexes with an arginine residue and provides a suitable binding environment for some herbicides that interfere with electron flow from Q_A^- to Q_B . Thus, we speculate that arginine-257 may be the binding site for HCO_3^- .

We thank the National Science Foundation (PCM 83-06061) for funds. D.B. was also supported by the National Institute of Health (PHS 5-T32GM7283).

References

- 1 Warburg, O. and Krippahl, G. (1960) Z. Naturforsch. 15B, 367-369
- 2 Vermaas, W.F.J. and Govindjee (1982) in Photosynthesis. Development, Carbon Metabolism and Plant Productivity, Vol. 2 (Govindjee, ed.), pp. 541-558, Academic Press, New York
- 3 Good, N.E. (1963) Plant Physiol. 38, 298-304
- 4 Stemler, A. and Murphy, J.B. (1985) Plant Physiol. 77, 974-977
- 5 Eaton-Rye, J.J. and Govindjee (1984) Photobiochem. Photobiophys. 8, 279-288
- 6 Govindjee, Pulles, M.P.J., Govindjee, R., Van Gorkom, H.J. and Duysens, L.N.M. (1976) Biochim. Biophys. Acta 449, 602-605
- 7 Siggel, U., Khanna, R., Renger, G. and Govindjee (1977) Biochim. Biophys. Acta 462, 196-207
- 8 Vermaas, W.F.J. and Govindjee (1982) Biochim. Biophys. Acta 630, 202-209
- 9 Jursinic, P., Warden, J. and Govindjee (1976) Biochim. Biophys. Acta 440, 332-330

- 10 Khanna, R., Pfister, K., Keresztes, A., Van Rensen, J.J.S. and Govindjee (1981) Biochim. Biophys. Acta 634, 105–116
- 11 Van Rensen, J.J.S. and Vermaas, W.F.J. (1981) Physiol. Plant. 51, 106-110
- 12 Vermaas, W.F.J., Van Rensen, J.J.S. and Govindjee (1982) Biochim. Biophys. Acta 681, 242-247
- 13 Wraight, C.A. (1981) Isr. J. Chem. 21, 348-354
- 14 Velthuys, B.R. (1981) FEBS Lett. 126, 277-281
- 15 Vermaas, W.F.J., Arntzen, C.J., Gu, L.Q. and Yu, C.A. (1983) Biochim. Biophys. Acta 723, 266-275
- 16 Jursinic, P. and Stemler, A. (1983) Plant Physiol. 73, 703-708
- 17 Oettmeier, W. and Soll, H.-J. (1983) Biochim. Biophys. Acta 724, 287-290
- 18 Laasch, H., Schreiber, U. and Urbach, W. (1984) in Advances in Photosynthesis Research (Sybesma, C., ed.), Vol. IV, pp. 25–28, Martinus Nijhoff Dr.W. Junk Publishers, Dordrecht, The Netherlands
- 19 Khanna, R., Wagner, R., Junge, W. and Govindjee (1980) FEBS Lett. 121, 222-224
- 20 Stemler, A. (1984) in Inorganic Carbon Transport in Aquatic Photosynthetic Organisms (Berry, J. and Lucas, W., eds.) pp. 376–387, American Society for Plant Physiology, Rockville, MD
- 21 Khanna, R., Govindjee and Wydrzynski, T. (1977) Biochim. Biophys. Acta 462, 208-214
- 22 Vermaas, W.F.J. and Van Rensen J.J.S. (1981) Biochim. Biophys. Acta 636, 168-174
- 23 Stemler, A. (1980) Plant Physiol. 65, 1160-1165
- 24 Sarojini, G and Govindjee (1981) in Photosynthesis, Vol 2,

Photosynthetic Electron Transport and Photophosphorylation (Akoyunoglou, G., ed.), pp. 143–150, Balaban International Science Services, Philadelphia, PA

- 25 Sarojini, G. and Govindjee (1981) Biochim. Biophys. Acta 634, 340-343
- 26 Stemler, A. and Govindjee (1973) Plant Physiol. 52, 119-123
- 27 Eaton-Rye, J.J., Blubaugh, D.J. and Govindjee (1985) in Ion Interactions in Energy-Transducing Biomembranes (Papa, S., Barber, J. and Papageorgiou, G., Eds.), Plenum Press, New York, in the press
- 28 MacKinney, G. (1941) J. Biol. Chem. 140, 315-322
- 29 Armstrong, J.M. (1964) Biochim. Biophys. Acta 86, 194-197
- 30 Cooper, T.G., Tchen, T.T., Wood, H.G. and Benedict, C.R. (1968) J. Biol. Chem. 243, 3857–3763
- 31 Knoche, W. (1980) in Biophysics and Physiology of Carbon Dioxide (Bauer, C., Gros, G. and Bartels, H., eds.), pp. 3-11, Springer-Verlag, New York
- 32 Stemler, A. and Murphy, J.B. (1983) Photochem. Photobiol. 38, 701-707
- 33 Snel, J.F.H. and Van Rensen, J.J.S. (1984) Plant Physiol. 75, 146–150
- 34 Hesketh, J.E., Wooley, J.T. and Peters, D.B. (1983) in Photosynthesis. Development, Carbon Metabolism and Plant Productivity, Vol. 2 (Govindjee, ed.), pp. 387–418, Academic Press, New York
- 35 Robinson, H.H., Eaton-Rye, J.J., Van Rensen, J.J.S. and Govindjee (1984) Z. Naturforsch. 39c, 382-385
- 36 Shipman, L.L. (1981) J. Theor. Biol. 90, 123-148
- 37 Kyle, D.J. (1985) Photochem. Photobiol. 41, 107-116