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Transformation of Light Energy into Chemical Energy:

Photochemical Aspects of Photosynthesis'

Govindjee?

ABSTRACY

The physical and chemical events leading from the
absorption of light by chlorophyll a in vivo to the pro-
duction of the “reducing power” (reduced nicotinamide
adenine dinucleotide phosphate) and the “high energy
phosphate” (adenosine triphosphate) are reviewed here
for the benefit of those students who have little under-
standing of the biophysical processes associated with photo-
synthesis and who are interested in appreciating the cur-
rent status of the knowledge in this field. The capture of
light energy, the fate of excitation, energy transfer, the
trapping of energy, the Emerson enhancement effect, the
two light reactions and the electron pathways in photo-
synthesis are discussed in this review; it cites detractors
as well as supporters of the current dogma on photo-
synthesis.

LIGHT quanta absorbed by green plants, multi-
colored algae, and photosynthetic bacteria are util-
ized for a large-scale conversion of light energy into
chemical energy. This conversion of light energy into
chemical free energy is the essential consequence of
photosynthesis (Fig. 1). Photosynthesis, literally synthe-
sis by light, occurs in thylakoids (double membranes
closed in themselves, 123). In green plants (including
multi-colored algae) chemical energy generated from
light is used to synthesize carbohydrates, from carbon
dioxide and water, with concomitant evolution of oxy-
gen. In photosynthetic bacteria, however, oxygen is
not evolved, and various hydrogen sources replace
water as reductant. Recently, several symposia (69, 74,
109, 121, 180, 150, 152, 170), reviews (14, 53, 58, 85,
187, 146, 156, 157), and books (34, 66, 93, 158) have
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appeared that cover various aspects of green plant
and bacterial photosynthesis.?

Green plant photosynthesis may be considered as a
tripartite reaction (Fig. 2): the evolution of O, from
water, the transfer of H-atoms (or electrons) from an
intermediate (ZH) to another intermediate (X), the
reduction of GO, by the reduced X, to form a carbo-
hydrate. The light quanta captured by pigments are
used to perform mainly the second step. Thus, in
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Fig. 1. Energy flow diagram.
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Fig. 2. Three phases of photosynthesis: (1) oxidation of ZH
to Z and reduction of X to XH (vertical arrow); (2) evolu-
tion of oxygen by oxidation of water (H;0) by Z made in

hase 1 (bottom arrow); and (3) reduction of carbon dioxide

(CO,) to carbohydrate (CH;O) by XH made in phase 1 (top
arrow). The chemical identity of X and Z has not yet been
definitely established. The oxidation-reduction potentials
(E,’) of the different redox couples are shown on the left
hand margin.
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Fig. 3. Absorption spectra of a green alga (Chlorella; dashes
and dots) and of a red alga (Porphyridium; solid line),
measured by a Bausch and Lomb spectrophotometer (Spec-
tronic 505) equipped with an integrating sphere. Absorption
spectra of leaves of crop plants resemble those obtained for
Chlorella.

photosynthesis, light energy is utilized for an oxida-
tion-reduction reaction (reduction of X and oxida-
tion of ZH) which could not occur without the supply
of energy. The present review deals primarily with the
photochemical aspects of green plant photosynthesis.

Capture of Light Energy

In order for light energy to be effective in any re-
action it must be absorbed (the first law of photo-
chemistry). For this purpose, plants contain an as-
sortment of pigments, the alcohol-soluble chlorophylls
aand b (green) and the carotenoids (yellow to orange).
Certain plants have replaced chlorophyll & with other
pigments, such as the water soluble pink pigment,
phycoerythrin (red algae), or the blue pigment, phyco-
cyanin (blue-green algae). These and other pigments
(see Strain, 147) share in the capture of light energy
(Fig. 3). Chlorophyll a is the only pigment that is com-
mon to all photosynthesizing plants and is thus con-
sidered to be the major pigment of photosynthesis;
all other pigments are called “accessory”.
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Fig. 4. Energy level diagram for chlorophyll (the vibrational
and rotational levels are not shown).

