
From R. Zoebel and D. Moeller, eds., 1998, Proceedings of the 12th European Simulation Multiconference, University of Manchester, p.437-442

A SIMULATION TESTBED FOR BIOLOGICALLY INSPIRED
ROBOTS AND THEIR CONTROLLERS

Jesse A. Reichler1 and Fred Delcomyn2

1Department of Computer Science
2Department of Entomology
2Program in Neuroscience

University of Illinois
Urbana, IL 61801, USA

E-mail: 1reichler@uiuc.edu, 2delcomyn@uiuc.edu

KEYWORDS
AI, Robotics, Dynamics, Biologically inspired, Control
systems, Interfaces

ABSTRACT

This paper introduces a dynamics simulator designed to aid
the development of control algorithms for biologically
inspired robots. We describe the simulator and a two-tier
framework for control code interfacing that allows control
code to be written in a standard object-oriented language
(C++), but encapsulates such code to produce modular,
reusable, distributed controllers with parameterizable input-
output transmission properties such as delay, sampling rate,
and noise.

INTRODUCTION

A key issue in the field of robotics and artificial intelligence
is how to achieve adaptive and flexible behavior in a man-
made system such as a walking robot. Although a number
of walking robots have been constructed (Brooks 1989;
Wettergreen et al. 1993), adaptable and flexible control of
them is still difficult. The current generation of walking
robots can handle obstacles, but cannot easily move quickly
over rough terrain or right themselves if they fall.

Because many insects exhibit adaptable and flexible
locomotion, some robots have been designed with the
structural features of insects, on the grounds that such
features will confer to robots the same flexibility of
locomotor performance exhibited by the animal system
after which the robot is modeled (Brooks 1986; Beer et al.
1997; Delcomyn 1997). Insects are eminently suitable
models because they are physiologically relatively simple
and their walking is inherently stable. Furthermore, the
physical features of insect legs and joints can readily be
determined, then modeled in hardware (Kram et al. 1997).

Despite the intuitive appeal of this approach, the design of
appropriate controllers for these robots has been difficult.
Traditional control system engineering has proved
unsatisfactory because of the large numbers of sensory and

motor signals and because of the complicated nonlinearities
involved (Franklin et al. 1990). A recent alternative has
been to use parallel distributed control models (e.g. Brooks
1986; Beer 1990), an approach that has had some success.

In addition to the theoretical control issues, there are
significant practical impediments to developing controllers
for biologically inspired robots. One such impediment is
the need to have a physical robot interfaced to the control
code as it is being developed. As the robot and its control
system become more complex, the construction of,
maintenance of, and interface to a physical robot may come
to consume significant time. Even when a suitable robot is
available, hardware constraints and communication
bottlenecks can impede the design of control code. A
second impediment is the requirement that control
algorithms perform in real-time throughout the development
cycle. Simulation can sometimes offer a way around these
impediments.

In the remainder of this paper, we describe a dynamics
simulator designed specifically to facilitate the rapid
development and testing of control algorithms for
biologically inspired robots. We show how the application
of common object-oriented design principles to the issue of
control code interfacing induces a natural decomposition of
the control problem. It separates the design of control code
from the specific instantiation of robots and their
controllers, and provides a bridge between the two that
supports the modular reuse and parameterization of control
algorithms.

THE SIMULATION SYSTEM

Our system simulates the dynamics, sensors, and actuators
associated with articulated robots or animals. In this paper,
we focus on its use in the development of controllers for
biologically inspired legged robots, but it is also possible to
simulate traditional robotic devices such as robot arms, or
to investigate strategies of physiological motor control by
simulating the body, musculature, and sense organs of an
animal.

The simulator is a dynamics simulator, meaning that objects
have mass and inertia and behave appropriately when

subjected to disturbance forces, as opposed to a kinematic
simulator, which models movements but not forces. The
entire system consists of approximately 500k of C++ source
code. It has been compiled on a variety of Unix platforms,
and uses the X windows and OpenGL graphics libraries.
The physical parameters of the robot to be simulated -- the
size, construction, and placement of its legs and body, and
the number, location, and properties of sensors and
actuators (including physiologically based models in
biological simulations) are specified in configuration files
accessed by the simulation during initialization. In this
way, the system can be configured to emulate a wide variety
of articulated robots or arthropod animals.

