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Phylogenetic analyses of morphological and molecular data
reveal major clades within the perennial, endemic western North
American Apiaceae subfamily Apioideae'
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Sun, F.-J. anD S. R. DownieE (Department of Plant Biology, 265 Morrill Hall, 505 South Goodwin
Avenue, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA). Phylogenetic analyses of
morphological and molecular data reveal major clades within the perennial, endemic western North
American Apiaceae subfamily Apioideae. J. Torrey Bot. Soc. 137: 133-156, 2010.—The taxonomy and
phylogeny of the perennial North American Apiaceae subfamily Apioideae endemic to western North
America (north of Mexico) have posed great challenges to systematists. Available classifications based on
morphological characters are in general inconsistent and unsatisfactory, and cladistic analyses based on these
data are limited to only a few taxa and a small number of characters. In this study, we scored 54
morphological characters from 123 taxa of North American Apioideae (representing 111 species in 21
genera) to construct an estimate of phylogenetic relationships and to compare the results obtained with those
inferred for the group through previous studies using molecular data. The morphological and combined
(morphological and molecular) datasets were analyzed using maximum parsimony (with equal, proportional,
and successive approximations weighting strategies and Goloboff fit criterion applied to the morphological
characters) and Bayesian approaches. Phylogenetic trees derived from morphological characters are largely
congruent with those derived from molecular data, upon the collapse of weakly supported branches. The
least number of most parsimonious trees is derived from the combined analysis when morphological
characters are given proportional weights, and these trees are fully congruent with those derived from
molecular data alone. The results revealed that many morphological characters used previously to delimit
genera are highly homoplastic, such as the presence of a carpophore, stylopodium, pseudoscape, and dorsal
wings, the number of vittae, and the orientation of fruit compression. The results also supported the
monophyly of the group, in accordance with previous molecular studies. Three major clades and several well-
supported subclades are tentatively circumscribed, thus facilitating future phylogenetic and revisionary
studies.
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of this group of perennial, endemic taxa, they
also revealed that most of the genera compris-
ing the group are not monophyletic (Downie
et al. 2002; Sun 2003; Sun et al. 2004; Sun and
Downie 2004; Sun and Downie, 2010). As
examples, Cymopterus Raf. and Lomatium
Raf., the two largest genera within the group
and representing over half of all of its included
species (Kartesz 1994), are each highly poly-
phyletic, with species from each genus allying
closely with many other genera. Available
classifications of the group based on morpho-
logical characters are in general inconsistent
and unsatisfactory, and previous cladistic
studies based on morphology are limited to
only a few taxa and a small number of
characters (Gilmartin and Simmons 1987,
Downie et al. 2002). Many taxa demonstrate
overlapping patterns of morphological char-
acter variation, both at the intraspecific and
interspecific levels (Mathias 1930; Hartman
1985; Hartman and Constance 1985; Sun et al.
2005, 2006, 2008), and morphological synapo-
morphies useful to circumscribe genera or
major clades are few or heretofore unknown.

In this study, we use a phylogenetic
approach to examine the morphological char-
acters used previously to circumscribe genera
within the perennial, endemic western North
American (NA) Apiaceae subfamily Apioi-
deae. The major objectives of this study are to:
(1) construct an estimate of phylogenetic
relationships within the group using morpho-
logical data; (2) evaluate the utility of mor-
phological data in circumscribing genera and
major clades inferred on the basis of combined
morphological and molecular evidence; and
(3) assess patterns in the evolution of several
specific morphological characters that have
been widely utilized in previous classifications
of the group (i.e., the development of a
pseudoscape and a stylopodium, the pattern
of fruit compression, the development of a
carpophore and fruit ribs, and the number of
vittae in each interval of the fruit). Based on
the combined morphological and molecular
evidence, the monophyly of this group of
perennial, endemic NA genera can be further
evaluated and its major clades be circum-
scribed, thereby facilitating future phylogenet-
ic and revisionary studies.

Materials and Methods. ACCESSIONS AND
MOoORPHOLOGICAL CHARACTERS EXAMINED. A
total of 123 taxa of primarily western NA
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distribution, representing 21 genera, 111 spe-
cies, 10 varieties, and two subspecies, was
examined (Appendix). The ranges of several
species reach into central NA; a few others
extend into eastern NA, or are restricted to
that region. These taxa represent the same
accessions as examined previously for ntDNA
ITS (Downie et al. 2002; Sun et al. 2004) and
cpDNA rps16 intron (Sun and Downie 2004)
and trnF-trnL-trnT (hereafter trnF-L-T; Sun
and Downie, 2010) sequence variation. For
ease of comparison with the results of our
earlier studies of the group, the nomenclature
of the Cymopterus acaulis and Pteryxia
terebinthina species complexes are maintained
as in Kartesz (1994). Cymopterus glomeratus
(Nutt.) DC. (=C. acaulis Raf.) traditionally
has five infraspecific taxa, but on the basis of
the results of numerical multivariate analyses,
we proposed that plants in this species
complex be recognized as a single species,
with no varieties (Sun et al. 2005). Similarly,
four varieties were recognized previously in
Pteryxia terebinthina, but results of our prior
multivariate analysis of this complex support-
ed only two, vars. foeniculacea and tere-
binthina (Sun et al. 2008). Based on results of
previous molecular studies, Aethusa cynapium
L. was chosen in the phylogenetic analyses to
root all trees.

Microscope slides of mature fruit cross-
sections were prepared from two or more
herbarium specimens for nearly all species
examined in this study. Prior to sectioning,
fruits were softened by treating them for one
to two hours in warm water. Free hand
sections through the middle of the mature
mericarps were made using a razor blade.
These sections were examined under an
Olympus compound microscope for orienta-
tion of fruit and seed compression, features of
the ribs, wings, and commissure, and the
number and position of vittae. A total of 54
characters was scored; 26 of these were
obtained from fruits, 14 from inflorescences,
11 from plant habit, and three from flowers.
These characters and their character states are
provided in Table 1, along with additional
comments. The data matrix is presented in the
Appendix. For the majority of these morpho-
logical characters, the determination of their
character states was obvious due to their
qualitative nature. For nine quantitative char-
acters (Table 1; Nos. 11, 17, 18, 31, 32, 35, 45,
47, and 50), character states were determined
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representatives of NA Apioideae.

Morphological characters and character states used in the phylogenetic analyses of 123

Characters

Character states and comments

LN

SAlg]

18.

Plant habit
Herbage habit
Herbage surface
Root habit

Root habit
Peduncle surface

Pseudoscape
Leaf complexity

Leaf margin

Sheath
Ratio of ultimate leaf segment
length / width

Flower petal color
Flower anther color
Pedicels of sterile flowers
Inflorescence habit
Primary ray surface

Primary ray length

Maximum primary ray number

Bract
Bract texture

Bract top edge
Involucre shape

Bractlet

Bractlet top edge

No. of midveins on the bractlet
Bractlet color

Bractlet texture

Involucel shape

= acaulescent; 1 = caulescent

mat-forming; 1 = stem one-few, tufted

= glabrous; 1 = pubescent; 2 = scabrous or granular

= tap, slender or thickened; 1 = tap, tuberous or globose;

2 = fibrous, fascicled

0 = branching caudex; 1 = simple, not branching root crown

0 = glabrous; 1 = pubescent; 2 = hirtellous or scabrous at
summit

0 = present; 1 = absent

0 = ternate pinnate once; 1 = ternate-pinnately two to several
times; 2 = simply pinnate or subbipinnate

0 = irregularly toothed; 1 = evenly serrate or dentate; 2 =
entire

0 = not or slightly ampliate; | = conspicuously sheathing

0 = < 10; 1 = > 10. Two patterns of ratio values were

observed: one group having most species with ratio values

less than five (occasionally about six to eight), and the other

group having ratio values larger than 10 (range 10-25).

