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ABSTRACT

Cyanobacteria, algae, and plants fix CO2 in photosynthesis by utilizing the chemical energy
generated in the light reaction. Photosystem II (PS II) plays a vital role in the photosynthetic
energy fixation and oxygen evolution. Since the discovery of the stimulatory effect of CO2 on
the Hill reaction (non-cyclic electron transfer in the light reaction), researchers from different
laboratories around the world have shared their perspectives on this unique role of CO2. After
approximately twenty-eight years of confusion regarding the role of CO2 in photosynthesis
(dating back to James Franck’s 1945 finding of increased oxygen evolution in the presence of
CO2; Franck J (1945) Reviews of Modern Physics, 17:112-119), Alan Stemler and Govindjee
from the University of Illinois at Urbana-Champaign (UIUC) established, in 1973, the effect of
bicarbonate (HCO3

-) on PS II but were unable to pinpoint the exact binding site. Ongoing research
in Govindjee’s laboratory and other research facilities worldwide (e.g., Canada, China, Israel,
Finland, Switzerland, France, Germany, and The Netherlands) has predominantly focused on the
effect of HCO3

- on the (electron) acceptor side of PS II. However, key suggestions have been
made regarding the effect of HCO3

- on the electron donor side (of PS II) by Alan Stemler (USA)
and Vyacheslav Klimov (Russia). Yanyou Wu (China) has also put forth an argument suggesting
that bicarbonate may partly serve as a source of oxygen in the light reaction of photosynthesis.
In this review, we provide a brief historical account of the conceptual progression of the ”bicarbonate
effect” and present current perspectives on both the (electron) acceptor and donor sides of PS
II. Additionally, we briefly discuss the prevailing opinion on the carbonic anhydrase-like function
of PS II for CO2 hydration in oxygenic photosynthesis.

Keywords: Acceptor side of PS II, Bicarbonate effect, Carbonic anhydrase, Donor side of PS
II, Non-heme iron, Photosystem II, Plastoquinone

INTRODUCTION

Plants, including algae and cyanobacteria, cannot
perform photosynthesis  without  CO2. These
photosynthetic organisms fix atmospheric CO2 using
light energy to produce carbohydrates. CO2 is absorbed
by ribulose-1,5-bisphosphate carboxylase/oxygenase
(Rubisco) and subsequently reduced to carbohydrates

through various intermediates  in  the  Calvin-Benson-
Bassam Cycle (Bassham 2005; Benson 2005). To
convert light energy into chemical energy, two
photochemical reactions, working in series, are driven
by two photosystems associated with the thylakoid
membrane (Govindjee et al. 2017). Photosystem II (PS
II) is a water-plastoquinone oxidoreductase (Shevela et
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al. 2023; Wydrzynski and Satoh 2005) responsible
for photochemical  reactions, including  primary  charge
separation and the subsequent transfer of electrons from
water to plastoquinone. These electrons are further
transferred through other intersystem components,
ultimately reducing an oxidized electron acceptor in
photosystem I (PS I). PS I, in turn, transfers these
electrons to nicotinamide adenine dinucleotide phosphate
(NADP+), which, after reduction, participates in the
Calvin-Benson-Bassham cycle. However, CO2 serves not
only to  synthesize  carbohydrates but also to  regulate
photosynthetic electron transport in PS II (Stemler and
Govindjee 1974c; Stemler et al. 1974).

Due to its equilibrium with carbonic acid (H2CO3) and
bicarbonate (HCO3

-), CO2 provides both the acidic (H+

and CO2) and basic (HCO3
-) components for

the bicarbonate buffering system. This buffering system
maintains intracellular  and  extracellular  pH levels. The
interconversion of inorganic carbon allows rapid transport
of its  different  forms  (CO2/HCO3

-/CO3
2-) within cells.

While HCO3
- has  limited solubility in  biological

membranes, CO2 can freely diffuse in and out of cells.
Therefore, the interconversion of HCO3

- to CO2 facilitates
the transport of inorganic carbon into intracellular spaces,
while the conversion of CO2 to HCO3

- allows for trapping
CO2 within cells.

Although the role of HCO3
- in the “light reaction” of

photosynthesis was proposed as early as 1945 (Franck,
1945), its  function  remained  unclear  at  the  time.  The
discovery of the “bicarbonate effect” in the Hill
reaction by Warburg and Krippahl (1958) highlighted its
significance, but it remained dormant, so to speak, until
Govindjee delved deeper into it. Working with numerous
graduate students and research associates in his
laboratory and collaborating with various laboratories in
the USA and Europe, he provided valuable insights
into one of the major functions of bicarbonate in the light
reactions of  photosynthesis, as  well  as the  overall
photosynthetic complex (see e.g., Govindjee 2019;
Govindjee and Van Rensen 1978, 1993; Shevela et al.
2012; Vermaas and Govindjee 1982). Govindjee’s
perspective on the interaction of bicarbonate with the

electron acceptor side of PS II was visionary for scholars
and colleagues alike. Subsequently, extensive studies on
HCO3

- and its role in the electron donor site of PS II were
conducted by the laboratories of Alan Stemler (USA)
and Vyacheslav Klimov (Russia), as well as Govindjee’s
own research group (see e.g., Banerjee et al. 2019;
Brinkert et al. 2016; Fantuzzi et al. 2023; Shevela et al.
2008; Shevela et al. 2012; Shevela et al. 2013; Shevela
et al. 2020; Shutova et al. 2008; Stemler, 1989; Stemler,
2002; Stemler and Murphy, 1983; Tikonov et al. 2018;
Villarejo et al. 2002).

In this review, we summarize historical discoveries
related to the “bicarbonate effect,” particularly after its
validation with reproducible results by Stemler and
Govindjee (1973). We give special reference to the
contributions of Govindjee and his coworkers and outline
our current state of knowledge regarding the role of
HCO3

- in  determining PS  II  activity.  We  have
summarized the  research  of  various  laboratories  in
general, and  of  Govindjee  and  his  group  in  particular,
during the last 50 years (1973-2023), providing answers
to many unresolved questions related to (1) the active
species of molecules that regulate PS II activity; (2) the
precise role(s) of bicarbonate in PS II function; (3) the
binding niche of bicarbonate; (4) the functional details
of bicarbonate in the protonation of the reduced form
of the secondary bound plastoquinone QB

2-; (5) the donor
side effect of bicarbonate, and finally, (6) the molecular
mechanism of the bicarbonate effect on various PS II
functions.

THE ORIGIN OF THE CONCEPT OF A NEW ROLE
OF BICARBONATE

The role of CO2, though not as HCO3
-, in photosynthesis

was clear to researchers from the very beginning of the
history of photosynthesis. Some researchers had noticed
the requirement for HCO3

- long ago, without fully
recognizing its importance for the activity of the
photosystems. The experimental findings of Warburg
and Krippahl (1958, 1960) established the need for CO2

in the Hill reaction of chloroplasts. When Warburg and
Krippahl (1958) measured this reaction in the presence
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of 1.4% CO2, using the grana of kohlrabi leaves, with
quinone or ferricyanide as electron acceptor, they found
much higher rates of oxygen evolution than without
CO2; they showed that the Hill reaction was inhibited by
the removal and strongly stimulated by the addition of
CO2 at low partial pressure under conditions where CO2

reduction did not occur! This CO2 effect was shown to
be a general phenomenon, observable with a wide variety
of Hill reagents and a wide variety of plant species (Stern
and Vennesland 1962). However, Izawa (1962) and Good
(1963) argued against the scheme of Warburg and
Krippahl regarding the stimulatory effect of CO2 on the
Hill reaction, as it was much reduced in weak light
compared to strong light, suggesting that CO2 was not
involved in a photochemical reaction but in a non-
photochemical step. Nevertheless, the correlation of CO2

dependence with the presence of small anions weighed
towards HCO3

- as an important substance (Good 1963).

Various researchers until 1973 showed that it was
bicarbonate rather than the CO2 moiety that was the
functional entity. Stemler and Govindjee (1973) were
the first to note the enhancement in the Hill reaction
after the addition of HCO3

- at pH 6.5. They flushed the
thylakoids with acetate or formate-containing suspensions
(pH 5.6-6) in the dark with CO2-free air or pure nitrogen
gas and observed extremely low electron transport.
However, the rate was restored to control levels upon
the addition of bicarbonate (Figure 1). Furthermore,
Stemler and Govindjee (1973) also noticed a fairly abrupt
2-fold increase in the rate of dichlorophenol indophenol
(DCPIP) reduction as they increased the bicarbonate
concentration from 5 to 20 mM at pH 5.8. Although
they did not focus on the importance of this
observation, they concluded that, in all probability, CO2

may be the diffusing species, whereas HCO3
- is the

binding species. Since the stimulation is observed by
the addition of a bicarbonate solution to anion-inhibited
CO2-depleted thylakoids, the phenomenon is called
the “bicarbonate effect”. Although the phenomenon was
known earlier, the term “bicarbonate effect” was used for
the first time by Govindjee and his coworkers. Then, in
a series of experiments, Govindjee and his coworkers

(cited later) explained the effect of the presence
and absence of bicarbonate on the reduction of secondary
plastoquinone QB to QBH2 (plastoquinol). These results
suggested that HCO3

- is a requirement for plastoquinol
formation, confirming its involvement on the electron
acceptor side of PS II.