The first act of photosynthesis is the absorption of
light by one of the several chloroplast pigments. When
a light quantum of a certain wavelength hits a pig-
ment molecule, an electron in the outermost “shell”
is “kicked up” into an empty, outer orbit (Fig. 4). The
transition of the molecule from the ground state to the
singlet excited state is extremely fast; it is over in
10735 seconds. A molecule in the excited state has
a new clectron configuration (see Foerster, 53). It has
an excess of free energy, namely that of the light quan-
tum that it absorbed. This molecule is very unstable.

The electron in the excited state reached by absorp-
tion has an extremely short life. Brody (23; also see
Brody and Rabinowitch, 26) and Terenin (151) inde-
pendently measured the life time of the excited state
of chlorophyll in vivo to be 0.6 to 1.5 X 1079 seconds.
Butler and Norris (28), Tomita and Rabinowitch
(158), Murty and Rabinowitch (125) and Mueller and
Lumry (124) have confirmed and extended the orig-
inal measurements of Brody and Terenin. The elec-
tron in the excited state has several choices: (1) It may
return to the ground state, emitting a light quantum
(fluorescence). (2) It may return to the ground state
by losing energy in small steps as heat (internal con-
version). (3) The fall of the electron to the ground
state may be coupled with electronic excitation in
another pigment molecule (“resonance energy trans-
fer”). (4) Its return to the ground state may be in-
terrupted at a metastable (or triplet) state, in which
it may stay for a long time (~1073 sec). In the triplet
state the eclectron has parallel spin to those in the
ground state. The fall from this state down to the
ground state may occur by loss of heat (internal con-
version) or by emission of light (phosphorescence).
(5) From the metastable state, the electron may be
“kicked up” to the original singlet excited state by
thermal agitation and may then fall back to the ground
state emitting light (delayed-emission). (6) The elec-
ron may be transferred to an “electron acceptor” (oxi-
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dant) (either from the singlet excited or the triplet
state) reducing the “oxidant” and leaving the pigment
in the oxidized state.

In order to account for the high efficiency of photo-
synthesis, almost 90-95% of light quanta absorbed
must be channeled to useful photochemical reactions
(not heat, delayed emission, or fluorescence). The
fluorescence yield of live cells is reasonably low;
Latimer et al. (115) and Weber and Teale (162)
found it to be around 2.5 to 3% in Chlorella.

Energy Transfer

When the quantum of light is absorbed by an ac-
cessory pigment in vivo, the energy does not stay in
the pigment molecule that had initially absorbed it; in-
stead it is transferred to chlorophyll a (4,37,38,65,161).
When chlorophyll b is excited in chlorella,, the fluor-
escence of chlorophyll & is absent, but the fluorescence
of chlorophyll a is observed (sensitized fluorescence).
This shows transfer of excitation energy from chlo-
rophyll & to chlorophyll a. By measuring the intensities
of chlorophyll a fluorescence when chlorophyll a is
directy excited and when the accessory pigments are
excited, Duysens (38) caculated the efficiency of ener-
gy transfer from various accessory pigments to chloro-
hpyll @ to range from 20 to 100%. The efficiency of
energy transfer from carotenoids to chlorophyll «a
was lowest (~209%) in the blue-green aglae. In brown
algae, the transfer efficiency from a special carotenoid
(fucoxanthol) to chlorophyll a was rather high (70 to
80%). The transfer efficiency from the phycobilins
(phycoerythrins and phycocyanin) to chlorophyll a was
also high (70 to 909%). The highest (almost 1009%)
efficiency was from chlorophyll & to chlorophyll a.
Brody and Brody (24), working with the red alga
Porphyridium cruentum, and Govindjee and his co-
workers (70, 133), working with the blue-green alga,
Anacystis nidulans, have observed large changes in the
efficiency of energy transfer from the phycobilins to
chlorophyll a caused by growing algae with different
pigment ratios and by preilluminating algae with dif-
ferent intensity and wavelength of light.