Therefore, the ratio value of 10 was used as a gap to

distinguish these two characters states. One exception was

found in Pseudocymopterus montanus, which has a

polymorphism recorded, because no clear gap was found in

the ratio values (range one to 15) in this species. This is
likely due to the fact that P. montanus is such a variable
species with regard to its leaf morphology.

= white; 1 = purple or pinkish; 2 = yellow; 3 = green

= purple; 1 = yellow; 2 = white

rigid and persistent; 1 = neither rigid nor persistent

spreading; 1 = compact; 2 = globose head

= glabrous; 1 = pubescent; 2 = hirtellous or scabrous at

summit

0 = equal or nearly equal (ratio of shortest ray length / longest
ray length > 0.8); 1 = unequal (ratio of shortest ray length /
longest ray length < 0.8). Most species having state 1 were
found to have ratio values less than 0.5. Others had ratio
values > 0.8. The ratio value of 0.8 was used as a gap to
distinguish the two character states. Two species, Polytaenia
texana and Pseudocymopterus montanus, were recorded as
having polymorphisms. Both species were found to be
variable in this character.

0 = less than 30; 1 = more than 30. Two patterns of maximum
primary ray number were found, with one group having
most species with the maximum primary ray number less
than 10 (several less than 20-25), and the other group
having a maximum primary ray number > 30 (range 30-50).
Therefore, the number 30 was used as a gap to distinguish
these two character states.

0 = present; 1 = absent

0 = entire herbaceous or with narrow scarious margin; 1 =
mostly scarious except midvein

0 = entire and tapering; 1 = more or less obovate; 2 = toothed

0 = nearly complete, forming a cup underneath umbel; 1 =
individual lobes, not forming a cup

0 = present; 1 = absent

0 = entire and tapering; 1 = more or less obovate; 2 = toothed

0 = one; 1 = more than one

0 = white; 1 = purple or green

0 = entirely herbaceous; 1 = herbaceous with narrow scarious
margin; 2 = mostly scarious except midvein

0 = nearly complete, forming a cup underneath umbellet; 1 =

dimidiate, not forming a cup

SO oo
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Characters

Character states and comments

29.

30.
31.

32.

33.
34.

35.

36.

37.
38.

46.

47.

48.

Ovary surface

Stylopodium in fruit
Style orientation

Calyx teeth in fruit

Fruit attachment
Fruit surface

Fruit compression

Carpophore

Carpophore branching
Commissure

Corky and rib-like projection of
fruit axis

Fruit ribs

Fruit ribs

Fruit wings

Dorsal wings

Lateral wings

Lateral wings

Lateral wing

Seed compression

Seed face in cross-section
Wing on cross-section

0 = glabrous;l = pubescent or villous; 2 = scabrous or
granular

0 = absent; 1 = present

0 = widely spreading (angle between two styles > 45 degrees);
1 = more or less erect (angle between two styles < 45
degrees). The angle between two styles was larger than 90
degrees for species having state 0, while smaller than 30
degrees for species having state 1. Therefore, the clear gap of
45 degrees was chosen to separate these two states.

0 = > 0.6 mm, well-developed; 1 = < 0.6 mm, not well-
developed. Using calyx teeth length 0.6 mm as a gap to
distinguish two character states was based on the fact that
species having state 1 always had calyx teeth shorter than
0.5 mm and species having state 0 always had calyx teeth
longer than 1 mm.

0 = sessile; 1 = pedicellate

0 = glabrous; 1 = pubescent or villous; 2 = scabrous or
granular

0 = dorsally compressed (ratio of length of commissural face /
width of two mericarps > 1.5); 1 = laterally compressed
(ratio of length of commissural face / width of two
mericarps < 0.6); 2 = terete (ratio of length of commissural
face / width of two mericarps = 0.9-1.1). Three groups of
ratio values (< 0.6, 0.9-1.1, and > 1.5) were found and used
to distinguish three characters states in this continuous
character.

0 = persistent; 1 = present, but falling with mericarp; 2 =
absent

0 = entire, not bifid; 1 = bifid

0 = constricted (constricted > 80% of the commissural face);
1 = not constricted (not constricted < 20% on the
commissural face)

0 = present; | = absent

= all ribs winged; 1 = only lateral ribs winged; 2 = no wings

= filiform; 1 = rounded, corky

= chartaceous; 1 = thick, corky

= wavy or corrugated; 1 = not wavy or corrugated

= wavy or corrugated; 1 = not wavy or corrugated

= wider than fruit body (ratio of lateral wing length on cross-

section / fruit body length > 1.2); 1 = equal to fruit body
(ratio of lateral wing length on cross-section / fruit body
length = 0.9-1.1); 2 = narrower than fruit body ratio of
lateral wing length on cross-section / fruit body length <
0.8). Most species having state 0 had ratio values larger than
1.5 (a few cases 1.2-1.5) and most species having state 2
always had ratio values smaller than 0.5 (a few cases 0.6—
0.8). The majority of species having state 1 had ratio values
always about one. Clear gaps in this continuous character
were used to distinguish these three character states.

= incurved (lateral wing is almost perpendicular to

commissural face); 1 = not incurved (lateral wing is parallel
to the commissural face)

0 = dorsally compressed (ratio of seed length on commissural
face / width of one mericarp > 1.5); 1 = laterally
compressed (ratio of seed length on commissural face /
width of one mericarp < 0.6); 2 = terete (ratio of seed
length on commissural face / width of one mericarp = 0.9—
1.1). Three groups of ratio values (< 0.6, 0.9-1.1, and > 1.5)
were found in this continuous character and used to
distinguish these three characters states.

0 = plane; 1 = concave (at least halfway concave into seed)

0 = base enlarged; 1 = not enlarged; 2 = top enlarged

o
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Table 1. Continued.
Characters Character states and comments

50. Ratio of wing length / wing width on 0 = < 5; 1 = > 5. Most species having state 0 had the ratio

cross-section

values about one to three, whereas species having state 1

had the ratio values larger than six. Therefore, the ratio
value of five was selected as a gap to distinguish these two
character states.

51. Strengthening cells
52. No. of oil tubes in the interval

0 = present; 1 = absent
0 = one; 1 = more than one; 2 = inconspicuous; 3 = none.

State 2 indicates that the boundaries of the oil tubes are
inconspicuous, such that their numbers cannot be counted.

53. No. of oil tubes in the commissure

0 = two; 1 = more than two; 2 = inconspicuous. State 2

indicates that the boundaries of the oil tubes are
inconspicuous, such that their numbers cannot be counted.

54.  Accessory oil tube in rib

0 = present; 1 = absent

by detecting gaps in the character variation
(Stevens 1991). Character polymorphism and
uncertainties were observed and specified in
the data matrix (Appendix). Approximately
10% of the cells in the data matrix were scored
as unknown or inapplicable.