EARLY ATTEMPTS TO LOCATE THE SITE OF
ACTION OF BICARBONATE

The first attempt to locate the site of action of HCO3
-

was made by Punnett and Iyer (1964), who examined
the effect of CO2 on photophosphorylation. They
observed that by adding relatively high concentrations
of HCO3

- to non-HCO3
--depleted chloroplasts, they could

accelerate the Hill reaction, as well as enhance the rate
of phosphorylation. The ATP:2e- ratio also increased,
particularly when the pH was above 7. Thus, one of the
effects of added CO2 appeared to be an improvement
in the  coupling  between  electron  transport  and
phosphorylation. Punnett and Iyer (1964) proposed that
CO2 may increase the efficiency of the formation of a
high-energy intermediate resulting from electron transport
(now understood to be mainly pH). Batra and Jagendorf
(1965) extended the observations of Punnett and Iyer
(1964) and demonstrated that the effect observed by
them is, in fact, different from the HCO3

- dependence
observed by Warburg and Krippahl (1958; 1960).
Differences were noticed between the two observations:
(i) the Punnett and Iyer effect required a relatively high
[HCO3

-], whereas the Franck/Warburg effect required
much lower concentrations of HCO3

- to  be  added  to
HCO3

--depleted chloroplasts; (ii) uncouplers of
phosphorylation eliminated the stimulation of the Hill
reaction by HCO3

- in non-depleted chloroplasts (Batra
and Jagendorf 1965), but no such effect was observed
in CO2-depleted chloroplasts (Good 1963; Khanna et al.
1977; Stern and Vennesland 1962); (iii) added HCO3

-

stimulated phosphorylation under conditions of cyclic
electron flow around PS I, whereas the removal of CO2

by depletion had no effect on pyocyanin-supported
phosphorylation (Batra and Jagendorf 1965); and (iv)
the Franck/Warburg effect appears to represent a



LS - An International Journal of Life Sciences118

Barsha Bhushan Swain et al.

requirement for HCO3
-, whereas the Punnett and Iyer

effect is simply a stimulation (Batra and Jagendorf 1965).
Several other publications, most of them from Govindjee
and his co-workers in the next decade, showed that a
major site of HCO3

- action is  on the  electron  acceptor
side of PS  II, but  there  were/are  arguments  (and  even
some data) suggesting the existence of other site(s) for
the ion to bind (Blubaugh and Govindjee 1984; El-
Shintinawy et al. 1990; Khanna et al. 1977; Koroidov et
al. 2014; Shevela et al. 2012; Shevela et al. 2020; Stemler
2002; Stemler and Govindjee 1973; Vermaas and van
Rensen 1981; Wu 2021a; Wu 2021b; Wu 2022; Wu
2023).

A number of experiments were conducted in Govindjee’s
laboratory to precisely pinpoint the site of bicarbonate
action and to demonstrate the effects of dark incubation
and light pretreatment of chloroplasts suspended in
varying concentrations of bicarbonate. Refer to Stemler
and Govindjee (1973) for the results, where a bicarbonate

effect was suggested to occur on the water oxidation
side of PS II.

THE BICARBONATE EFFECT

A series of experiments conducted by Govindjee and his
colleagues at  the  University  of  Illinois  at  Urbana-
Champaign aimed to precisely determine whether CO2 or
HCO3

- was  the  species  responsible  for the  effect  on
the “light  reaction” phase of  photosynthesis,  thus
justifying the use of the term “bicarbonate effect”.
However, experiments involving dark incubation and light
pretreatment of chloroplasts under various
concentrations of bicarbonate and CO2 failed to establish
a distinction between the two species, as comparable
results were obtained under both conditions.

A clearer understanding of the actual role of CO2 or
HCO3

- was achieved through the experiments conducted
by Stemler  and  Govindjee  (1974a-c) using  oat  (Avena
sativa var. Cleland) chloroplasts. These experiments
definitively established that HCO3

- is involved in the early
photochemical reactions of PS II, rather than in the
dark enzymatic reactions, thus confirming the
“bicarbonate effect” as a phenomenon occurring in PS
II (Figure 2).

Jursinic et al. (1976) conducted new experiments to
determine the exact site of the bicarbonate effect using
different techniques, such as electron spin resonance
(ESR) measurements of Signal IIvf, measurements of the
rise and decay kinetics of chlorophyll a (Chl a)
fluorescence yield, as well as delayed light emission
(DLE) decay. Their observations included: (1)
bicarbonate depletion causing a reversible inactivation of
up to 40% of PS II reaction center activity, which
closely aligned with the percentage of inactivated PS II
centers reported by Stemler et al. (1974) from oxygen
yield measurements; (2) bicarbonate having no significant
effect on the electron flow from the charge-
accumulating S state to the intermediate known as Z;
(3) bicarbonate not affecting the rate of electron flow
from the oxygen-evolving system “S” to Z, but reducing
the formation of Z+ to  some  extent;  (4)  electron  flow

Figure 1. Initial rates of DCPIP reduction with normal (A) and
HCO3

--depleted (B-E) chloroplasts under various conditions. The
blue and red columns represent conditions without and with
HCO3

- (20 µM) addition, respectively. [DCPIP] = 39 µM.
Abbreviations: A - normal without pretreatment; B - HCO3

--
depleted without pretreatment; C - HCO3

--depleted + 5 min dark
+ DCPIP; D - HCO3

--depleted + 2 min saturating light + DCPIP;
E -  HCO3

--depleted +  2 min  saturating  light  + DCPIP + 5  min
dark. The figure has been created using data from part of Table
IV of Stemler and Govindjee (1973); reproduced with permission
of the authors.
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from Z to P680+ being partially affected by the absence
of bicarbonate, but the electron flow from the reduced
QA (QA

-) to the intersystem electron transport pool being
drastically inhibited by 4 to 6 fold under bicarbonate-
depleted conditions. These data suggested that
bicarbonate primarily targeted the electron acceptor side
of PS II, specifically between QA (the quinone electron
acceptor of PS II) and the intersystem electron carrier
pool.

By considering the pH dependence of the equilibrium
ratio of [CO2] to [HCO3

-], Blubaugh and Govindjee
(1986) kept  one  component’s  concentration constant
while altering the other. Their experiments, conducted
with isolated  chloroplasts depleted  in  a medium with  a

high anion content at pH below 6.0, showed the impact
of bicarbonate. Since H2O + CO2  H2CO3 has a pK of
6.37, an equilibrium at low pH favors CO2, which
disappears when nitrogen gas is flushed through the
system. In  these  experiments,  following  the depletion
of bicarbonate, chloroplasts were transferred to a medium
at pH 6.5, and the Hill reaction was monitored after the
addition of an electron acceptor. Initially, the rate of the
Hill reaction was low, but upon the addition of
bicarbonate, the rate significantly increased. Hence, it
was concluded that HCO3

- is the binding species. Several
experiments were then conducted to evaluate the site of
inhibition caused by CO2 depletion, which had previously
been used to determine the binding sites of bicarbonate.
In the presence of DBMIB (2,5-dibromo-6-isopropyl-3-
methyl-1,4-benzoquinone), a significant bicarbonate
effect was observed on the electron transport from
water to oxidized diamino-durene, indicating an effect
before the plastoquinone pool (Eaton-Rye and Govindjee
1984; Khanna et al. 1977). Since CO2 depletion had no
influence on the electron transport from water to silico-
molybdate in the presence of DCMU, it was determined
that the bicarbonate effect exists between QA and the
PQ pool. This site of inhibition due to the absence of
bicarbonate was further inferred from the interaction of
bicarbonate with various PS II-inhibiting herbicides
(Khanna et al. 1981; Snel and van Rensen 1983; van
Rensen and Vermaas 1981; Vermaas et al. 1982). By
adding different concentrations of bicarbonate to CO2-
depleted thylakoids, various rates of restoration of the
Hill reaction could be achieved. A typical Michaelis-
Menten kinetics of the activity relationship was obtained
between oxygen evolution and bicarbonate concentration
(Figure 3; See McConnell et al. 2012). However, there
is support for bicarbonate to function on both
the electron acceptor and the electron donor sides of the
PS II reaction center (Blubaugh and Govindjee 1984;
Klimov et al. 1997a; Klimov et al. 1997b; Klimov et al.
1995a; Klimov et al. 1995b; Klimov et al. 2003; Koroidov
et al. 2014; Kozlov et al. 2004; Stemler 2002; also see
reviews of Govindjee and van Rensen 1993; McConnell
et al. 2012; Shevela et al. 2012;  Shevela et al. 2023).
We begin with the acceptor side effect.