User control code is written in standard C++, but interfaces
with the simulation in such a way that users need not have
knowledge of the underlying simulation code. Multiple
controllers can be attached to a single robot, and various
properties of the controller input and output variables can
be parameterized to simulate transmission delays, sampling
rates, and noise. Figure 1 shows the simulation running a
typical experiment.

Figure 1. Typical graphical display during
simulation run, showing a generic body with
six articulated legs. The inset at the top left
is an interaction panel that allows the user to
adjust specific parameters during the
simulation. The other two insets are windows
that show stick figure top and side views of
the simulated object and the forces felt during
ground contact.

Dynamics

We have used dynamics algorithms derived from the
decoupled tree-structure approach (DTS) (Freeman 1989;

Freeman and Orin 1991), which is itself based on a number
of previous approaches (e.g. Featherstone 1987; Lilly 1993;
Shih and Ravani 1987). The DTS approach models the
contact between the chains (legs) and the body (hip) as
rigid, but models ground contact using a penalty based
spring-damper method (Figure 2). Penalty-based methods
have received much criticism due to the stiffness of the
differential equations and their inherent instability and
inexactness (Baraff 1992), but can be implemented easily
and efficiently, and can qualitatively simulate a variety of
surface types. We are currently exploring more robust
contact resolution routines that would enable us to simulate
grasping, inter-limb contact, and physical interactions
between robots (see for example Mirtich 1996).

Figure 2. Conceptualization of the DTS
approach to simulation of a multi-legged
robot. Each leg is attached rigidly to the
base, and each joint is considered to be
powered. Ground contact is modeled using a
penalty based spring and damper method.

Our implementation of DTS supports a mobile base with
any number of attached open serial chains composed of
links with revolute joints. Links are described using
modified Denavit-Hartenberg parameters (Lilly 1993).
Although the DTS approach is amenable to arbitrarily
branching chains and generalized joints (see for example
McMillan et al. 1996), we have restricted ourselves to serial
(non-branching) chains and revolute joints.

Sensors and Actuators

Sensors can be attached at arbitrary points on a robot,
providing information about the movements of the body
parts and the forces imposed on them. When the simulation
is configured to emulate an insect, we simulate insect sense
organs (Delcomyn et al. 1996) and sensory neurons that
provide information about cuticular (exoskeletal) strain
(Delcomyn 1991; Cocatre-Zilgien and Delcomyn 1995).
Vision is simulated through the use of a simple video
camera model.

Movement may be effected either via torques applied
directly to the joints or, when simulating an animal, through
simulated muscles. For such simulations, we currently use
a muscle model based on work by Hill (1975; see also
Krylow et al. 1995). The model incorporates serial and
parallel elastic components, shows fatigability, and is
controlled by incoming nerve impulses, like biological
muscle. Additional actuator models, including pneumatic
cylinder models (Cocatre-Zilgien et al. 1996) and more
biologically inspired models such as the muscle-like
rubbertuator device used to control some existing
anthropomorphic robot arms (Van Der Smagt et al. 1996)
might also be simulated. The simulator has been
specifically designed to allow incorporation of arbitrary
sensor and actuator models.

Configuration Language

One key to the flexibility of our simulation system is the use
of a simple configuration language that employs a uniform
hierarchical format for specifying the physical assembly of
objects and the conditions of an experiment. This includes
the specifications of sensors, actuators, and controllers, as
well as the environment, the graphical displays, the data
files to read or write, and the kinds of interactions allowed
on-line during the simulation. The configuration language
is modeled after C++ syntax, is modular, easy to read, and
usable by non-programmers.