According to Foerster (53) (also see Duysens, 41),
the efficiency of such resonance energy transfer de-
pends upon the extent of the overlap of the fluor-
escence spectrum of the donor molecule with the ab-
sorption spectrum of the acceptor molecule, upon the
average distance between them and the orientation
of molecules with respect to each other.

When a chlorophyll @ molecule absorbs a quantum
of light, energy transfer to other chlorophyll ¢ mole-
cues may occur. This migration is demonstrated by
almost complete depolarization of fluorescence when
polarized light is used to excite chlorophyll a (3).

The Trapping of Energy

In 1936, Gaffron and Wohl (68) calculated that for
the same chlorophyll a molecule to absorb 8 quanta of
light, needed to evolve one O, molecule, it would take
about an hour or more, and if there were no energy
transfer between chlorophyll molecules, one would
have to wait at least an hour before any measurable
O could be evolved when a plant is transferred from
darkness to light, but in fact the Oy evolution begins
immediately. Therefore, Gaffron and Wohl (68) sug-
gested that quanta absorbed in different molecules

somehow assemble in special molecules (reaction cen-
ters or energy traps). Emerson and Arnold (46) had
earlier discovered that when bright and short (10-3
sec) flashes of light are given to a plant, a maximum
of one O, molecule is produced per flash per 2,400
chlorophyll molecules present. These findings, con-
firmed and placed on a more quantitative basis by
Kok (101) also suggested an assemblage of chlorophyll
a molecules somehow cooperating to evolve Qy. This
assemblage is called the “photosynthetic unit”. Since
four H-atoms (or electrons) must be moved from
HO to CO; to produce one O, molecule, it seems
that about 600 chlorophyll molecules can cooperate
to transfer one H-atom. As this transfer has been re-
cently shown to occur in two steps, approximately
200 to 300 chlorophylls must cooperate in each pri-
mary reaction of photosynthesis. This is then the size
of the “photosynthetic unit” (also see Kohn, 100).
Light energy absorbed by any one of the pigment
molecules in such a unit is assumed to migrate to a
common reaction center. The chlorophyll a molecules
associated with these centers function as the “energy
traps”. These are molecules which are associated with
the primary electron donors and acceptors of photo-
synthesis; they may thus undergo oxidation-reduction
reactions upon illumination. It is at these selected
pigment molecules that light energy is converted into
chemical energy (see Clayton, 35, regarding the effi-
ciency of “energy traps”). :

Since the energy “traps” must be present in low
concentration (less than 1% of the total concentra-
tion of pigments) a very sensitive instrument is re-
quired to detect any orxidation-reduction changes in
them. Duysens (39), Witt (166), Kok (108), and Cole-
man et al. (36) have successfully applied the technique
of difference spectroscopy for detecting small changes
in absorbance in illuminated plants (Fig. 5). Kok
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Strong Monochromatic Light (or Light Flashes)
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ANALYZING Monochromatic:
BEAM :
Light

Fig. 5. Sketch of a difference spectrophotometer. The analyz-
ing beam (of low intensity) is split into two beams; one goes
through the sample (living plant) and the other around
the sample (not shown in the diagram). Both beams fall
on the detector (a photomultiplier). The intensity of the
beam that is sent around the sample is adjusted to match
the intensity of the light transmitted by the sample; a zero
reading is obtained on the recorder. Upon turning on the
exciting beam (of high intensity), changes in absorption are
observed and recorded. By varying the wavelength of the
analyzing beam, a difference spectrum (that is, the difference
between the absorption spectrum of cells illuminated with
strong exciting light and non-illuminating cells) is obtained;
it gives information concerning the pigments that undergo
oxidation or reduction during photosynthesis. By varying
the wavelength of the exciting beam, an action spectrum (that
is, the curve showing the effectiveness of different wavelengths
of light in producing the change) is obtained; it provides
information concerning the pigments that sensitize the ab-
sorption changes.

