INTERACTIONS OF FLUORESCENT ANALOGS OF ADENINE NUCLEOTIDES WITH COUPLING FACTOR PROTEIN ISOLATED FROM SPINACH CHLOROPLASTS

David L. VANDERMEULEN and GOVINDJEE

Departments of Physiology and Biophysics and Botany, University of Illinois, Urbana, Illinois 61801, USA

Received 7 July 1975

1. Introduction

The coupling factor protein (CF_1) of photosynthetic membranes plays a central role in the process of energy transduction [1-3]. We have studied the interaction of this enzyme with its proposed substrates (i.e., AMP, ADP and ATP; ref. [4,5]) by using their fluorescent analogs ϵ AMP, ϵ ADP and ϵ ATP [6]). Some spectroscopic properties of these fluorophores and their biological activities (with other enzymes) have been described [7-10]. Moreover, it has been demonstrated that ϵ ADP acts nearly as well as ADP as substrate for photophosphorylation (11; unpublished observations of the authors). We report here the first use of the fluorescence properties of the ϵ -adenine analogs in studying their interaction with the CF₁ enzyme isolated from spinach chloroplasts. We have shown that ϵ ADP and ϵ ATP, but not ϵ AMP, bind to purified CF₁, that differences in binding exist depending on whether the associated divalent cation is Mg²⁺ or Ca²⁺, and that orthophosphate reduces the level of Mg²⁺-dependent binding of ϵ ADP to CF₁.

2. Materials and methods

Pure coupling factor protein (CF_1) was isolated from spinach leaves according to the method of Strotmann et al. [12] and concentrated by ammonium sulfate precipitation. CF_1 was stored at 4°C in the presence of 25 mM Tricine–NaOH (pH 8), 4 mM ATP, 2 mM EDTA and 2 M (NH₄)₂SO₄; this medium is known to maintain the stability of CF₁ for several months [13]. For use in fluorescence experiments, aliquots of stored CF₁ were centrifuged, dissolved in a minimal volume of 25 mM Tricine buffer (pH 8) and then desalted on a column (4 cm \times 17 cm) of Sephadex G-200. Protein concentrations were determined by the Lowry method [14]. A molecular weight of 325 000 for CF₁, as found by Farron [15], was used in determining its molarity.

The fluorescent nucleotides 1,N⁶-ethenoadenosine mono-, di- and triphosphate (ϵ AMP, ϵ ADP and ϵ ATP) were purchased from P & L Biochemicals, Inc., Milwaukee, Wis. and Tricine from Sigma, St. Louis, Mo. Fluorescence polarization measurements were made on a photon counting instrument in Professor. G. Weber's laboratory [16]. This apparatus allowed the convenient subtraction of background interference at low signal-to-noise values. A 450-Watt xenon arc, cooled by air draft, was the light source. The 310 nm exciting light was selected by a Bausch and Lomb grating monochromator and passed through a Corning glass CS 7-54 filter. The cuvette holder fits square cuvettes of 1 cm internal dimensions. The fluorescence emission was filtered through Corning glass CS 0-52 and CS 3-75 filters.

Values of I[/] and II, where I[/] is the intensity of the emission light polarized parallel to the exciting beam and II is the intensity of the emission light polarized perpendicular to the exciting beam, were obtained by counting over one-half minute intervals. All fluorescence measurements were made at room temperature, since CF₁ in solution is cold labile [13].

North-Holland Publishing Company – Amsterdam

Send correspondence (0: Professor Govindjee, 289 Morrill Hall, University of Illinois 61801, USA.

3. Results and discussion

If the relatively small fluorescent nucleotides (mol. wt. ≤ 600) bind to the relatively large (mol. wt. = 325 000), slowly rotating CF₁ macromolecule, the polarization of fluorescence (p) is expected to increase above the p = 0 level for the unbound fluorophore. Fluorescence polarization values significantly above the zero level were observed when ϵ ADP or ϵ ATP, but not ϵ AMP, was added to a solution of CF₁ (figs. 1 and 2). As the concentration of added ligand (ϵ ADP or ϵ ATP) is increased above nearly equimolar CF₁: ligand, polarization decreases toward p = 0 as a greater percentage of the total fluorescing population remains unbound. We also note that binding with ϵ ADP appears greater than with ϵ ATP.

A distinct difference in the binding curve is observed, depending on whether Mg^{2+} or Ca^{2+} is present as the divalent cation (fig.1). This difference probably reflects the existence of separate ion-dependent conformers of CF_1 and/or distinct modes of binding to the protein. This data could be at least qualitatively related to previous observations of Mg^{2+} vs Ca^{2+} differences in CF₁ activities [2, 17–19]. (However, see refs. [12, 20–22] where 'allotopic' properties towards divalent cation have been questioned.)

Fig.2 shows the effect of orthophosphate on the Mg^{2+} -dependent binding of ϵADP and ϵATP to CF_1 . While there appears to be little or no effect of phosphate on the ϵATP binding, the presence of phosphate significantly reduced the level of ϵADP binding to CF_1 as indicated by fluorescence polarization. In experiments with the Mg^{2+} -dependent ATPase (in chloroplasts), Carmeli and Lifshitz [23] found that orthophosphate prevented the destabilization of ATP-ase activity as induced by ADP. Our results in fig.2 suggest that this is due to the interference by phosphate induced change in the conformational state of CF_1 or a direct competition at the ADP binding site.