PHYLOGENETIC ANALYSIS. The matrix of
morphological characters was first analyzed
using maximum parsimony (MP), with the
character state changes either equally or
proportionally weighted. The latter was done
because the number of states differed among
characters (ranging from two to four), so all
characters were weighted in inverse proportion
to their minimum number of steps using the
scale option of PAUP* (Swofford 2003).
Another character weighting approach, suc-
cessive approximations (Farris 1969), was also
used. Here, two successive weighting searches
were done, one starting with equal weights and
the other with proportional weights, and the
results from both searches were compared. In
this approach, characters were weighted by the
maximum values of their rescaled consistency
(RCO) indices, and searches were ended when
the RC values became stable for at least three
iterations. The matrix was also analyzed using
equally weighted MP with Goloboff fit crite-
rion selected (Goloboff 1993; K = 2, default in
PAUP#*). All character states were assumed
unordered, and the options multrees, collapse,
and acctran optimization were chosen. Due to
the large number of taxa, MP trees were
sought using the heuristic search strategies of
PAUP* and the inverse constraint approach
described in Catalan et al. (1997) and later
implemented by Downie et al. (1998). Boot-

strap (BS) values (Felsenstein 1985) were
calculated from 100,000 replicate analyses
using ““fast” stepwise addition of taxa; only
those values compatible with the majority rule
consensus tree were recorded. The number of
additional steps required to force particular
taxa into a monophyletic group was examined
using the constraint option of PAUP*. The
pattern of evolution of each morphological
character across one arbitrarily selected min-
imal length tree was assessed using MacClade
vers. 4.0 (Maddison and Maddison 2003), with
the goal of finding those characters most
useful for delimiting clades and, ideally,
genera. MacClade’s trace character or chart
option was used to determine the number of
steps of each character over a randomly
chosen tree or all MP trees.

Bayesian analysis running four million
generations was carried out using MrBayes
vers. 3.0 (Ronquist and Huelsenbeck 2003),
with tree sampling occurring every 100 gener-
ations. This was done using the standard
model for unordered characters with a stan-
dard gamma distribution to accommodate the
rate variation across sites. Starting trees were
chosen at random and four simultaneous
Markov chain Monte Carlo chains were used
to model the character rate heterogeneity. The
posterior probability (PP) values (expressed as
percentages) for each bipartition of the phy-
logeny were determined from the remaining
trees after the removal of “burn-in” trees.

By using a “‘total evidence’ analysis (Kluge
1989; Kluge and Wolf 1993), also called a
“simultaneous analysis” (Nixon and Carpen-
ter 1996), both molecular (ITS, rps16 intron,
and #rnF-L-T) and morphological data were
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combined into a single matrix for simulta-
neous consideration. For each taxon with
multiple accessions in the molecular datasets
(i.e., two accessions each of Aletes acaulis,
Pseudocymopterus montanus, Pteryxia tere-
binthina var. albiflora, and Pteryxia tere-
binthina var. calcarea, and three accessions of
Aletes macdougalii subsp. breviradiatus), the
same morphological character states were
assigned to each taxon based on an examina-
tion of their voucher specimens. Therefore, the
final combined dataset contained 129 taxa.
The protocols for searching for the most
parsimonious trees using MP are the same as
those performed for morphological data. The
successive approximations (Farris 1969) and
the MP with Goloboff fit criterion selected
(Goloboff 1993) were not performed. In the
Bayesian analysis, different models of maxi-
mum likelihood were given to different mo-
lecular partitions (ITS, rps16 intron, trnF-L-T)
of the combined data, as described previously
(Sun 2003; Sun et al. 2004, Sun and Downie
2004; Sun and Downie, 2010).

Results. DATA MATRICES. The combination
of molecular and morphological data for 129
taxa resulted in a matrix of 3586 (3532
molecular, 54 morphological) characters, with
no positions excluded from the molecular
partition because of alignment ambiguity.
The combined dataset had a total of 408
parsimony informative characters (354 molec-
ular, 54 morphological). The values of the gl
statistics for 10,000 and 100,000 random trees
of both morphological (—0.148 to —0.172)
and combined (—0.235 to —0.276) datasets
were significantly more skewed than random
data (—0.09 to —0.11, P < 0.01), indicating
that these data contain significant amounts of
phylogenetic signal (Hillis and Huelsenbeck
1992).

MorprHOLOGY. The results of all phylogenet-
ic analyses of morphological data showed
similar results, differing primarily in their
degree of resolution and branch support. To
show these relationships, we present only the
results of the MP analysis using proportional
weights because the strict consensus tree
resulting from this analysis (Fig. 1) showed
greatest resolution and branch support over-
all. In general, upon the collapse of weakly
supported branches (i.e., BS or PP values
<50%), phylogenetic trees derived from mor-
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phological characters are congruent with those
derived from molecular data from our previ-
ous studies. All morphological analyses sup-
port the monophyly of the group of perennial,
endemic NA taxa.

MORPHOLOGY: MAXIMUM PARSIMONY USING
ProrPorTIONAL WEIGHTS. MP analysis of 54
morphological characters using proportional
weights (i.e., 31 characters with a weight of
1.00, 21 characters with a weight of 0.50, and
two characters with a weight of 0.33) resulted
in the preset limit of 20,000 most parsimonious
trees, each of 331.83 steps [consistency index
(CI) = 0.16; retention index (RI) = 0.68; RC
= 0.11]. By using the inverse constraint
approach, the strict consensus of the 20,000
most parsimonious trees served as a topolog-
ical constraint in a further heuristic search. In
this search, five more trees of the same length
as these 20,000 trees were obtained. The strict
consensus tree of these 20,005 trees is given in
Fig. 1. On this tree, Angelica capitellata is
sister to the perennial endemic NA genera
group, the latter comprising a large polytomy,
and a clade of all remaining Angelica species is
successively basal to the aforementioned taxa.
Coming off this polytomy, eight branches
contain four or more taxa, but the BS values
for all of these branches are low (<50%).
Among the 54 characters examined, six occur
without homoplasy (CI = 1.00) on one
arbitrarily selected MP tree (Nos. 14, 20-22,
39, and 46; Table 1). Of those genera tradi-
tionally recognized within the group, only two
are monophyletic (Oreonana and Orogenia),
and these genera are supported by non-
homoplastic characters. Rigid and persistent
pedicels of sterile flowers (No. 14, state 0)
support the clade of Oreonana, and the
presence of corky and rib-like projections on
fruit axes (No. 39, state 0) and incurved lateral
wings (No. 46, state 0) support the clade of
Orogenia. Characters having high CI values
(>0.70) but show some homoplasy include
plant habit (No. 1; CI = 0.87), flower petal
color (No. 12; CI = 0.72), and shape of the top
of the bractlet (No. 24; CI = 0.82). Many
characters emphasized in previous classifica-
tion systems show high levels of homoplasy,
such as the presence/absence of a pseudoscape
(No. 7; CI = 0.53), fruit compression patterns
(No. 35; CI = 0.14), development of a
carpophore (No. 36; CI = 0.43), development
of fruit wings (No. 40; CI = 0.35), develop-
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FiG. 1. Strict consensus tree of 20,005 minimal length trees derived from proportionally weighted MP
analysis of 54 morphological characters from 123 members of NA Apioideac. Numbers on branches are
bootstrap estimates (BS) for 100,000 replicate analyses using “fast” stepwise addition and Bayesian posterior
probability (PP) values expressed as percentages, respectively; values <50% for both support values are not
indicated or indicated by
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ment of a stylopodium in fruit (No. 30, CI =
0.50), and number of oil tubes in the interval
and on the commissure of the fruit (Nos. 52
and 53; CIs = 0.26 and 0.23, respectively).
Characters exhibiting the highest levels of
homoplasy (CI = 0.13) include primary ray
length (No. 17; CI = 0.10), length of calyx
teeth in fruit (No. 32; CI = 0.13), width of
lateral wings (No. 45; CI = 0.13), ratio of wing
length/width in cross-section (No. 50; CI =
0.11), presence/absence of strengthening cells
in fruits (No. 51; CI = 0.08), and the presence/
absence of an accessory oil tube in the ribs
(No. 54; CI = 0.07). Overall, the homoplastic
characters have CI values ranging from 0.07 to
0.87.