Figure 2. Ferricyanide reduction with and without 10 mM
NaHCO3 at different light intensities (percentage of saturating
light). The insert shows the ferricyanide reduction at the
lowest light intensity (reproduced with permission of the authors,
without modification from Stemler and Govindjee 1974c).
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EFFECTS ON THE ELECTRON ACCEPTOR SIDE
OF PS II

During the early part of the 1970s, there was
contradictory evidence  concerning the  location  of
bicarbonate in the photosynthetic electron transport
chain. The very first evidence for the location of
bicarbonate binding at the acceptor side of PS II,
between QA and QB, was presented by Wydrzynski and
Govindjee (1975). They observed that the absence of
bicarbonate ions increased the turnover time of the PS
II reaction center. They also noted that Chl a
fluorescence transients measured as a function of
decreasing bicarbonate concentrations were qualitatively
similar to those observed with increasing concentrations
of DCMU, which blocks the reducing (electron acceptor)
side, rather than to transients observed with increasing

concentrations of NH2OH or prolonged heat treatments,
which impose a block on the oxidizing (electron donor)
side. Di-phenyl-carbazide (DPC) as well as other artificial
PS II donors restored electron flow in heat-treated and
tris-treated chloroplasts (known to impair the electron
donor side of PS II), but the effects of HCO3

- depletion
and restoration remained, even with these donor systems
(Wydrzynski and Govindjee 1975). Subsequent
experiments in Govindjee’s laboratory provided
further convincing  evidence  on  the  electron  acceptor
side effects of bicarbonate (Eaton Rye and Govindjee
1987; Govindjee et al. 1976; Govindjee and Khanna
1978; Govindjee and van Rensen 1978; Jursinic et al.
1976; Khanna et al. 1977; Khanna et al. 1981; for a
review see Govindjee 1992). For example, the PS II
electron transport prior to QA, as measured by O2

evolution during electron transport from H2O to
silicomolybdate (SiMo), remained uninhibited by HCO3

-

depletion. However, the PS II reduction of oxidized di-
amino-durene (DADox), which efficiently accepts
electrons from the PQ pool, showed a strong HCO3

-

dependence (see below for discussion; for the use of
SiMo, see Zilinskas and Govindjee 1975). These findings
suggest that a major site of inhibition (by bicarbonate
depletion) is after QA, but before the PQ pool. However,
Graan (1986) challenged the generally accepted premise
that SiMo accepts electrons from QA. He argued that all
available evidence concerning SiMo involvement with
PS II is also consistent with SiMo simply replacing
DCMU from the QB binding  site.  Nevertheless,  there
remains convincing evidence on the involvement of
HCO3

- in electron transport between QA and the PQ
pool. Using artificial electron donors (DPC, DAD,
NH2OH) and electron acceptors (MV, SiMo), as well as
inhibitors (DCMU, DBMIB), it was earlier shown that
the major HCO3

- effect is on the QA
- QB site  of  PS  II,

before the site of action of DBMIB (at the plastoquinone
pool) (Khanna et al. 1977). The PS I electron transport,
as measured by O2 uptake during electron transport
from reduced di-amino-durene (DADred) to MV, did
not show any bicarbonate effect. Since the rates of
electron flow were very high indeed, it was firmly
established that HCO3

- is not involved in these reactions.

Figure 3. The  double  reciprocal  plot  of  oxygen  evolution  as  a
function of bicarbonate concentration in bicarbonate-depleted
pea chloroplasts in the absence and the presence of DCMU
(0.05 µM) (reproduced without modification from McConnell et
al. 2012).
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Khanna et al. (1981) showed that HCO3
- depletion

decreases the binding affinity of atrazine. Similarly, a
variety of atrazine-type herbicides have been shown to
inhibit HCO3

- binding (Snel and van Rensen 1983; van
Rensen and Vermaas 1981; Vermaas et al. 1982). Most
of these herbicides appear not to be competitive with
HCO3

- but bind close enough to be affected by it. Since
these herbicides are believed to inhibit PS II by replacing
PQ from the QB site (Oettmeier and Soll 1983), the
binding of HCO3

- at or near QB is a certainty. Eaton-Rye
and Govindjee (1984) showed that when hydroxylamine
is used to simultaneously inhibit O2 evolution and to
donate electrons to PS II, the reoxidation of QA

is reversibly  inhibited by HCO3
- depletion. Thus, these

experiments reaffirm the location of the HCO3
-

requirement to be after QA.

By monitoring the decay of Chl a fluorescence yield
after an actinic flash, Jursinic et al. (1976) demonstrated
that HCO3

- depletion slows the oxidation of QA
-, and

consequently, the reduction  of  QB, resulting in an
increase in half-time from about 0.5 ms to approximately
2.6 ms. When the Chl a fluorescence decay was
determined as a function of flash number (Govindjee et
al. 1976), the oxidation of QA

- was even slower after
the third and subsequent flashes, with a half-time of
about 150 ms. Since QB acts as a “two-electron gate,”
this suggests that two electrons can still flow, albeit
slowly, through QA to reduce QB to QB

2-, and that the
reoxidation of the latter becomes rate-limiting. Thus, it
appears that HCO3

- depletion not only slows down the
electron flow from the reduced QA to QB (especially to
QB

-), but also leads to blocking the exchange of QB
2- with

the PQ pool.

Inactivation of a portion of PS II also takes place due
to HCO3

- depletion (Jursinic et al. 1976; Siggel et al.
1976; Stemler et al. 1974), which has prompted the
suggestion that HCO3

- is essential for both the structural
and functional integrity of PS II. In addition, Jursinic
and Stemler (1984) found that a very slow component
of the Chl a fluorescence decay, with a half-time of 1-
2s, increases two-to-three-fold in HCO3

- depleted
samples, indicating  that  in  a  significant  portion  of  the

reaction centers of HCO3
- depleted chloroplasts, QB

2-

was not re-oxidized in the dark time between flashes,
thus keeping the reaction centers in a photosynthetically
closed state. Since the increase of this very slow
component occurred even after the first flash, Jursinic
and Stemler (1984) concluded that it was a component
of the electron transfer from the reduced QA to
QB and suggested  that  HCO3

- depletion may alter the
redox potential of QA with respect to QB or  reduce  a
local field that stabilizes QB. Furthermore, Eaton Rye
and Govindjee (1984) observed a 6-7-fold increase in
H2OMV reaction under aerobic conditions upon the
addition of HCO3

- to the HCO3
--depleted samples. In

these experiments, HCO3
- depletion was shown to reduce

the rate of oxidation of QA
- dramatically in the presence

of artificial donors (such as hydroxylamine and
benzidine). A fully reversible HCO3

- effect on the
oxidation of QA

- was observed even when the formate
ion, previously regarded as an essential factor
for the HCO3

- effect, was absent both in the depleted
and enriched samples. These results clearly indicate that
the acceptor side of PS II is a major site for the HCO3

-

effect.

It is pertinent to note that Vermaas and Govindjee (1982)
did not find any effect of HCO3

- on the redox potential
of QA/QA

-. However, HCO3
- depletion seems to have

destabilized QA by preventing the protonation of a nearby
protein group and causing a slow rate of QA

- oxidation
(Eaton-Rye and Govindjee 1988a). It has been proposed
that this slow component is due to the presence of
some inactive PS II centers since they don’t have bound
HCO3

- (Eaton-Rye and Govindjee 1988a; Garab et al.
1988), and that HCO3

- depletion somehow increases the
number of such centers, perhaps by inhibiting the binding
of PQ (Blubaugh 1987). In normal active centers, PQ
binding and its release must occur with a half-time
of less  than  1 ms  (Crofts  et  al.  1984).  Robinson  et  al.
(1984) substantiated the above concept through their
observation of a slower chlorophyll fluorescence decay
of HCO3

- depleted thylakoids but had obtained much
faster rates than were reported by Govindjee et al.
(1976), which was attributed to a slower flash frequency
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(1 Hz, instead of 33 Hz) that permitted most of the very
slow component to decay between the flashes in their
experiments.