In conclusion, we have established (1) that there is binding of the nucleotides ϵ ADP and ϵ ATP with isolated

Fig.1. Degree of polarization of ϵ -adenine analog fluorescence as a function of concentration of adenine analogs. CF₁ protein (~4 × 10⁻⁶ M) was buffered at pH 8 in 25 mM Tricine—NaOH, plus 5 mM CaCl₂ (open circles) or 5 mM MgCl₂ (closed circles). Instrument fluctuations introduce an error of approximately ± 0.002 in these values of p. See Materials and methods for other experimental details.

Fig.2. Degree of polarization of ϵ -adenine fluorescence as a function of concentration of adenine analogs. CF₁ protein was buffered at pH 8 in 25 mM Tricine–NaOH, plus 5 mM MgCl₂ and 500 μ M NaH₂PO₄ (closed symbols) or 5 mM MgCl₂ only (open symbols). [CF₁] was ~4 x 10⁻⁶ M (ϵ ATP data, circles) and ~5 x 10⁻⁶ M (ϵ ADP data, square). Error bars represent approximate contribution of instrument fluctuation.

 CF_1 , with no binding for ϵAMP ; (2) differences in the binding characteristics when Mg^{2+} or Ca^{2+} is present; and (3) inorganic phosphate decreases the Mg²⁺-dependent binding of ϵ ADP, but not ϵ ATP. As a working hypothesis, we suggest that the structure of CF_1 is such that (a) there are different sites and/or modes of binding for Ca^{2+} and Mg^{2+} ; (b) the ATP binding site covers the binding sites for both ADP and P_i allowing no effect of P_i on ATP binding; (c) if AMP is actually involved in the terminal steps of photophosphorylation [5], it must be able to bind to CF_1 only as the protein's conformational state becomes altered (e.g., upon energization by light); and (d) inhibition of ADP binding by P_i can be explained on the basis of a change in conformation of CF_1 . These hypotheses, however, need to be tested.

Acknowledgements

This research was supported in part by a predoctoral traineeship from the NIH (HEW PHS GM 00720). We are grateful to Dr. Jorge R. Barrio and Professor. Nelson J. Leonard for advice and for samples of fluorescent nucleotides used in a preliminary phase of this work. We especially thank Dave Jameson for helpful discussions and Professor Gregorio Weber for the use of polarization instrument.

References

- [1] Avron, M. (1963) Biochim. Biophys. Acta 77, 699-702.
- [2] Vambutas, V. K. and Racker, E. (1965) J. Biol. Chem. 240, 2660–2667.
- [3] McCarty, R. E. (1971) Methods Enzymol. 23A, 251-253.
- [4] Roy, H. and Moudrianakis, E. N. (1971) Proc. Natl. Acad. Sci. US 68, 464-468.
- [5] Roy, H. and Moudrianakis, E. N. (1971) Proc. Natl. Acad. Sci. US 68, 2720-2724.
- [6] Secrist III, J. A., Barrio, J. R. and Leonard, N. J. (1972) Science 175, 646–647.
- [7] Secrist III, J. A., Barrio, J. R., Leonard, N. J. and Weber, G. (1972) Biochemistry 11, 3499-3506.

- [8] Barrio, J. R., Secrist, III, J. A., Chien, Y., Taylor, P. J., Robinson, J. L. and Leonard, N. J. (1973) FEBS Lett. 29, 215-218.
- [9] Hilborn, D. A. and Hammes, G. G. (1973) Biochemistry 12, 983-990.
- [10] Tondre, C. and Hammes, G. G. (1973) Biochim. Biophys. Acta 314, 245-249.
- [11] Shahak, Y., Chipman, D. M. and Shavit, N. (1973) FEBS Lett. 33, 293-296.
- [12] Strotmann, H., Hesse, H. and Edelmann, K. (1973) Biochim. Biophys. Acta 314, 202-210.
- [13] Lien, S. and Racker, E. (1971) Methods Enzymol. 23A, 547-555.
- [14] Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951) J. Biol. Chem. 193, 265-275.
- [15] Farron, F. (1970) Biochemistry 9, 3823-3828.

- [16] Jameson, D., Spencer, R. D., Mitchell, G. and Weber, G., to be published.
- [17] Jagendorf, A. T. and Avron, M. (1959) Arch. Biochem. Biophys. 80, 246-257.
- [18] Petrack, B. and Lipmann, F. (1961) in: Light and Life (McElroy, W. D. and Glass, H. B., eds.), pp. 621-630, The Johns Hopkins Press, Baltimore.
- [19] Jagendorf, A. T. (1975) in: Bioenergetics of Photosynthesis (Govindjee, ed.), pp. 413-492, Academic Press, N.Y.
- [20] Nelson, N., Nelson, H. and Racker, E. (1972) J. Biol. Chem. 247, 6506-6510.
- [21] Bakker-Grunwald, T. (1974) Biochim. Biophys. Acta 347, 141-143.
- [22] Lien, S. and Racker, E. (1971) J. Biol. Chem. 246, 4298-4307.
- [23] Carmeli, C. and Lifshitz, Y. (1972) Biochim. Biophys. Acta 267, 86-95.