MORPHOLOGY: MAXIMUM PARrRsIMONY USING
EquaL WEIGHTS. MP analyses of 54 morpho-
logical characters, using equal weights, result-
ed in the preset limit of 20,000 most parsimo-
nious trees, each of 491 steps (CI = 0.16; RI =
0.67; RC = 0.11; strict consensus tree not
shown). Again, resolution of relationships and
BS support values are generally low, and over
half of the branches (28 out of 54) occurring in
Fig. 1 are maintained. In this analysis, five
characters (vs. six in the proportionally
weighted analysis) occur without homoplasy
(Nos. 14, 20, 25, 39, and 46). Two previous
non-homoplastic characters are now homo-
plastic (No. 21, CI = 0.75; No. 22, CI = 0.67).
One previous homoplastic character is now
non-homoplastic (No. 25, CI = 1.00). Again,
many characters emphasized in previous
classification systems show high levels of
homoplasy. Characters exhibiting the highest
levels of homoplasy are the same as those
identified in the proportionally weighted MP
analysis and have similar CI values. Overall,
the homoplastic characters have CI values
ranging from 0.05 to 0.83.

MORPHOLOGY: MAXIMUM PARSIMONY USING
SuccEssIVE APPROXIMATIONS. MP analyses of
54 morphological characters using successive
approximations starting with proportional or
equal weights each resulted in the preset limit
of 20,000 most parsimonious trees, each of
52.04 and 51.67 steps, respectively (Cls = 0.38
and 0.38, RIs = 0.81 and 0.82, and RCs =
0.31 and 0.31, respectively; strict consensus
trees not shown). For both of these analyses,
five iterations were needed to stabilize the RC
values, both from initially 0.11 to 0.31. Glehnia
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is the sister taxon of the NA genera group and
Angelica (excluding A. capitellata) is placed
one node away. Angelica capitellata is sister to
a clade comprising all aforementioned taxa.
The relationships within the NA genera group
are poorly resolved and similar to those
inferred in the proportional weighting ap-
proach.

MorpPHOLOGY: MAXIMUM PArRsiMONY USING
GoLoBOFF CRITERION. MP analyses of mor-
phological data with Goloboff criterion select-
ed resulted in the preset limit of 20,000 most
parsimonious trees, each of 549 steps (CI =
0.14; RI = 0.62; RC = 0.09; G-fit = —24.37).
The topology of the strict consensus tree (not
shown) is very similar to that of the successive
approximations approach, but slightly less
resolved.

MOoORPHOLOGY: BAYESIAN. Among a total of
40,000 trees generated in the Bayesian analysis
of 54 morphological characters, 10,000 trees
were discarded as “‘burn-in” before the Ln
likelihood values stabilized. The remaining
30,000 trees were used to generate a majority
rule consensus tree (not shown). The —Ln
values of these 30,000 trees ranged from
2176.31 to 2296.60, averaged 2227.62, with a
standard deviation of 14.50. Relationships
inferred by the Bayesian tree are very similar
to, or consistent with, those estimated by
proportionally or equally weighted MP meth-
ods (Fig. 1).

MORPHOLOGY: PHYLOGENETIC RESOLUTIONS.
The results of each morphological analysis
showed that the resolution of relationships
among these NA taxa is low, with many clades
not very well-supported. Cymopterus (bold-
faced in Figs. 1 and 2) and Lomatium, two of
the largest genera, are highly polyphyletic, as
are many other genera within the group.
Constraining the 40 examined taxa of Cym-
opterus to monophyly and rerunning the
equally or proportionally weighted MP anal-
ysis of morphological characters resulted in
trees of 11 or 9.5 steps longer than those most
parsimonious trees obtained without the
constraint invoked (491 or 331.83 steps,
respectively). Lomatium arose as monophyletic
in trees of 7 or 6.17 steps longer than those
without the constraint. Similar analyses re-
vealed that Aletes, Musineon, Oreoxis, Podis-
tera,  Pseudocymopterus,  Pteryxia, and
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Tauschia are each monophyletic in trees 2 to 7
steps greater than those most parsimonious.
Given the large number of steps required to
force monophyly of most of these genera, it is
highly unlikely that they represent natural
groups. With few exceptions, none of the
major clades or subclades revealed coincide
with traditionally recognized genera or infor-
mally recognized species groups based on
morphology. Only Oreonana, Orogenia, Gleh-
nia, Polytaenia, and Podistera are each re-
vealed as monophyletic, while Thaspium,
Zizia, Oreoxis, and Pseudocymopterus are
monophyletic only in some of the analyses.
The monophyly of the outgroup Angelica is
supported, but with the exclusion of A.
capitellata. This species is different from its
congeners by having its umbellets covered by a
woolly indumentum. Other characters distin-
guishing this taxon from its congeners include
an irregularly toothed leaf margin, herbaceous
bractlets with narrow scarious margin, longer
calyx teeth in fruit, thick and corky fruit
wings, and the absence of strengthening cells
in the fruit. Previously, this striking species
was recognized as Sphenosciadium capitellatum
A. Gray, but was subsequently transferred
into Angelica on the basis of molecular data
(Spalik et al. 2004). Molecular and combined
morphological/molecular data (presented im-
mediately below) support the monophyly of all
Angelica species.

COMBINED MORPHOLOGICAL AND MOLECULAR
CHARACTERS: MAXIMUM PArsiMONY. MP anal-
yses of combined (morphological and molec-
ular) data, giving either proportional or equal
weights to the morphological characters,
resulted in either 240 minimal length trees
(each of 2239.33 steps, CIs = 0.44 and 0.30,
with and without uninformative characters; R1
= 0.64; RC = 0.28) or the preset limit of
20,000 minimal length trees (each of 2454
steps; CIs = 0.41 and 0.28, with and without
uninformative characters; RI = 0.62; RC =
0.26), respectively. Less resolution was
achieved in the strict consensus tree derived
from equally weighted MP analysis of com-
bined data. In this tree (not shown), the
monophyly of the perennial, endemic NA
genera group is weakly supported (BS value
52%). A basal trichotomy is identified, with
the first branch containing the two subspecies
of Glehnia littoralis (BS value 75%), the second
branch containing all nine accessions of
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Angelica (BS value <50%), and the third
branch comprising all other accessions of the
perennial, endemic NA genera group. The
latter comprises a highly branched polytomy.
Greater resolution of ingroup relationships is
obtained when the morphological characters
are given proportional weights in the com-
bined analysis. In the strict consensus tree
derived from this analysis (Fig. 2), the mono-
phyly of the perennial, endemic NA genera
group continues to be supported, with Glehnia
being its basalmost lineage. The nine acces-
sions of Angelica constitute a clade that is
sister group to all aforementioned taxa.
Constraining Cymopterus to monophyly and
rerunning the MP analysis, with morpholog-
ical characters given either equal or propor-
tional weights, resulted in trees 44 and 54.33
steps longer than those most parsimonious
obtained without the constraint invoked (2454
and 2239.33 steps, respectively); Lomatium
arose as monophyletic in trees 25 and 35.33
steps longer. Similar analyses revealed that
Aletes, Musineon, Oreoxis, Podistera, Pseudo-
cymopterus, Pteryxia, and Tauschia are each
monophyletic in trees six to 38.83 steps greater
than those most parsimonious.