Interaction of Bicarbonate and Non-heme Iron

The first indication that non-heme iron (NHI) may be
involved in bicarbonate action was reported by Vermaas
and Rutherford (1984). They showed that the addition
of formate (HCO2

-) to thylakoids increased the amplitude
of the electron paramagnetic resonance (EPR) signal (g
= 1.82) of QA–Fe2+ by ten-fold. Bicarbonate drastically
decreased the rate of reduction of QB by QA

-, suggesting
its involvement in the protonation of QB

2- (Eaton-Rye et
al. 1986; Govindjee and Eaton-Rye, 1986). Formate
is unable to function as bicarbonate since its pKa is 3.8.
Indirect evidence for such a function of bicarbonate, in
thylakoid membranes, was reported by Eaton-Rye and
Govindjee (1987, 1988a, 1988b), who had noted the pH
dependence of QA

- oxidation after one or two actinic
flashes in membranes, with and without bicarbonate.
Between pH 6.5 and pH 7.75, both the rate and the
amplitude of the initial first-order component of the
kinetics of QA

- oxidation were found to be pH-dependent.
A similar, although quantitatively different, pH dependence
was observed for the slow QA

- oxidation, by a back
reaction with the S2 state, in the presence of DCMU. The
replacement of HCO3

- by HCO2
- introduced a

conformational change in the PS II quinone acceptor
complex that is pH-dependent, resulting in a decreased
protonation of QB

2-. All of the above, taken together,
agrees with the concept that HCO3

- is  a  ligand  to
Fe2+, while  the  hydroxyl  group  of  the  bound  HCO3

-

 protonates a dissociable protein group that is functional
in the protonation of QB

2- (Blubaugh and Govindjee 1986;
Blubaugh and Govindjee 1988; Crofts et al. 1984; Eaton-
Rye and Govindjee 1988a).

Quite remarkably, when Michel and Deisenhofer (1988)
compared the primary structure of the L and M
polypeptides of the bacterial reaction centers with the
D1 and D2 polypeptides of PS II, they suggested that
bicarbonate may serve as a functional homologue to the
glutamate residue (M232 in Rps. viridis) in the bacterial

reaction center that provides ligands to the NHI. There
is no homologous glutamate residue in the D1 and D2
sequences, and there is no bicarbonate stimulatory effect
in the bacterial system (Shopes et al. 1989). Furthermore,
EPR experiments with PS II membranes confirmed the
binding of bicarbonate to the non-heme iron (Diner and
Petrouleas 1990), although the involvement of M232 as
a substitute for bicarbonate could not be confirmed by
site-directed mutagenesis at that time (Wang et al. 1992).

Van Rensen et al. (1988) showed that the kinetics of
bicarbonate binding to thylakoids are influenced by the
redox state of the NHI. Nitric Oxide (NO) has been
shown to be able to ligate to the NHI (Diner and
Petrouleas 1990). Kinetic measurements of electron
transport from reduced QA to QB indicated that NO
treatment shows the same effect of slowing down
electron transport as does formate; this effect is
completely reversed by the addition of bicarbonate,
indicating that it is a ligand to the NHI. Diner et al.
(1991) suggested two different patterns for the
bicarbonate-NHI binding, in which bicarbonate either
binds to the iron as a mono- or a bidentate ligand; these
authors suggested that iron-bound bicarbonate may be
one of the pathways for the protonation of reduced QB.
Different ways of binding (ligand formation) of
bicarbonate to the NHI were also discussed by Govindjee
and van Rensen (1993), in which bicarbonate is stabilized
by hydrogen bonding interactions with lysine 265
(numbering from Pisum sativum) in the D2 protein
(Figure 4). The direct involvement of bicarbonate in
binding to the iron is supported by several lines of
evidence. For example, Mössbauer spectrum of Fe
signal, indicative of the inner-coordination sphere of
iron, was found to be significantly affected by the
addition of formate, and it was fully restored upon the
re-addition of bicarbonate (Diner and Petrouleas, 1987;
Govindjee et al. 1997; Semin et al. 1990; van Rensen et
al. 1999). Fourier transform infrared (FTIR) difference
spectroscopy study, using 14C-bicarbonate, has further
indicated that bicarbonate is a bidentate ligand of the
NHI in PS II (Hienerwadel and Berthomieu 1995); in
addition, the bicarbonate ion was shown to switch from
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a chelating to a monodentate binding mode when the
iron is oxidized.

Furthermore, Xiong et al. (1996), from Govindjee’s
laboratory, constructed a model with a bicarbonate and a
water molecule positioned in the QB binding pocket.
They proposed a hypothesis  for  the role of bicarbonate
in the protonation of QB

2-. In  this model, bicarbonate,
stabilized by D1-Arg257, could donate a proton to QB

2-

through D1-His252. Additionally, a nearby water molecule
could donate another proton to QB

2-, resulting in the
formation of QBH2 (plastoquinol). The residues that form
the binding pocket are positively charged and hydrophobic
(Xiong et al. 1998a; Xiong et al. 1998b). Furthermore,
HCO3

- is  suggested  to stabilize  the QA-Fe-QB structure.
The available crystal structures of PS II indeed demonstrate
HCO3

- as a ligand of the NHI positioned between the two-
electron acceptor side quinones QA and QB (Ferreira et al.

2004; Loll et al. 2005). X-ray crystallographic and cryo-
EM studies have firmly established that HCO3- binds as a
bidentate ligand to the NHI (Fe2+; NHI) between QA and
QB in cyanobacteria, algae, as well as higher plants (Ago
et al. 2016; Guskov et al. 2010; Umena et al. 2011; Wei et
al. 2016). The removal of bicarbonate is expected to
alter the distance between QA and QB, slowing down the
rate of electron transport from QA

- to QB, although a more
significant effect is seen on the protonation of reduced
QB

2-. In addition to bicarbonate, the NHI appears to be
liganded by four histidines of D1 and D2 proteins: D1-
His215, D1-His272, D2-His214, and D2-His268 (Figure
5).

Takahashi et al. (2009) proposed, based on FTIR
measurements of PS II core complexes, that D1-Tyr246
(or D2-Tyr244) provides a hydrogen bond to the oxygen
of the bicarbonate ligand. These authors further suggest

Figure 4. The protein folding model of D1 (left) and D2 (right) polypeptides of Synechocystis sp. PCC 6803 showing the amino
acids in the vicinity of the bicarbonate binding site at the acceptor side of PS II. The residues indicated by asterisks are associated
with the bicarbonate effect (Reproduced with modification from Govindjee and van Rensen, 1993; with permission of the authors).
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that “the Tyr residue coupled to the non-heme iron may
play a key role in the regulatory function of the iron-
bicarbonate center by stabilizing the bicarbonate ligand
and forming a rigid hydrogen bond network around the
non-heme ion.” The atomic-level structure, at 1.9 Å
resolution of PS II, has provided the final picture (Umena
et al. 2011); the closest amino acids to the bicarbonate
ion are D2-Tyr244 and D1-Tyr246.

While the heterogeneity of PS II has been linked to
differences in the binding of bicarbonate to the NHI, the
connectivity of photosystems appears to have a negligible
effect on the regulatory role of bicarbonate. It’s important
to note that the addition of bicarbonate has been shown
to block QA

- reoxidation by O2 in the presence of
herbicides (Fantuzzi et al. 2023). Dissociation of
bicarbonate leads to an increase in the redox potential
of QA/QA

-, and consequently, the presence of QA
-

decreases the bicarbonate affinity for its binding site on
the NHI (Brinkert et al. 2016). Furthermore, these

authors proposed that when the intracellular CO2

concentration is low, resulting in CO2 fixation limitation,
there is over-reduction of the electron transfer chain and
accumulation of a long-lived QA

-. This is suggested to
trigger the  dissociation  of bicarbonate  by  lowering  its
affinity for the NHI, and the loss of bicarbonate increases
the energy gap between the QA/QA

- and PheoD1/PheoD1-
redox couples (Brinkert et al. 2016). This leads to
the inhibition  of  back-reaction,  i.e., the formation  of
P680+Pheo-. Under these conditions, O2 can bind to
the Fe2+ and then be reduced by QA

-, forming QA and
O2

-. Thus, the role of HCO3
- in  PS  II  also  involves  a

regulatory/protective redox-tuning, linking PS II function
to CO2 concentration.