DETECTOR

Filter To Remove
Exciting Light
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(102, 106), who discovered an absorbance change at
700 my (and 433 my) due to oxidation of a tiny quan-
tity of a chlorophyll a. (P700), has suggested that this
“P700” is one of the energy traps of photosynthesis.
In the energy traps, the formation of oxidants (posi-
tively charged ions) and reductants (negatively charg-
ed ions) occurs. The conversion of light energy into
chemical energy thus takes place at these centers. Most
workers believe (see Robinson, 137) that P700 is the
energy trap for the so-called pigment system I and that
the. energy trap for pigment system II is still to be
discovered. However, Franck and Rosenberg (58) be-
lieve that there is only one type of energy trap which
serves both the pigment systems.

After the primary reactions have taken place, the
primary products must not be allowed to react with
each other. It has been suggested (see Rabinowitch,
134) that oxidation of HyO may occur on one side of
a lamella and reduction of CO; on the other side, thus
preventing back reactions between the primary prod-
ucts.

The “Red Drop”, The Emerson Enhancement
Effect and Two Light Reactions
Emerson and coworkers (48,49,50) observed that

the quantum efficiency (number of moles of O, evolv-
ed per mole quanta absorbed) of photosynthesis be-
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Fig. 6. Quantum yield of oxygen evolution as a function of
wavelength of light (solid line). Absorption curves for
chlorophyll a (Chl a), chlorophyll b (Chl b), phycoc‘yanin and
phycoerythrin are also shown. The top graph is for the
green alga Chlorella and the bottom for the red alga Porphy-
ridium. The low -efficiency under red and far-red illumina-
tion (the red drop) is restored to full efficiency by supple-
mentary short-wave illumination (dotted curve). This en-
hancement is known as the “Emerson enhancement effect”
(redrawn from the data of R. Emerson and his co-workers
[22,48,50,51]).

comes abnormally low when light is primarily ab-
sorbed by chlorophyll a (red drop) (Fig. 6). The “red
drop” was observed particularly clearly in the red
alga Porphyridium (22). In 1957, Emerson et al. (48)
discovered a “synergistic” effect in photosynthesis.
When light of a certain wavelength (which is absorbed
primarly by accessory pigments) is combined with far-
red light (absorbed primarily by chlorophyll a), the
production of oxygen in the combined beams is greater
than the sum of the production in the two beams given
separately. The enhancement (E) is calculated as:

F_ RO; (combined beams) minus RO, (short wave beams)
- RO, (short or long wave beam)

On the basis of this synergistic effect which we call
Emerson enhancement effect, Emerson (45) suggested
that photosynthesis requires two light reactions. Emer-
son and co-workers (45, 47, 51) measured the action
spectra of the enhancement effect by measuring the
enhancement (E) as a function of the wavelength
(A) of the “short-wave” beam, while the far-red beam
(720 my) was kept constant (Fig. 7). Later, Blinks (19)
and Fork (55) measured another action spectra of en-
hancement (E), in phycoerythrin containing algae, by
measuring enhancement (E) as a function of the wave-
length (A) of the “long or short-wave” beam while
green light (absorbed by phycoerythrin) was kept con-
stant.

On the basis of his action spectra measurements,
Emerson concluded (45,47) that one light reaction is
sensitized by chlorophyll a and the other by accessory
pigments, and the “red drop” occurs in the wave-
length range where chlorophyll a becomes the prime
absorber of light energy. The conclusion that acces-
sory pigments alone can sensitize some reactions was
hard to accept, as light absorbed in many accessory pig-
ments is transferred with high efficiency (80-1009%)
to chlorophyll a (4,37,38,65,161). In 1960, Govindjee
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Fig. 7. Action spectra of the Emerson enhancement effect in
Chlorella, Anacystis (a blue-green alga), Navicula (a diatom)
and Porphyridium (solid curves). Absorption spectra of the
accessory pigments are also shown by dashed curves (after
R. Emerson and co-workers [47,517).
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Fig. 8. Detailed action spectra of the Emerson enhancement
effect in Chlorella and Navicula in 600 to 700 mu range (solid
curves). The absorption curves. for chlorophyll & (peak at
650 my; dashes and dots), chlorophyll ¢ (peak at 630 my;
dashes and dots), chlorophyll a 670 (dashes) and chlorophyll
a 680 (dots) are also shown (after Govindjee et al. [75,83,84]
and Cederstrand et al. [32]).