COMBINED MORPHOLOGICAL AND MOLECULAR
CHARACTERS: BAYESIAN. Among a total of
20,000 trees generated in the Bayesian analy-
sis, 5,000 trees were discarded as ‘‘burn-in”’
before the Ln likelihood values stabilized;
15,000 of these trees were used to generate a
majority rule consensus tree (not shown). The
—Ln values of these 15,000 trees ranged from
19578.08 to 19676.28, averaging 19618.10,
with a standard deviation of 13.55. Relation-
ships inferred by the Bayesian tree are
identical to, or highly consistent with, those
estimated by MP analysis with morphological
characters given proportional weights. Bayes-
ian PP values are presented on the MP strict
consensus tree (Fig. 2).

COMBINED MORPHOLOGICAL AND MOLECULAR
CHARACTERS: PHYLOGENETIC RESoLUTIONS. The
least number of most parsimonious trees is
derived from the combined analysis when
morphological characters are given propor-
tional weights, and these trees are largely
congruent with those trees derived from
molecular data alone (Sun 2003; Sun and
Downie, 2010). In fact, these trees are better
resolved and, in general, their branches more
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strongly supported than any phylogenetic tree
for the group heretofore available, thus we use
these results to tentatively circumscribe major
clades and subclades to facilitate future
phylogenetic and revisionary studies of this
problematic group. For consistency with our
earlier studies, we identify the four major
clades circumscribed previously on the basis of
MP analysis of all available molecular data
(Clades 1-4, Fig. 2), even though Clade 2
arises from within a paraphyletic Clade 1 in all
MP analyses of combined morphological and
molecular data presented herein. The results of
the Bayesian analysis of these same combined
data, however, revealed Clades 1 and 2 as
monophyletic sister groups. Here, we continue
to treat Clade 2 as separate from Clade 1, as
previous molecular studies and the Bayesian
analysis of combined data have revealed. The
monophyletic genus Glehnia cannot be as-
signed to any of the three major ingroup
clades, thus further studies are warranted to
clarify its phylogenetic relationships. Of the
four major clades identified, one represents the
outgroup genus Angelica and will not be
discussed further. Each of the other three
major clades contains three to eight subclades,
several of which are moderately or well-
supported in either the MP or Bayesian
analyses. Overall, while the combined analyses
confirmed the monophyly of the perennial,
endemic NA Apioideae, many clades and
subclades are weakly supported, with most of
these having no resemblance to pre-established
groups. Only five traditionally recognized
genera (Oreonana, Orogenia, Thaspium, Zizia,
and Polytaenia) are revealed as monophyletic
in the combined analyses. For those species
with infraspecific taxa or those represented by
more than one accession, only three (Cymop-
terus acaulis, Glehnia littoralis, Pseudocymop-
terus montanus) are revealed as monophyletic;
three other species (Aletes acaulis, Aletes
macdougalii, Pteryxia terebinthina) are para-
phyletic or polyphyletic.

Clade 1 contains 60 accessions, representing
10 genera. The genera Neoparrya, Oreonana,
and Shoshonea occur exclusively in this clade.
Thirty accessions of Cymopterus (representing
75% of all accessions of Cymopterus included
in this study) also occur here. Eight subclades
(la-h), each containing three to eight acces-
sions, are recognized. Most of these subclades
have BS values of 51-86% and PP values of
90-100%. Subclade la is composed of eight
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species of Cymopterus (C. aboriginum, C.
basalticus, C. cinerarius, C. evertii, C. gilmanii,
C. globosus, C. lapidosus, C. ripleyi). Cymop-
terus aboriginum is not allied with this group
on the Bayesian tree (not shown). These eight
species share dorsally compressed fruits and
the absence of a carpophore (except C.
aboriginum and C. lapidosus). Although most
of these species were at one time recognized in
the genus Aulospermum (Mathias 1930), there
is no unique and obvious morphological
synapomorphy supporting this subclade. A
putative close relationship among C. aborigi-
num, C. cinerarius, and C. evertii was suggest-
ed by Hartman and Kirkpatrick (1986). Three
character state changes occurred along the
branches leading to Subclade la: No. 12,
changing from states 2 to 0; No. 15, changing
from states 0 to 1; and No. 41, changing from
state 0 to equivocal; however, all of these
character state changes have reversals within
the subclade. Subclade 1b contains four
species of Cymopterus (C. jonesii, C. minimus,
C. purpureus, C. rosei). These species were also
circumscribed in Aulospermum (Mathias 1930)
and all are morphologically very similar.
Indeed, C. jonesii, C. minimus, and C. rosei
were treated as varieties of C. purpureus
(Goodrich 1986). All species share the pres-
ence of a pseudoscape. Subclade 1c comprises
the five varieties of Cymopterus acaulis (i.e.,
vars. acaulis, fendleri, greeleyorum, higginsii,
and parvus), with C. newberryi closely allied.
Cymopterus newberryi has a similar leaf
morphology to that of C. acaulis, but it varies
greatly in wing development (the latter has
well-developed wings, whereas the former has
dorsal wings similar to the lateral or often
narrower and irregularly developed, or they
may even be obsolete, thus resembling the
situation in Lomatium). Based on their similar
habit, C. newberryi was treated as a variety of
C. fendleri (Jones 1908). This group is
supported by the presence of a pseudoscape,
dorsally compressed fruits, and dorsal wings,
and the absence of a carpophore. Subclade 1d
represents another six species of Cymopterus
(C. corrugatus, C. coulteri, C. deserticola, C.
douglassii, C. ibapensis, C. nivalis). This group
is paraphyletic on the Bayesian tree (not
shown), with Subclade le arising from within
it. Cymopterus corrugatus and C. coulteri are
very similar morphologically, both having
wavy wings and ternate or pinnate leaves; on
the basis of this similarity, Jones (1908) treated
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C. coulteri as a variety of C. corrugatus. All
species are acaulescent and possess irregularly
toothed leaf margins. Subclade le contains
four accessions of Pteryxia, i.e., P. petraea, P.
terebinthina var. albiflora (two accessions), and
P. terebinthina var. calcarea. These taxa all
bear dorsally compressed fruits with dorsal
wings. Pteryxia petraea has sometimes been
treated as a variety of the P. terebinthina
complex (Goodrich 1986; Constance 1993).
Subclade 1f is composed of three species of
Oreonana (O. clementis, O. purpurascens, O.
vestita). The monophyly of this group is
supported by the rigid and persistent pedicels
of its sterile flowers. Subclade 1g contains
three accessions of Aletes macdougalii subsp.
breviradiatus and one accession of Oreoxis
trotteri. These two taxa are considered as
being conspecific (S. Goodrich et al., unpub-
lished data). They share an extremely similar
leaf morphology, laterally compressed fruits,
and the presence of one oil tube in each
interval of their fruits. Aletes humilis is closely
allied to this group in both MP and Bayesian
trees. Subclade 1h constitutes three varieties of
Pteryxia terebinthina (i.e., vars. californica,
foeniculacea, and terebinthina). These taxa also
share an extremely similar leaf morphology.
Clade 2 comprises 16 accessions from three
genera, representing two accessions of Oro-
genia, 12 accessions of Lomatium (60% of all
Lomatium accessions examined), and two
accessions of Cymopterus. Three subclades
are designated within this clade. Subclade 2a
contains both species of Orogenia (O. fusifor-
mis and O. linearifolia). The monophyly of
Orogenia is supported by two unique morpho-
logical synapomorphies: corky, rib-like pro-
jections on its fruit axes, and incurved lateral
wings. Subclade 2b is composed of two species
of Cymopterus (C. longipes, C. planosus) and
two varieties of Lomatium grayi (vars. depau-
peratum and grayi). Both C. longipes and C.
planosus were also recognized in Aulospermum
by Mathias (1930), but differ from each other
in flower color. The two varieties of L. grayi
are very similar morphologically, although
var. grayi has more ultimate leaf segments
and relatively larger fruits than those of var.
depauperatum. MacClade revealed only one
character state change along the branches
leading to Subclade 2b: No. 10, changing
from states equivocal to 0. Subclade 2c¢ is
composed of six species of Lomatium (i.e., L.
bradshawii, L. cous, L. juniperinum, L. macro-
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carpum, L. orientale, L. triternatum subsp.
platycarpum). This subclade is not revealed by
the Bayesian analysis. The group is character-
ized by dorsally compressed fruits without
dorsal wings, features typical of Lomatium
species.