Chlorophyll a fluorescence changes as evidence of
the bicarbonate effect

Govindjee and his colleagues were the first to use Chl
a fluorescence as a tool not only to gather evidence for

Figure 5. Structure of PS II in the region of the quinones QA and QB, and the NHI, showing the position of bicarbonate on the
electron acceptor side. The H-bond network (represented by broken lines) illustrates the interaction among the relevant amino acids
of D1 and D2 proteins in the vicinity of the bicarbonate site. The red beads represent water molecules near the HCO3

–distal to the
Fe2+ (represented by the rust-red sphere at the center) (reproduced without modification from Brinkert et al. 2016).
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the existence of the HCO3
- effect in PSII but also to

discover the major site of binding of HCO3
- on it (Stemler

and Govindjee 1974b). Many previously published
results by that  time had suggested that HCO3

- depletion
imposed an inhibition on the PS II functions, but the
site of binding was not known (Batra and Jagendorf
1965; Punnett and Iyer 1964; Stemler and Govindjee
1973; Stern and Vennesland 1962; Warburg and Krippahl
1958; Warburg and Krippahl 1960), which was
later confirmed by  measuring  Chl  a fluorescence
transient. Stemler and Govindjee (1974a) reported that
F0 (the initial “O” level fluorescence) and FM (the
maximum “P” level fluorescence) were not affected, but
the intermediate inflection showed a rapid rise with
HCO3

- depletion. To explain this fluorescence rise, the
authors reasoned that HCO3

- depletion may block electron
flow either before or after QB. Since variable Chl
a fluorescence (FV = FM - F0) remains almost unaffected
by HCO3

- depletion, the authors concluded that the effect
is presumably on the oxygen-evolving (electron donor)
side of PS II. Further evidence that HCO3

- is not acting
on the reducing (electron acceptor) side of PS II was
provided by using long-term delayed light emission,
which reflects back reactions in PSII after light-induced
charge separation (Stemler et al. 1974). The redox state
of QA could be assessed by Chl a fluorescence since QA

is a quencher of fluorescence, not QA
- (Duysens and

Sweers 1963). Fluorescence induction measurements
helped detect a rapid accumulation of QA- due  to  an
inhibition of electron transport beyond QA. The first
indication for a bicarbonate effect on the electron
acceptor side of PS II was deduced through Chl a
fluorescence induction kinetics in maize chloroplast
fragments after CO2 depletion and after the re-addition
of bicarbonate (Wydrzynski and Govindjee 1975). HCO3

-

depletion accelerated the rise of the Chl a fluorescence
transient in a manner similar to the herbicide, DCMU.

As mentioned above, Govindjee et al. (1976) measured
Chl a fluorescence  to  assess  the  consequences  of
bicarbonate depletion on the electron transport from the
primary electron acceptor, QA, to the plastoquinone pool;
they concluded that the reoxidation of the reduced form

of the electron acceptor QA was hampered. The slower
decay rate in the absence of HCO3

- decreased the Hill
reaction by 5-10 times under saturating light conditions.
Under HCO3

- depleted conditions, QAQB remained in the
reduced state QA

-QB
2-. This conclusion was in agreement

with the results on the DCMU-induced Chl a fluorescence
rise in the presence of bicarbonate. Similarly, Eaton-Rye
and Govindjee (1984) showed that when hydroxylamine
is used to simultaneously inhibit O2 evolution and to
donate electrons to PS II, the decay of Chl a
fluorescence after a flash, which monitors the reoxidation
of QA

-, was reversibly inhibited by HCO3
- depletion.

The accelerated rise from F0 to FM was due to the
faster accumulation of QA

-, while the observed slower
rise from FI to FM represents the filling of the
plastoquinone (PQ) pool; only when the PQ pool is
fully reduced can [QA

-] accumulate to its maximum
level (Vermaas and Govindjee 1981). Thorough HCO3

-

depletion causes a complete, or nearly complete, blockage
of electron flow from QB to the PQ pool (Vermaas and
Govindjee 1982).

Additional evidence for the requirement of bicarbonate
on the electron acceptor side of PS II was obtained
from comparative measurements on Chl a fluorescence
transients of bicarbonate-depleted and PS II herbicide
(which displaces  QB)-treated samples, from studies on
the chemical modification of the amino acids on the
(electron) acceptor side of PS II, as well as from the
use of herbicide-resistant mutants (Govindjee and Van
Rensen 1993; Srivastava et al. 1995; Vernotte et al.
1995). Enhanced variable Chl a fluorescence of DCMU-
treated (10 µM) thylakoids was observed both in the
absence and at high concentration (60 mM) of HCO3

-

(in HCO3
- - depleted thylakoids). In non-depleted

thylakoids, the FV was independent of the order in which
DCMU and HCO3

- were added, but in HCO3
- - depleted

thylakoids, the effect was seen only when HCO3
- was

added before DCMU (Blubaugh and Govindjee 1984).
With this experiment, the effect of HCO3

- between QA

and PQ was confirmed. Furthermore, by adding
bicarbonate after bathocuproine, Blubaugh and Govindjee
(1984) observed a heterotropic binding of these two
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compounds and concluded that this effect requires light.
They proposed two binding sites for HCO3

- around PS
II: (1) a light-independent high-affinity binding site near
the site of DCMU where bicarbonate exerts its major
effect and its depletion causes enhancement of Chl a
fluorescence; and (2) a light-dependent low-affinity
binding site (Blubaugh and Govindjee 1984; El-
Shintinawy et al. 1990), elsewhere. However, no clear
explanation for light-dependent binding of bicarbonate
was given at this time. By giving saturating actinic flashes
to HCO3

- - depleted thylakoids of Synechocystis sp. 6803,
Cao and Govindjee (1988) observed Chl a fluorescence
changes similar  to  those observed  in  DCMU-treated
thylakoids. Similarly, by measuring Chl a fluorescence
yield decay, in the sub-ms range, after various single
turnover pre-flashes, the largest slowing down of
fluorescence decay was observed after the second or
the third flash in the CO2-depleted samples. Protonation
of QB

2-, mediated by HCO3
-, occurred after the second

flash (Eaton-Rye and Govindjee 1988a; Eaton-Rye and
Govindjee 1988b; Govindjee and Van Rensen 1993; Xu
et al. 1991). All of the above is consistent with the
mechanism of bicarbonate action on the QA-QB site(s),
as discussed above.

THE BICARBONATE EFFECT ON THE ELECTRON
DONOR SIDE OF PS II

In the early 1970s, the electron donor side of PS II was
considered as a possible site for bicarbonate (Stemler
and Govindjee 1973; Stemler et al. 1974; see above).
Several researchers have suggested that HCO3

- may act
as a substrate or an intermediate in photosynthetic O2

evolution, possibly coupled with carbonic anhydrase
(CA) activity (Kreutz 1974; Lu and Stemler 2002; Lu
and Stemler 2005; Metzner 1978; Stemler 1980; Wu
2021a; Wu 2021b; Wu 2022; Wu 2023). Stemler and
his collaborators have continued to investigate the
possible involvement of HCO3

- ions in the mechanism
of O2 evolution on the oxidizing (electron donor) side of
PS II (see Castelfranco et al. 2007; Li et al. 2023; Lu
and Stemler 2002; Lu et al. 2005; Stemler 1980; Stemler
1998; Stemler 2002; Stemler and Castelfranco 2023).

Since the mid-1990s, the idea of an additional role of
HCO3

- on the electron donor side of PS II has been
revived through a series of experiments by Slava Klimov
and his coworkers (Klimov and Baranov 2001; Klimov
et al. 1995a; Klimov et al. 1995b; Klimov et al. 1997a;
Klimov et al. 1997b; Klimov et al. 2003). Other research
groups have also indicated a requirement for HCO3

- on
the water-splitting side of PS II (Ananyev et al. 2005;
Baranov et al. 2004; Kalman et al. 2011; Shutova et al.
2008; Ulas and Brudvig 2010). On the other hand,
several experiments in the past, under different
experimental conditions, did not show the involvement
of HCO3

- on the electron donor side of PS II (Jursinic
et al. 1976; Khanna et al. 1977; Khanna et al. 1981; van
Rensen and Vermaas 1981).