and Rabinowitch (75,83,84,135) re-investigated the ac-
tion spectra of the Emerson effect. Detailed measure-
ments on Chlorella (a green alga) and Navicula (a dia-
tom) showed that light absorbed in one form of chloro-
phyll a, “Chl @ 670", also enhances photosynthesis in
far-red light (Fig. 8). French et al. (64) independently
observed the same chlorophyll ¢ band in the action
spectrum of the Emerson effect in Chlorella. These re-
sults led us to believe that for complete photosynthesis,
two forms of chlorophyll a, Chl a 670 (a form that pref-
erentially receives energy from accessory pigments)
and Chl g 680, need to be simultaneously excited. This
was a more satisfactory picture, since the high effi-
ciency of energy transfer from accessory pigments to
chlorophyll is taken into account. In red algae and
blue-green algae, the Emerson enhancement effect
shows a very small band at 670 my; often this band
is absent. The distribution of Chl a 670 and Chl a 680
is not simple. Chl a 670 is preferentially present in
pigment system II in Chlorella but almost all of Chl
a 670 and Chl a 680 are present in the pigment system
I of the phycobilin-containing algae (sece ref. 52).
Myers and co-workers (92,126-129) and French and
co-workers- (59-63), working on the Emerson effect,
also concluded that photosynthesis requires the co-
operation of two light reactions that are sensitized by
different pigment systems. Other groups of investi-
gators have provided evidence for the operation of
two light reactions and two pigment systems from
measurements of: Emerson enhancement effect (9, 12,
15-17, 20, 55, 63, 67, 71, 76, 78, 79, 82, 87, 90, 91, 108,
120, 122, 132), transient oxygen effects (62, 159, 160),
oxidation-reduction reactions of cytochromes (7, 42,
43, 88, 167, 168) of P700 (97, 98, 104, 105, 107, 140,
142, 143), quinones (1, 99, 163) and of plastocyanin
(57, 94, 95, 110, 112) and of measurements of 520 mpu
absorbancy change (56, 77, 139, 169), fluorescence (27,
30, 31, 40, 44, 80, 81, 86, 96, 113, 114, 116, 131, 138)
and delayed emission (2, 8, 13, 72, 73), NADP reduc-

OXIDATION-REDUCTION POTENIAL

Fig. 9. The “uphill” hydrogen-atom transfer in photosynthesis.
ZH and Y are, respectively, hypothetical primary hydrogen
donor and acceptor for the light reaction XII. P680 is the
hypothetical energy trap of pigment system II. Cytochrome f
and X are, respectively, the primary hydrogen donor and
acceptor for the light reaction I. P700 is the energy trap of

- pigment system I. Fd stands for ferredoxin, ribulose for
ribulose diphosphate, NADP for nicotinamide adenine di-
nucleotide phosphate, PGA for phosphoglyceric acid, triose
for phosphoglyceraldehyde. The lefthand margin shows the
oxidation reduction potential (E,’) of various intermediates
(based on the original schemes of Hill and Bendall [88],
Duysens and Amesz [42] and Kok and Hoch [108]).

tion (89, 119), and phosphorylation (18, b4, 108, 148,
149). Research with physical separation of pigment
systems (21, 30) and with mutants of algae (15, 117,
118) has confirmed the two light reactions-two pigment
systems hypothesis.

Electron Pathways

A model of photosynthesis (electron transport) in
which the two light reactions occur in a series was first
proposed by Hill and Bendall (88). Independently,
Duysens et al. (43), Kok and Hoch (108) Losada et al.
(119), Kautsky et al. (96), and Witt et al. (167, 168)
(also see Rumberg et al., 141) came to similar con-
clusions.