Clade 3 comprises 41 accessions. These
represent 14 genera, with seven (i.e., Har-
bouria, Musineon, Polytaenia, Pseudocymop-
terus, Taenidia, Thaspium, and Zizia) found
exclusively in this clade. Six subclades are
circumscribed, supported by BS values rang-
ing from less than 50% to 100% and mostly
high PP values (96-100%). Subclade 3a
contains six species of the Phellopterus group
(Coulter and Rose 1900; Mathias 1930; Hart-
man 2000) of Cymopterus (C. bulbosus, C.
constancei, C. macrorhizus, C. montanus, C.
multinervatus, C. purpurascens). These plants
share large and showy bractlets that are often
basally connate. However, similar bractlets
also occur in C. basalticus (Subclade 1a). The
species of the Phellopterus group and C.
basalticus differ in their leaf morphology; the
latter has palmately dissected leaves with three
overlapping leaflets, whereas those of the
former have pinnately and more openly
dissected leaves. Subclade 3a is also supported
by homoplastic characters, such as the pres-
ence of a pseudoscape, dorsally compressed
fruits, and dorsal wings. Subclade 3b compris-
es all species of Polytaenia, Thaspium, and
Zizia, and each of these genera is monophy-
letic. The species of Thaspium and Zizia are
remarkably similar in appearance and this
group is supported by the unique synapomor-
phy of a fibrous and fascicled root system. The
generic limits of Thaspium and Zizia have been
questioned (Ball 1979; Lindsey 1982; Cooper-
rider 1985), but in this study they comprise
well-supported monophyletic sister groups.
Three character state changes occur along
the branches leading to Subclade 3b: No. 17,
changing from states 1 to equivocal; No. 52,
changing from states equivocal to 0; and
No. 53, changing from states 1 to 0. Two of
these character state changes (Nos. 52 and 53)
have no reversals within the subclade. Sub-
clade 3c comprises five accessions representing
four genera, representing Aletes macdougalii
subsp. macdougalii, Cymopterus beckii, Pseu-
docymopterus montanus (two accessions), and
Pteryxia davidsonii. These plants share a linear
leaf morphology. Aletes macdougalii subsp.
macdougalii, C. beckii, and P. davidsonii
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resemble each other morphologically, and the
first two taxa have been suggested as conspe-
cific (Hartman 2006). MacClade revealed no
morphological character state changes along
the branches leading to Subclade 3c. Subclade
3d contains five species representing four
genera (Podistera macounii, P. yukonensis,
Lomatium brandegei, Musineon lineare, and
Taenidia integerrima). The two species of
Podistera share a stylopodium. This subclade
is not supported by the morphological analy-
ses. Three character state changes occur along
the branches leading to Subclade 3d: No. 9,
changing from states 0 to 2; No. 20, changing
from states 2 to equivocal; and No. 50,
changing from states 1 to equivocal. Among
these character state changes, only one (No. 9)
has no reversals within the subclade. Subclade
3e is composed of five accessions representing
four genera [Cymopterus williamsii, Musineon
tenuifolium, Oreoxis humilis, and Aletes acaulis
(two accessions)]. Cymopterus williamsii was
once indicated as possibly belonging to
Oreoxis (Hartman and Constance 1985).
MacClade revealed four character state chang-
es along the branches leading to Subclade 3e:
No. 6, changing from states 0 to 1; No. 16,
changing from states 0 to 1; No. 32, changing
from states equivocal to 0; and No. 54,
changing from states 1 to 0. Subclade 3f
contains Aletes sessiliflorus, A. filifolius, Har-
bouria trachypleura, Oreoxis bakeri, and Pseu-
docymopterus longiradiatus. Neither subclade
3e nor subclade 3f is supported by the
morphological analyses. Two character state
changes occurred along the branches leading
to Subclade 3f: No. 6, changing from states 0
to 2; and No. 41, changing from states 0 to
equivocal.

MORPHOLOGICAL CHARACTER OPTIMIZATIONS.
To assess evolutionary patterns of individual
morphological characters and their usefulness
in genus and major clade determinations, each
of the 54 morphological characters were
optimized onto all of the 240 trees inferred
by MP analysis of combined morphological
and molecular data. The results revealed that
only two traditionally recognized genera,
Oreonana and Orogenia, are supported by
unique synapomorphies. As stated above,
Oreonana is supported by having rigid and
persistent pedicels on its sterile flowers, and
Orogenia is supported by having corky and
rib-like projections on its fruit axes and
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incurved lateral wings. The group of Thaspium
+ Zizia is supported by having fibrous and
fascicled roots (No. 4, state 2). The Phellop-
terus group of Cymopterus (C. bulbosus, C.
constancei, C. macrorhizus, C. montanus, C.
multinervatus, and C. purpurascens) is support-
ed by having a bract (No. 19, state 0) and a
complete involucel (No. 28, state 0), but these
two characters also occur elsewhere on the
tree, such as in Podistera yukonensis, P.
macounii, C. glaucus, and C. basalticus. The
genera Thaspium, Zizia, and Polytaenia, while
each revealed as monophyletic in the com-
bined analyses, are also supported by a suite of
homoplastic characters. None of the three
major ingroup clades, circumscribed previous-
ly on the basis of molecular evidence and
recovered herein in the Bayesian analysis of
combined data, are supported by unique
morphological synapomorphies. Similarly,
many of the subclades circumscribed herein
on the basis of combined morphological and
molecular data are not supported by unique
morphological synapomorphies either. Clade 1
is supported by only molecular data, with no
morphological character state changes identi-
fied. Three morphological character state
changes occur on the branch leading to Clade
2, and three along the branch leading to Clade
3 (Fig. 3). Reversals, however, are apparent
for each of these characters within these
clades. These three major clades are not easily
delimited, or cannot be delimited whatsoever,
on the basis of morphology.