Initially, there were contradictions regarding the effect
of bicarbonate on oxygen evolution and CO2 fixation.
The stimulation of oxygen evolution by HCO3

- was
observed at low light intensity by some researchers and
was found to be enhanced with irradiance (Good 1963;
Izawa 1962). Similarly, the enhancement of light-
intensity-dependent carbon fixation by the presence of
bicarbonate was proposed at that time. However, these
results contradicted the findings of West and Hill (1967)
and of Stemler and Govindjee (1974c), who showed
the HCO3

- effect to be independent of light intensity,
although later Govindjee and his coworkers (Blubaugh
and Govindjee 1984; Blubaugh and Govindjee 1988;
Govindjee et al. 1983; Govindjee et al. 1985) observed
both light-dependent and light-independent effects. It
was also proposed that a light-intensity-dependent effect
implies that HCO3

- is acting on enzymatic carbon fixation,
while a light-intensity-independent effect implies that
the HCO3

- effect is on the photochemical processes.
Stemler and Govindjee (1974b) observed that under
HCO3

--depleted conditions, maize chloroplast fragments
lost their oxygen-evolving ability, as well as their capacity
to reduce ferricyanide. Furthermore, with these
observations on the Hill reaction (DCPIP reduction),
they concluded that at least one site of action of
bicarbonate is at, or very near, the oxygen-evolving
center. They suggested that there is an endogenous



Volume 12, Number 3, September-December, 2023 127

Fifty Years of Research on the “Bicarbonate Effect” in Photosystem II

donor that donates electrons to PS II and reduces
ferricyanide without the liberation of molecular O2.
However, if HCO3

- was supplied to the medium, it acted
as an electron donor with a proportionate increase in O2

evolution. In the presence of HCO3
-, the O2 evolution is

elevated by ~15 fold, and there is a 4-5-fold increase in
ferricyanide reduction in maize chloroplasts. The S-
state kinetic model for oxygen evolution by Kok et al.
(1970) was considered to support this result of Stemler
and Govindjee (1974c), as HCO3

- was suggested to
maintain a high oxidation state of the primary electron
donor of PS II. However, the observations of Wydrzynski
and Govindjee (1975), mentioned above, initiated the
idea of the acceptor side effect of HCO3

-, which was
confirmed with many subsequent experiments (see the
section above). When chloroplasts were heat-treated to
inactivate the oxygen-evolving system, HCO3

- produced
no effect on the partial Hill reaction from diphenyl
carbazide (DPC) to dichlorophenol indophenol. In
addition, HCO3

- depleted conditions decreased the S-
state transitions in the oxygen-evolving complex,
implying that there is a possible site of action of
bicarbonate on the electron donor side of PS II (Jursinic
et al. 1976; Govindjee and Khanna 1978). Studies by
El-Shintinawy et al. (1990); Jursinic and Dennenberg
(1990); Stemler and Jursinic (1993); Klimov et al.
(1995a,b); Wincencjusz et al. (1996) have also shown
that bicarbonate has an effect on the electron donor
side function of PS II, in addition to its established
effect on the electron acceptor side (see above).

Studies on the time of release of oxygen in single flash
exposure to the thylakoid membrane in the presence of
formate have shown that it can be restored by the
addition of bicarbonate as it causes rapid S state
transitions on the initial flash, and the rates of both S0*
S1 and S1*S2 become equal (Jursinic and
Dennenberg 1990; Stemler 1982; Stemler 1998; Stemler
2002). On the other hand, Govindjee et al. (1989), who
did repetitive flash measurements to determine the half-
time of decay of the ESR signal II, observed that HCO3

-

depletion did not affect this part of electron flow to PS
II. Thus, they suggested that electron flow from “Z”

(Yz, a tyrosine) to the oxidized reaction center of PS II
(P680+) was independent of bicarbonate.

However, from 1995, the hypothesis for an additional
role of HCO3

- on the electron donor side of PS II has
been revived by experiments showing that HCO3

- is
required for both the maximal activity and the stability
of the OEC (Allakhverdiev et al. 1997; Klimov et al.
1995a; Klimov et al. 1995b; Klimov et al. 1997a; Klimov
et al. 1997b). The stimulating effects of HCO3

- ions are
especially pronounced during the photoactivation steps
(Baranov et al. 2000; Baranov et al. 2004). Furthermore,
reconstitution of the Mn cluster after a complete removal
of manganese and calcium from PS II preparations was
shown to be enhanced by bicarbonate (Ananyev and
Dismukes 1996a; Ananyev and Dismukes 1996b;
Ananyev et al. 1999; Chen et al. 1995; Miller and Brudvig
1990; Noriaki and Cheniae 1987; Shafiev et al. 1988;
Zaltsman et al. 1997). However, it was not clear as to
which specific step(s) during the reconstitution of the
Mn4 cluster were stimulated by bicarbonate ions. The
reconstitution process is a natural process that occurs
during biogenesis of the inorganic cluster, as well as
following the repair of damaged PS II protein subunits
(photoactivation). This process involves multiple steps
that require both light-induced Mn2+ oxidation and the
binding of a Ca2+ ion in the dark for the reactivation of
O2 evolution (Allakhverdiev et al. 1997; Boranov et al.
2000; Klimov et al. 1995a; Klimov et al. 1995b; Klimov
et al. 1997a; Klimov et al. 1997b). For the assembly of
the functional inorganic core (Mn4CaO5Cl) starting from
the cofactor-depleted apo-OEC- PS II center and free
Mn2+, Ca2+, and Cl-, two binding sites for bicarbonate
were found that stimulate photoactivation by accelerating
the formation and suppression of the decay, respectively,
of the first light-induced assembly intermediate, apo-
OEC-Mn(OH)2

+ (Baranov et al. 2000):

A high-affinity bicarbonate binding site (Kd < 10 µM)
was shown to stimulate the rate of recovery of O2-
evolving centers (Figure 6). This stimulation involves
enhanced binding of the initial Mn2+ and occurs only at
concentrations of Mn2+ at or below the stoichiometric
requirements for water oxidation (<4 Mn/PS II) and
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Figure 6. Bicarbonate involvement in the reassembly of the active water oxidizing complex (Mn4CaO5Clx). The model above is based
on the photoactivation steps in the formation of Apo-WOC-PS II (reproduced without modification from Baranov et al. 2000).

disappears above 4 Mn/PS II. The absence of an effect
by added bicarbonate on photoactivation kinetics and
yield at saturating concentrations of Mn2+ and Ca2+ has
been attributed to the availability of atmospheric
bicarbonate (~4 µM at pH 6.0), which is sufficient for
the photoactivation step.

A second low-affinity bicarbonate site has also been
observed; it has been shown to stimulate the rate of
formation of IM1[apo-WOC-Mn(OH)2

+], but with much
lower affinity (Kd at millimolar level); further, it becomes
observable only at low concentrations of Ca2+ that are
limiting for photoactivation.

Baranov et al. (2000) presented four interpretations of
the high-affinity bicarbonate effect: (i) it might act as an
integral cofactor within the OEC (possibly serving as
a ligand to  the first Mn); (ii)  it functions as a Bronsted
base, accelerating proton release during the formation of
either the dark precursor [apo-OEC-Mn(OH)+] or IM1
[apo-OEC-Mn(OH)2

+]; (iii) it directly supplies one or more
hydroxide ions during the formation of the latter two

species (with the release of CO2); or (iv) it acts as a
membrane-soluble anion, thereby electro-statically
elevating the local concentration of Mn2+ in PS II.

Electrochemical and EPR characterizations of HCO3
-

complexes with MnII and MnIII ions indicate that these
ions form electro-neutral complexes. The dissociation
constant (Kd) of the MnIII-HCO3 complex is nearly 10
orders lower than that of the MnII-HCO3 complex (Kozlov
et al. 2004). These properties of MnII-HCO3 complexes
may facilitate the photo-induced assembly of the inorganic
core of the OEC (Dismukes et al. 2001; Kozlov et al.
2004). These  findings  align with proposals by Klimnov
and his associates (Klimov and Baranov 2001; van Rensen
and Klimov 2005): (a) HCO3

- is bound to or is a
structural component of the assembled Mn4CaOx cluster;
(b) HCO3

- remains bound in the vicinity of the Mn4CaO5

cluster; or (c) HCO3
- is required during photoactivation

and subsequently leaves the site.