Photosynthesis is conceived of as a set of (at least)
five reactions, two of which are the light reactions (I
and II) and three are dark reactions (Fig. 9). Since,
in the steady state, all reactions must operate simul-
taneously at the same rate, the numbering is arbi-
trary. We begin with reaction II (Duysens (43) term-
inology), the reaction most closely associated with Oy
evolution. The final result of this set of reactions is
the oxidation of water to O; and the reduction of cyto-
chromes. Light absorbed by accessory pigments (pig-
ment system II; such as chlorophyll b in green plants,
and phycobilins in red and blue-green algae) is ulti-
mately transferred to hypothetical chlorophyll a mole-
cules (P680), which are assumed to be in a favorable
position to act as an “energy trap” (or ‘reaction cen-
ter”). The primary light reaction is suggested to be
an electron (or hydrogen atom) transfer from the un-
known H-donor, ZH (Eé > 0.8 V) to the unknown
H-acceptor, Y (E6 ~ perhaps — 0.2 V)* sensitized by
excited P680:

(1) ZH + Y + P680* —>» Z 4 YH - P680.

*There is no evidence for Y having an Eo’ of —0.2 V. We
suggest this value for the sake of symmetry; in this way both
light reactions (I & II) overcome a potential difference of 1.0 V.
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» The oxidation product, the strong oxident Z, being
then utilized to evolve oxygen from water:

@) 97 4,0 — 1/2 O, - 2ZH

The weak reductant (YH), which may be Duysens
QH (44) or Kautsky’s A (96) may react first with a
plastoquinone (PQ) and then a & type cytochrome
(Cb). 'The suggested path of electron transfer from
YH to P700 (the energy trap of light reaction I) is:

[ ]
(3) YH —~ PQ — Cb — cytochrome f — Plastocyanin — P700

ADPATP

Enough energy is released in the “downhill” reaction
from cytochrome of b type (Cyt. bs) to cytochrome f
that phosphorylation may be coupled with it. Re-
cently, evidence has been found by Trebst (154), Wes-
sels (164), and Avron (6) for such a coupling. The
role of cytochrome b has not been definitely estab-
lished and there is disgreement as to the position of
plastocyanin (PC). Fork and co-workers (57, 112)
have suggested that plastocyanin is before cytochrome
f whereas the work of Levine and Gorman (118) on
mutants of chlamydomonas suggests that plastocyanin
is after cytochrome f.

The pigment system that sensitizes reaction I (sys-
tem I) is mainly composed of Chl a 680 (Chl a4) and
P700. Light quanta directly absorbed by P700 mole-
cules or transferred to them “send” the P700 molecules
into an excited state (P700%). The primary light re-
action is suggested to be a photo-oxidation of P700
(E6 = -}-0.4 V) and a reduction of an unknown inter-
mediate X (E6 ~ —0.6 V);

(4) X + P700* = X~ + P700*

The final result of the set of reactions (I) is the oxi-
dation of cytochrome f (i.e., production of a weak
oxidant) and the reduction of NADP (production of
a strong reductant). It has been recently suggested
(5,165) that ferredoxin (Fd), previously known as
“photosynthetic pyridine nucleotide reductase” (145),
is the primary oxidant of light reaction I of photo-
synthesis. Ferredoxin has E6 of about —0.41 to —0.49 v.
However, chloroplasts are capable of reducing exter-
nally added oxidants having oxidation-reduction po-
tentials as low as —0.6 V (Kok et al, 111). It is now
generally believed that NADP is reduced by a reaction
of NADP with reduced X, via ferredoxin and NADP
reductase (R) (see San Pietro and Black, 144).

The path of electrons from H;O to GO, may then
be summarized as follows:

N
(5) H,0— Z — (P680?) —~ Y(or Q) =~ PQ — Cb — Cf — PC —
l 0
0, light;, ADP s
R)
(P700) ~ X —~ Fd — NADP — g0,
7\
llghtI (CHZO)

Two products, ATP and reduced NADP, are needed
for the reduction of COs in the Calvin cycle (see Bass-
ham, 10, 11; Calvin and Baasham 29; and Evans et al.,
52 for a discussion of the path of carbon in photosyn-
thesis). The hypothesis so far discussed suggests that
reduced NADP is produced by a series of two light

reactions, and ATP is obtained in a reaction that con-
nects the two light reactions. (Evidence for “cyclic
phosphorylation” has accumulated in recent years but
we do not deal with it here.)