The distribution of six morphological char-
acters (seven character states) widely used in
traditional treatments of the group is provided
in Fig. 3. Like most other morphological
characters, these six characters are highly
homoplastic, each arising or being lost multi-
ple times during the evolution of the group.
Optimization of the character ‘“‘presence/ab-
sence of a pseudoscape’” (No. 7) revealed that
it required 20 steps on each of the 240 MP
trees. There are at least 13 gains for state 0, the
presence of this character. Three lineages
characterized by a pseudoscape each contain
four to six accessions of Cymopterus. One of
these lineages is composed of the six species of
the Phellopterus group (Subclade 3a); a second
comprises the five varieties of Cymopterus
acaulis (Subclade 1c); and the third consists of
four species of Cymopterus (Subclade 1b). The
remaining lineages contain one to three
accessions each, representing Cymopterus (15
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accessions), Lomatium (five accessions), and
Mausineon (one accession). The ancestral con-
dition is identified as the absence of a
pseudoscape (state 1). Optimization of the
character ““presence/absence of a stylopodium
in fruit” (No. 30) revealed that this character
required four steps on one randomly chosen
tree. Across all 240 MP trees, it required either
three or four steps. The ancestral condition is
revealed as the presence of a stylopodium in
fruits (state 1), for this character occurs in
Angelica (nine accessions) and Aethusa. With-
in the perennial, endemic NA Apioideae
group, only Podistera (four species in three
lineages) is characterized by having a promi-
nent stylopodium, although the genus is
polyphyletic. Optimization of the character
“dorsally/laterally compressed or terete fruits™
(No. 35) indicated that this character required
21 steps on one arbitrarily selected tree, and
21-22 steps when all of the 240 MP trees were
considered. While the ancestral condition of
this character is equivocal, there are at least 10
losses and seven gains for character state O
(dorsally compressed fruits), eight gains for
state 1 (laterally compressed fruits), and four
gains for character state 2 (terete fruits). The
last state occurs in Cymopterus williamsii, C.
douglassii, Shoshonea, and Thaspium. Five of
the lineages with dorsally compressed fruits
contain six to 10 accessions (Subclades 1a, 1c +
le, 2c, 3a, and Angelica). Two of the lineages
with laterally compressed fruit contain five to
six accessions. One is composed of C. davisii,
Oreonana (three accessions), and Tauschia
parishii, the other contains Subclade 1g and
Podistera eastwoodiae. Optimization of the
character ‘“‘development of a carpophore”
(No. 36, CI = 0.43) showed that this character
required 19 steps on each of the 240 MP trees.
This character contains three character states:
a carpophore is persistent (state 0), a carpo-
phore is present but falling with the mericarp
(state 1), and a carpophore is absent (state 2).
State 0 is revealed as the ancestral condition.
There are at least 9 gains for character state 2.
Two of the lineages without a carpophore each
contain six accessions of Cymopterus (Sub-
clade 1c with C. mewberryi included, and
Subclade la excluding C. lapidosus and C.
aboriginum). Optimization of the character
“development of wings on fruit ribs” (No. 40)
revealed that this character required 30 steps
on each of the 240 MP trees. This character is
divided into three character states: both lateral
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and dorsal ribs are winged (state 0), only
lateral ribs are winged (state 1), and no ribs are
winged (state 2). State 0 is revealed as the
ancestral condition. There are eight and four
gains for character states 1 and 2, respectively.
Three of the lineages with dorsal wings
(Subclades 1c + le, 3a, and Angelica) contain
six to 10 accessions of Cymopterus or Pteryxia.
One of the lineages without dorsal wings (state
1) contains six accessions of Lomatium (Sub-
clade 2c). All other lineages contain one to two
accessions. The monophyly of Thaspium (three
accessions) is supported by the presence of
both dorsal and lateral wings. Optimization of
the character “number of oil tubes in the
interval of the fruit” (No. 52) indicated that
this character required 25 steps on each of the
240 MP trees. The ancestral condition is the
presence of one oil tube in each interval in the
fruits (state 0). There are at least 10 losses and
9 gains for character state 0. Two of the
lineages with a single oil tube in each interval
contain six accessions each: one lineage
contains all but one species of Angelica; the
other is composed of three monophyletic
genera: Polytaenia, Thaspium, and Zizia. All
remaining lineages characterized by one oil
tube in an interval are composed of one to five
accessions each.

Discussion. The results of diverse analyses of
both morphological and combined morpho-
logical and molecular data are in agreement
with our earlier studies based exclusively on
molecular evidence in revealing that many NA
Apioideae genera are not monophyletic. The
two largest genera, Lomatium and Cymop-
terus, are each highly polyphyletic, with their
species inextricably linked with each other and
those of Aletes, Oreoxis, Pseudocymopterus,
Pteryxia, and several other smaller genera of
the region. The results of the combined
analysis when morphological characters are
given proportional weights offer the most
resolved and best supported trees heretofore
available for the group. These trees are also
fully congruent with those derived from
molecular data alone. Four major clades are
recognized, one of which represents the out-
group taxon Angelica. Numerous subclades
are also revealed, although very few are
supported by uniquely occurring morpholog-
ical synapomorphies and many are supported
poorly in the combined analyses. The Phellop-
terus group of Cymopterus (C. bulbosus, C.
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constancei, C. macrorhizus, C. montanus, C.
multinervatus, and C. purpurascens) may very
well be the only previously identified species
groups within the complex that is supported
by molecular and morphological evidence.
Therefore, until these subclades receive con-
firmation through additional study, we do not
formally recognize new assemblages of taxa at
the present time. These clades and subclades
are only provisionally recognized and, pending
support from further studies, will be used as a
framework in future phylogenetic and revi-
sionary studies of NA Apioideae.

The monophyly of the entire group of
perennial, endemic Apiaceae subfamily Apioi-
deae of NA is supported by both morpholog-
ical and molecular analyses. The restricted
distribution of many of these plants to
elevated regions of similar habitat, their
similar life history and overall general habit,
and their overlapping patterns of morpholog-
ical character variation suggested previously
that this group of umbellifers was closely
related. The absence of a prominent conical
stylopodium in all taxa except Podistera,
where the stylopodium is otherwise well
developed, as it is in most other umbellifers,
is a synapomorphy uniting the group. Further
support for their monophyly comes from the
shared presence of a protogynous breeding
system (and associated reproductive charac-
teristics), an atypical feature in a family where
floral protandry prevails (Schlessman et al.
1990). Protogyny is presumed derived in the
apioid umbellifers, a response to an early
flowering season and unreliable pollinators
(Schlessman and Graceffa 2002).

Fruit and other morphological characters
traditionally have been used to delimit taxa
within Apioideae. However, heretofore, these
characters have not been analyzed cladistically
across a wide spectrum of NA taxa. Thus, in
the absence of a phylogenetic estimate, pat-
terns in the evolution of these characters and
their utility in circumscribing monophyletic
groups could not be properly assessed. In this
study, we have determined that only two
traditionally recognized genera, Oreonana
and Orogenia, are supported by uniquely-
occurring morphological character states.
The genera Thaspium, Zizia, and Polytaenia
are also each revealed as monophyletic in the
combined analyses, but none of them are
supported by morphological synapomorphies.
In general, morphological characters have
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very limited use in delimiting genera and
major clades. The six characters used widely
in previous classifications of the group are
highly homoplastic, resulting in many different
treatments for the group and difficulties in
circumscribing taxa unambiguously.

In Cymopterus, Cronquist (1997) reported
that some species (C. acaulis, C. bulbosus, C.
purpurascens) have a pseudoscape (a scape-like
stalk of a leaf cluster that originates from the
root-crown) with a subterranean root crown,
whereas other species (C. aboriginum, C.
cinerarius, C. nivalis) have a taproot sur-
mounted by a branching, surficial caudex.
However, some species do not fit completely
into either of these categories. As examples, C.
megacephalus and C. ripleyi have a simple
subterranean root crown, but lack a pseudo-
scape. Cymopterus duchesnensis has a taproot
capped by a surficial crown or more often by a
branched caudex. Several other species have a
surficial or subterranean root crown, but do or
do not have a pseudoscape. Our results show
that the ancestral condition is the absence of a
pseudoscape and that the derivation of a
pseudoscape has been achieved multiple times
during the evolution of the group. A pseudo-
scape is also present in some species of
Lomatium (L. juniperinum, L. cous, L. macro-
carpum, L. bicolor) and Musineon (M. divar-
icatum), thus its presence has limited utility for
reliably delimiting taxa. Similarly, plants
having a taproot surmounted by a branching,
surficial caudex are also found in multiple
separate lineages (not shown).