Klimov and his coworkers have established, through
numerous experiments, the functional role of HCO3

- as a
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ligand to the Mn4CaO5 cluster, serving as an
essential cofactor  in  stabilizing  the  water-oxidizing
complex (Klimov and Baranov 2001). Ferreira et al. (2004)
found, at 3.5 Å resolution, that HCO3

- (or CO3
2-) may be

involved as a ligand bridging Mn and Ca ions within the
OEC. However, higher-resolution X-ray crystallography
studies of PS II seemed to reject this notion,
instead showing HCO3

- as a ligand between QA and
QB. Various techniques, including UV spectro-photometry
under high backpressure of CO2, mass spectrometry
(MS) with 18O-labeling of H2O and HCO3

-, GC-MS, light-
induced FT-IR difference spectroscopic analysis, high-
resolution crystallography, computational models based
on density functional theory (DFT), and quantum
mechanics/molecular mechanics studies, have not
confirmed the  presence  of HCO3

- as a significant
intermediate substrate (ligand) for photosynthetic water
oxidation. Thus, there is no conclusive support for the
concept of water being transported to the Mn4O5Ca
cluster in the form of HCO3

- (or peroxydicarbonic acid;
H2C2O6) (Castelfranco et al. 2007; Shevela et al. 2012;
Stemler and Castelfranco 2023). FT-IR spectroscopy,
which examined the structural coupling of HCO3

- to the
OEC, has not indicated any HCO3

- band from the OEC
during the S-state transitions (Aoyama et al. 2008). This
is consistent with results  obtained  by  flash-induced O2

evolution pattern (FIOP) studies, where the redox
potentials of the S states of the OEC were unaffected by
HCO3

- depletion via washing with CO2/HCO3
--free buffer

(Shevela et al. 2007).

Clausen et al. (2005) studied possible product inhibition
of electron transfer into the catalytic Mn4CaO5 complex
during the oxygen-evolving reaction by significantly
increasing CO2 pressure. They found 50% inhibition by
raising the O2 pressure only tenfold over ambient,
excluding the idea that exchangeable bicarbonate is the
substrate for (and CO2 an intermediate product of) oxygen
evolution by photosynthesis. However, they support the
involvement of firmly bound or sequestered bicarbonate
in water oxidation, consistent with the idea of Stemler
and Castelfranco (2023). It remains conceivable that
bound HCO3

- may (i) be part of a deprotonation pathway;

(ii) alter the redox properties of  the Mn4CaO5 complex;
(iii) stabilize the metal-cluster as a ligand to manganese
and/or calcium; or (iv) provide a binding site for substrate
water (also, see: Klimov et al. 1995a; Klimov et al.
1995b).

Shevela et al. (2006) demonstrated that the hydrazine-
induced transition of the OEC to super-reduced S-states
depends on the presence of bicarbonate in the medium.
After a 20-minute treatment of isolated spinach
thylakoids with 3 mM NH2NH2 at 20°C in the CO2/
HCO3

--depleted buffer, the S-state population is high
(42%) in the S3 state, but the S4 state is reached easily
in the presence of 2 mM NaHCO3. However, the same
treatment produces less (30%) S3 state and no S4
state when  bicarbonate  is  reduced.  The  bicarbonate
requirement for oxygen-evolving activity is low in
untreated thylakoids but considerably increases during the
transition of the OEC to the super-reduced S-states.
However, the bicarbonate requirement becomes low again
when the OEC returns to the normal S-states after pre-
illumination, suggesting that bicarbonate is associated
with manganese ions within the OEC (Shevela et al.
2006).

Carrieri et al. (2007) reported an in vivo requirement
for bicarbonate that is both reversible and selective for
efficient water oxidation activity in a hyper-carbonate-
requiring cyanobacterium Arthrospira maxima. Using FV,
Carrieri and co-workers observed a very large reversible
bicarbonate effect on the PS II activity, indicating the
requirement for bicarbonate on the water-oxidizing
complex. Ananayev et al. (2005) interpreted their results
on a mutant of CP43-arginine-357 to serine in
Synechocystis sp. 6803 to imply that arginine R357
functions in binding a (bi)carbonate ion, essential
for the normal catalytic turnover of the water-oxidizing
complex. They postulated that bicarbonate, through
hydrogen bonds with R357, abstracts protons from
oxidized water molecules (Ananyev et al. 2005; cf.
McEvoy and Brudvig 2004). On the other hand, Villarejo
et al. (2002) proposed that bicarbonate may act as the
endogenous base for protons released into the lumen
upon water oxidation. All  these  ideas  warrant  serious
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consideration, and future  research should  aim  to
precisely determine how bicarbonate functions on the
water oxidation side of PS II.

Yruela et al. (1998) suggested that bicarbonate (rather
than a carboxylic group of amino acid residues ligating
the inorganic core of the OEC; cf. Noguchi et al.
1995) acts  as  a bridging  ligand  between  a Mn-ion  and
a Ca2+ within the OEC. Later, from the X-ray analysis
of the OEC structure (Ferreira et al. 2004), a similar
suggestion was made, where a bicarbonate (or carbonate)
anion was “predicted” to be located between Ca2+ and
Mn. However,  the 3.5  Å resolution may  not be high
enough to confirm this conclusion. At the 3.0 Å
resolution, bicarbonate, as a ligand to Mn, was not
observed by Loll et al. (2005). Further research is
necessary, at different pH levels, as there may have
been a loss of bicarbonate from the OEC due to the
reduction of MnIII ions to MnII caused by X-ray
irradiation and the treatment required during X-ray
measurements.

It has already been shown that bicarbonate ions are
required for both the maximal activity and the stability
of the OEC in PS II (Allakhverdiev 1997; Klimov et al.
1995a; Klimov et al. 1995b; Klimov et al. 1997a; Klimov
et al. 1997b). The stimulating effects of bicarbonate are
especially pronounced during the reactivation of the
electron donor side of PS II with MnII ions added to
Mn-depleted PS II preparations (Baranov et al. 2000;
Baranov et al. 2004). Various suggestions have been
made regarding the possible role of bicarbonate within
the OEC of PS II (e.g., Klimov and Baranov 2001;
Stemler and Castelfranco 2023; van Rensen and Klimov
2005). Further exploration is needed to ascertain whether
bicarbonate can indeed be considered a direct ligand to
the Mn4CaO5-cluster and whether its removal from the
OEC makes the Mn4CaO5-cluster unstable. Shevela et al.
(2006) demonstrated that reducing the bicarbonate
concentration in photosynthetic samples by 5-fold relative
to air-saturated buffers did not affect the redox potential
of the OEC in PS II. Even at ~50-fold reduced
bicarbonate levels, the rate of reduction of the OEC by
NH2OH remained unchanged. Therefore, it appears likely

that bicarbonate, after its possible involvement in the
assembly of the Mn4CaO5 cluster, leaves the OEC.
Alternatively, the ion could remain so tightly bound to
the OEC that no one has been able to remove it by
washing with HCO3

-/CO2-depleted buffer. However, no
clear evidence of such tightly bound bicarbonate is yet
available, with the only definite site being on the electron
acceptor side of PS II. An open mind is needed. HCO3

-

was shown to be a transient ligand to Mn ions during
the photo-assembly process of the Mn4O5Ca cluster in
the OEC-depleted PS II centers (Baranov et al. 2004;
Dasgupta et al. 2007; Kozlov et al. 2010). Furthermore,
Klimov and Baranov (2001) demonstrated a pronounced
stimulating effect of HCO3

- ions on electron donation
from exogenous  Mn2+ ions to Mn-depleted PS II and
the photo-induced reconstitution of the functional OEC
(Allakhverdiev et al. 1997; Allakhverdiev et al. 2011;
Hulsebosch et al. 1998; Klimov et al. 1995a; Klimov et
al. 1995b). We await future research in this area.

PS II-DONOR-SIDE-ASSOCIATED CARBONIC
ANHYDRASE (CA) ACTIVITY

The CA-type action of PS II was proposed as early as
1980 by Alan Stemler (Stemler 1980). Since then, several
reports have shown that easily exchangeable HCO3

- ions
improve water oxidation by acting as specific acceptors
of protons during this process (Ananyev et al. 2005;
Koroidov et al. 2014; Shevela et al. 2013; Shutova et al.
2008; Villarejo et al. 2002). This process is coupled
with the PS II-donor-side-associated carbonic anhydrase
(CA). Deprotonation reactions and the removal of protons
away from the OEC are thought to have a significant
impact on the thermodynamics of the water-splitting
process. Ananyev et al. (2005) proposed that HCO3

-

may play an indirect role in water splitting as a proton
transfer mediator, and some results support this
assumption (Shutova et al. 2008; Ulas and Brudvig 2010;
Ulas et al. 2008). For example, Stemler (1985, 1997)
suggested that a thylakoid CA might be involved in the
‘donor-side’ effects of HCO3

- (also see: Moubarak-Malid
and Stemler 1994; Lu and Stemler 2002; Lu and Stemler
2005). Shutova et al. (2008) showed that in



Volume 12, Number 3, September-December, 2023 131

Fifty Years of Research on the “Bicarbonate Effect” in Photosystem II

Chlamydomonas reinhardtii, both HCO3
- and Cah3 (the

CA protein in C. reinhardtii associated with the PS II
donor side) have specific ‘donor-side’ effects on the
proton release steps but not on the electron transfer per
se. Furthermore, Shutova et al. (2008) suggested that
a CA/HCO3