Alternate Hypotheses

An alternate hypothesis for two light reactions is
the “paralle]l formulation” of Gaffron (67). In this
hypothesis, the oxidents made by the two light re-
actions react with HyO to evolve Oy and the reductants
made by the light reactions somehow cooperate to re-
duce (CO,) to the (CH,O) level. French and Fork (61)
and Brody and Brody (25) have also proposed parallel
formulations. Hoch and Owens (90) and more recent-
ly Govindjee et al. (81) have proposed hypotheses in
which light reaction I makes high energy intermedi-
ates which are somehow used to evolve Oy from HyO
or to reduce ferredoxin (Fig. 10).

Warburg (see Vennesland, 155) and, more recently,
Arnon () have considered one light reaction hypo-
thesis, but theseé -authors have disregarded all the
existing data obtained in the laboratories of other
investigators in the last 10 years. Perhaps, other hy-
potheses can also be consiructed. However, most of
the available data — colleé¢ted in the majority of the
laboratories — favor the Hill-Bendall type hypothesis
in which two light reactions occur in series (see 136).

SUMMARY

Photosynthesis is a unique process on earth, in which
energy of sunlight is massively converted into chem-
ical energy. (For a summary of events in time when
plants are transferred from darkness to light, see Fig.
11.) All life draws upon this energy source.

CO,.__~ CH,0

NADP PIGMENT SYSTEM 11 é ) /
A<
4 ]_[ ~J G )
I‘ (Z H,0
0,

(1 tie)
D

ANy

hu,

X
PIGMENT  SYSTEM I

Fig. 10. Alternate model for the “uphill” transfer of hydrogen
atoms in photosynthesis (after Govindjee et al. [81]). The
main features of this scheme are: (1) the purpose of light
reaction I (bottom part of figure) is the production of a high
energy intermediate (HEI). Electron carriers such as cyto-
chrome f (Cyt f), plastocyanin (P, and plastoquinone (P,),
“X” and P,, are parts of this reaction sequence. (2) The
“HEI” produced by light reaction I supplies energy for the
reduction of ferredoxin (Fd) by reduced Y; Y being the pri-
mary electron acceptor in system II. Reduced Y is postulated
to have a potential slightly less negative (E, ~ —02 V)
than that of Fd; there is a deficiency in reductive power
that is overcome by energy from HEI (3) Light reaction II
involves the oxidation of Z and the reduction of Y (E,” of
Z ~ 408 V). (4) It is further suggested that a pool of
“HEI” may exist and other energy requiring reactions in
chloroplasts may also draw upon this pool.
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Fig. 11. A summary of events leading from light absorption
to cell growth (107 sec to 1 sec) (based on a diagram by
Kamen [93]).

Photosynthetic plants contain “photosynthetic
units”. Each unit is composed of approximately 200
to 300 pigment molecules (accessory pigments and
chlorophyll a) and one reaction center (or energy
trap). Light energy absorbed by any molecule in the
photosynthetic unit is transferred to the “energy traps”
(or reaction centers). At these centers, the primary
reactions (oxidationreduction reactions) occur; the
light energy is converted to chemical energy.

Recent experiments, beginning with the discovery
of the “Emerson enhancement effect”, have led to a
picture that suggests the operation of two light re-
actions in photosynthesis. In most popular hypotheses,
these reactions occur in series. The light reaction 11
produces a strong oxidant which oxidizes H;O to O2
and a weak reductant. The light reaction I, however,
produces a weak oxidant and a strong reductant that
reduces NADP to NADPH,. ATP formation is cou-
pled to a reaction of the weak oxidant (made by light
reaction I) and the weak reductant (made by light
reaction II). Both NADPH; and ATP — the end prod-
ucts of the light reactions — are needed to reduce CO»
to the carbohydrate (CHO) level.
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