The presence of a prominent conical stylo-
podium (a disc-like to long-tapering enlarge-
ment borne atop the ovary at the base of the
styles) is commonly present in many species of
Apiaceae, therefore, the absence of a stylopo-
dium is considered as prime evidence support-
ing the monophyly of perennial, endemic NA
Apiaceae subfamily Apioideae (Mathias and
Constance 1944-1945; Downie et al. 2002; Sun
et al. 2004). Only the genus Podistera within
the ingroup possesses a stylopodium. Howev-
er, because this genus is not monophyletic in
the combined analyses, the presence of a
stylopodium arises three times independently.
This character is readily observable, but its
presence does not unambiguously circum-
scribe any one particular genus within the
ingroup, as previously considered.

In Apiaceae, fruit compression patterns
have been used to distinguish taxonomic
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groups at various levels. In western NA
Apioideae, dorsally compressed fruits are
present in many genera, such as Cymopterus,
Lomatium, Orogenia, Pteryxia, Pseudocymop-
terus, Polytaenia, Glehnia, and Angelica. While
definite laterally or dorsally compressed fruits
are readily distinguishable in Cymopterus,
there are numerous intermediate stages such
that ““the interpretation [of orientation of fruit
compression] depends on the individual’s
point of view” (Mathias 1930). Fruit cross-
sections reveal a complex series, from fruits
that are subterete to somewhat compressed
laterally (C. douglassii, C. jonesii, C. longipes,
C. nivalis, C. panamintensis) to those that are
markedly compressed dorsally (C. deserticola,
C. newberryi). Our results show that dorsally
compressed fruits support many separate
subclades, as do laterally compressed fruits.
These results agree with those obtained in
other studies of Apiaceae, where the orienta-
tion of fruit compression, a feature used
widely in traditional systems of classification
of the family, is an unreliable character for
circumscribing taxa (Cronquist 1982; Downie
et al. 2001).

Nearly half of the species of Cymopterus
lack a carpophore, a remnant of the floral axis
to which the mericarps are attached (Hartman
and Constance 1985; Cronquist 1997; Hart-
man 2000). Our results show that the loss of
the carpophore (through adnation of its halves
to the mericarps) has been independently
achieved several times within Cymopterus.
The absence of a carpophore also occurs in
all or some accessions of Aletes, Thaspium,
Oreoxis, Pseudocymopterus, Shoshonea, and
Orogenia, supporting the monophyly of Or-
ogenia and Thaspium. The presence of a
carpophore supports the monophyly of Or-
eonana, Zizia, Angelica, and Polytaenia. In
total, this character is lost at least nine times
within the group, and only serves to distin-
guish two of the subclades designated herein.

The outer surface of the mericarp normally
has five primary ridges or ribs (three dorsal
and two lateral), in which the dorsal and/or
lateral ribs may develop into wings. In general,
species of Cymopterus bear (one to three)
wings on their dorsal fruit ribs, whereas in
Lomatium, the dorsal ribs are generally
filiform and wingless or occasionally very
narrowly winged. However, the absence of
(or obsolete) dorsal wings found in some
species of Cymopterus (C. corrugatus, C.
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deserticola, C. douglassii, C. longipes, C.
megacephalus, C. newberryi, C. ripleyi, C.
williamsii) makes this character unreliable to
separate Cymopterus from Lomatium. Similar
fruits to those of typical Lomatium are also
seen in some species of Pteryxia (P. tere-
binthina, P. hendersonii) and Pseudocymop-
terus (P. montanus). The presence of fruits
with both lateral and dorsal wings supports
seven of the subclades designated herein, as
well as several other taxa (such as, Thaspium,
Glehnia, and Angelica). Two subclades and
Polytaenia are supported by the absence of
dorsal wings.

The number of vittae (oil tubes) in the
intervals between the primary ribs of the
fruits was used to distinguish primarily
between Aletes (mostly solitary) and Neopar-
rya (numerous; Theobald et al. 1963). Cron-
quist (1997) submerged Aletes into Musineon
because the distinction between some species
of Aletes and Musineon is no more than the
number of oil tubes (two or more in the
latter). In Cymopterus, this number varies
from 3 to 5. All but one species of Angelica are
supported by the presence of one oil tube in
each fruit interval, as are Glehnia, Polytaenia,
Thaspium, and Zizia. Subclade 1g is the only
subclade designated herein having a single
interval vitta in all included taxa. The genus
Aletes is polyphyletic in all trees, thus the
presence of a solitary vitta in the intervals of
the fruit is a highly homoplastic character
(arising at least four times independently in
nine accessions) and cannot be used by itself
to delimit genera.

In conclusion, our study confirms that
morphological characters are of limited value
for delimiting most traditionally-defined gen-
era within the group of perennial, endemic NA
apioid umbellifers. Many of these genera are
ill-formed, being based on highly homoplastic
and overlapping characters. Thus, the empha-
sis placed on these characters in previous
systems of classification of the group has led
to highly artificial assemblages of taxa. Such a
conclusion is not surprising, given the com-
mon disagreement among systematists in using
these characters to circumscribe higher-level
taxa within the family (e.g., Heywood 1971;
Theobald 1971; Davis 1972; Cronquist 1982).
Indeed, the results of numerous molecular
systematic investigations provide very little
support for all but a few suprageneric taxa
erected on the basis of anatomical and
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morphological features of the mature fruit
(summarized in Downie et al. 2001). Generic
delimitation in Apiaceae is often vague and
arbitrary (Constance 1987; Cronquist 1997),
and many species-rich genera are polyphyletic
(Downie et al. 2000a, 2000b; Spalik et al.
2001). Unfortunately, the results of this study
do little to refute these statements. Of all the
perennial, endemic apioid genera of NA, only
Oreonana, Orogenia, Polytaenia, Thaspium,
and Zizia are each resolved as monophyletic
on the basis of phylogenetic analyses of
combined molecular and morphological data.
Furthermore, all but a few of the major clades
and subclades circumscribed herein are sup-
ported by homoplastic morphological charac-
ters. The systematics of the group is no where
near satisfactory, and a complete reassessment
of the generic limits of these taxa is required.
The systematic investigation of the perennial,
endemic genera of NA Apioideae needs to be
continued with the goal of uncovering mor-
phological synapomorphies useful for clade
determination. If such synapomorphies cannot
be identified, we would have to accept that the
task of reclassifying this group is to be
accomplished on the basis of molecular
evidence rather than on morphological data.
If future studies support the conclusions
presented herein, and if further resolution of
relationships can be achieved, radical changes
to the prevailing classification of the perennial,
endemic NA Apioideae will be required.
Indeed, such changes appear to be underway
already. In accordance with previous floristic
studies (Goodrich 1986; Cronquist 1997), the
genera Aletes (in part), Oreoxis, Pseudocymop-
terus, and Pteryxia have been recently includ-
ed within a broadly defined Cymopterus in a
flora of the San Juan Basin region (S. Good-
rich et al., unpublished data). The distinction
between Lomatium and Cymopterus also
remains very unclear, with no obvious char-
acter consistently separating these taxa. Given
this trend and overlapping character variation
among genera, it may very well be possible
that future studies will indicate that all or most
members of the group should be combined
into one large, polymorphic genus, an extreme
but possibly inevitable action.
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