- system in C. reinhardtii may facilitate proton
removal away from the OEC during water splitting by
accelerating interconversion between HCO3

– and CO2.
Additionally, it was suggested that HCO3

– may stabilize
the OEC via binding to the extrinsic proteins, specifically
to the manganese-stabilizing PsbO protein (Pobeguts et
al. 2007;  Pobeguts  et  al.  2010).  However,  Tikonov
(2018) presented a new approach for the quantification
of bicarbonate (HCO3

-) molecules bound to PS II, where
he used a combination of membrane-inlet mass
spectrometry (MIMS) and 18O-labeling. This approach
excludes the possibility of “non-accounted” HCO3

- by
avoiding the use of formate to remove HCO3

- from PS
II and by  employing extremely  low  concentrations  of
HCO3

-/CO2 during online MIMS measurements. In
spinach PS II membrane fragments, Tikonov (2018)
observed that 1.1 ± 0.1 HCO3

- is bound per PS II reaction
center, while none is bound to the isolated PsbO
protein, suggesting  that  PS  II  binds  only  one  HCO3

-

molecule as a ligand to the NHI of PS II, while unbound
HCO3

- optimizes the water-splitting reactions by acting
as a mobile proton shuttle. However, this experiment
needs to be redone, particularly at different pH levels. A
photoprotective role of HCO3

-, which controls
chlorophyll triplet state-mediated singlet oxygen
formation, has been suggested by Brinkert et al. (2016).
Fantuzzi et al. (2023) reported that PS II monomers
from the stromal lamellae contain PsbS, which limits
HCO3

- binding, whereas those of the granal lamellae are
activated by HCO3

- binding.

The possibility of bicarbonate functioning as a ligand to
the OEC or a substrate in the oxygen-evolution reaction
has been excluded by many researchers. However,
experiments utilizing bicarbonate as a mobile proton
carrier to probe the proton-transfer pathway on the
electron donor side of PS II have been conducted
(Banerjee et al. 2019; Debus 2015; Ho 2012; Pokhrel et
al. 2013). Analysis of several single-point mutations D1-

D61A, D2-K317A, D1-E65A, D1-R334A, using FT-IR
studies and flash-induced polarographic measurements,
has been instrumental in tracing the proton-transfer
pathway on the electron donor side of PS II (Ho, 2012;
Pokhrel et al. 2013; Debus, 2015). Computational
analyses have also designated the above-mentioned
residues as part of the proton-transfer channel (Ho,
2012). Banerjee et al. (2019) used bicarbonate as a
mobile exogenous proton-transfer reagent to recover
the activity lost by the above-mentioned site-directed
mutations to  identify  amino acid  residues  participating
in the proton-transfer pathway. Banerjee and coworkers
found that bicarbonate restores efficient S-state cycling
in D2-K317A PS II core complexes but not in D1-
D61A and CP43-R357K PS II core complexes, indicating
that chemical rescue by bicarbonate can be used to
differentiate single-point mutations affecting the pathways
of proton transfer from mutations that affect other
aspects of the water-oxidation mechanism. It is
interesting to note that perturbations in water oxidation
by D1-S169A substitution have also been reported
(Ghosh et al. 2019); thus, the future of understanding
how bicarbonate plays a key role on the electron donor
(the water oxidation) side is not far from us – whereas
that for its action on the electron acceptor side has
already been revealed, mainly pioneered by Govindjee
and his research students.

Contradicting the conclusions of many scientists (See
Govindjee and van Rensen 1993; Govindjee et al. 2006),
Hiller et al. (2006) had suggested the presence of a CA
type activity of PS II but concluded that bicarbonate is
not a physiologically significant substrate and is not
directly a source for photosynthetic oxygen evolution;
nevertheless, PS II CA activity is a determinant for the
rate of oxygen evolution. On the other hand, using labeled
HC18O3

-, Delsome and Joliot (2002) found that PS II,
like CA, has a long-lasting catalytic activity (more than
a second), which almost leads to full exchange of heavy
oxygen in CO2 with oxygen in H2O, resulting in a
minimal amount of  heavy  O2 in  HC

18O3
-. Therefore, if

the photolysis of HC18O3
- (if at all present) occurs in

HCO3
--depleted maize chloroplast fragments, the oxygen

evolved would be (almost) entirely of the normal type.
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However, Wu (2021a) has argued that HCO3
- is a direct

substrate in photosynthetic oxygen evolution at PS II.
He has observed that HCO3

- would exchange with almost
all oxygen in water molecules, and therefore it is difficult
to compartmentalize whether oxygen has come from
water only or a combination of the O2 evolution from
HCO3

- and water. By arguments from geochemistry,
bicarbonate photolysis and water photolysis as well as
their possible roles in photosynthesis, Wu (2021a, 2021b,
2022, 2023) has suggested a synthetic formula for
oxygen evolution as: 2H2O + CO2  H2O + H++ HCO3

-

  O2 + 4e- + 4H++ CO2 (Figure 7). He has also
suggested that PS II functions as CA to catalyze the
reaction of CO2 hydration under physiological conditions,
and CO2 hydration coupled with chemical equilibrium,
H++ HCO3

-  1/2O2 + 2e- + 2H+ + CO2, occurs in a PS
II core complex. Thus, water photolysis and bicarbonate
photolysis account for half of the oxygen evolution,
respectively, by PS II (Wu 2023). However, it is

necessary to question and to develop and optimize
experimental protocols for obtaining reproducible results
to confirm the derived assumptions on such CA type
activity of PS II and O2 evolution from water via HCO3

-

as a catalyst.

CONCLUDING  REMARK

The extensive research  on the  “bicarbonate  effect” on
PS II activity, particularly the pioneering work by
Govindjee and his colleagues at UIUC starting in 1973,
has significantly advanced our understanding of the role
of bicarbonate in photosynthesis. This research has
delved into the mechanisms and sites of action of
bicarbonate on  both  sides  of  PS  II.

The evidence supporting bicarbonate as a ligand to the
quinone-NHI complex at the acceptor side of PS
II demonstrates  a  crucial role for HCO3

- in facilitating
and regulating electron transfer from PS II to PS I,

Figure 7. A scheme showing
a combined pathway of
bicarbonate and water
photolysis in photosynthetic
oxygen evolution. The CA
(carbonic anhydrase) activity
converts CO2 to bicarbonate.
Bicarbonate photolysis and
water photolysis work
together and release oxygen
and carbon dioxide in a 1:1
(mol/mol) stoichiometry; in
the scheme, Calvin
cycle should be  read
as the Calvin-Benson-Bassham
cycle (reproduced without
modification from Wu 2023).
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both in isolated systems and in living organisms. The
presence of HCO3

- as a bidentate ligand bridging QA and
QB and its involvement in QB

2- protonation have been
convincingly established. It’s noteworthy that the
absence of HCO3

- leads to a down-regulation of this
electron transfer step. Given the universality of HCO3

-

’s action in all oxygenic photosynthetic organisms, it is
evident that this ligand’s role evolved very early in
the evolution  of  oxygenic  photosynthesis.

Quantitative membrane-inlet mass spectroscopic
studies have indicated that  there  is  typically  only  one
bound HCO3

- per PS II. However, there is still
experimental evidence pointing to a potential role for
this ligand on the electron donor side of PS II,
which requires  further  investigation.  Some  researchers
have proposed an indirect role for bicarbonate in water
splitting and as a mediator of proton transfer (Ananyev
et al. 2005; Shutova et al. 2008; Ulas and Brudvig
2010). Additionally,  it  has  been suggested  that
bicarbonate may stabilize the OEC through its binding to
the PsbO protein (Pobeguts et al. 2007; 2010). Recent
findings have indicated that a PS II monomer with PsbS
and Psb27 as additional subunits, while inactive when
isolated, becomes activated in the presence of
bicarbonate, representing a late-stage intermediate in the
photo-assembly of  PS  II  (Fantuzzi  et  al.  2023).
However, as  of  now,  no  conclusive  evidence  has  been
obtained for the presence of bound bicarbonate on the
donor side of PS II. It is hypothesized that bicarbonate
is firmly bound to the acceptor side while acting as a
mobile proton shuttle on the donor side of PS II (Debus
2015; Banerjee et al. 2019). Nevertheless, further
research is necessary to pinpoint any potential
binding sites for  bicarbonate on  the waterside of PS  II.
Additionally, ongoing investigations are required to
explore the CA-type action of PS  II and to validate the
assumption that bicarbonate serves  as a  direct  substrate
for a  portion  of photosynthetic  oxygen  evolution.
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