An important feature of the configuration language is the
use of a generalized referencing scheme that allows any
variable or parameter of an object to be specified as the
target or source of subsequent operation. All objects
(robots, sensors, controllers, etc.) are named in
configuration files. Reference to a state variable or
parameter of an object is accomplished via the standard
C/C++ language convention of listing a hierarchical trail of
parent objects followed by the name of the parameter to
access (e.g., “simplebot.leftfrontleg.knee.Joint_Angle”).

The generalized referencing scheme provides a single,
uniform interface to the multitude of internal simulation
parameters. All displays, interactive panels, and control
code structures use this scheme to specify their inputs and
outputs. The user can, for example, specify that the current
angle of a specific revolute joint (on a specific leg of a
specific robot) should be saved periodically to a data file, or
be made available for on-line manipulation by the user, or
be provided as an input variable of a specific controller.

In addition to standard graphical displays, movies and raw
data files can be recorded for later analysis. Movies are
recorded in a custom format that preserves all internal
simulation data rather than simply saving graphic images of
the simulation. This allows the user to manipulate camera
views during playback and to examine disturbances and
forces as they originally occurred. State information may
also be saved at designated intervals in a file format easily

readable by Matlab, Mathematica, or other data analysis
programs.

INTERFACING WITH THE SIMULATOR

The issue of interfacing control code is often considered of
secondary importance in robotic dynamics simulations. For
projects where the primary objective is accurately
reproducing a complex physical plant, this may be justified.
In such projects, control code development is either not part
of the simulation effort at all, or is considered a custom
application to be developed upon completion of the
dynamics simulation.

We have channeled our efforts in a different direction. We
have focused on the construction of a tool for designing and
testing complex, non-traditional robotic control algorithms.
From this standpoint, having a quantitatively precise model
of a physical robot is less important than being able rapidly
to interface complex distributed control algorithms, and to
explore the performance features of these algorithms. The
contribution of this work is not in the development of new
dynamics algorithms or sensor and actuator models, but
rather in the application of a few basic ideas from object
oriented programming to the interface of user-written
control code in a robotic simulation system.

We have used a two-tier approach to control code
interfacing that allows control code to be written in a
standard high level language (C++), but encapsulates such
code to produce modular, reusable, parameterizable,
distributed controllers that can be developed without
knowledge of the underlying simulation code. The first tier
consists of "controller stubs," which form the bridge
between the configuration language and external control
code algorithms. Controller stubs are attached to robots
from within configuration files and specify the input and
output variables to which controllers have access. The
second tier consists of a set of extensible C++ classes that
support communication and coordination between the
simulation and user-derived control structures, and are
responsible for simulating transmission properties such as
delays and noise. These built-in classes provide the
standard foundation for all control code development.

Controller Stubs

Controllers observe sensors and drive actuators. A single
robot may have many controllers, and may possess
hierarchical controllers that govern other controllers.
Controllers are "attached" to robots within configuration
files, using "controller stubs" that serve as a bridge between
the simulation and user-written control code. A controller
stub specifies the name of the control class, the inputs and
outputs that the controller has access to, and the
transmission properties to be simulated. As configuration
files are parsed, controller stubs instruct the program to
locate the appropriate user-written C++ class and instantiate
a new copy of the control code with its own independent

state variables. The separation of controller code and
controller stubs means that control libraries can be
developed independently of the assembly of robots, and
then parameterized and plugged into robots as desired.

It is the use of controller stubs, as a layer of abstraction
between the simulation and user-written code, that allows us
to perform simple but powerful manipulations of controller
input and output data as it passes between the simulation
and any control algorithm. A controller stub can specify
sampling rates that govern how often the controller is
invoked and how often each of the input variables (sensors)
are updated. Transmission delays for both input and output
variables can instruct the simulation to buffer and pipeline
signals in order to simulate delays that might be present in a
physical system. A noise model can introduce uniform or
gaussian noise into input and output variables. The
manipulation of sampling rates, transmission delays, and
noise can be used to reproduce a more realistic (and hence
more difficult) control problem, and can be useful in testing
the robustness of a control algorithm.

The code below shows a simple controller stub that might
be included inside a robot configuration file. It instructs the
simulation to locate the user-written control class
“SimplePD,” in this case a traditional proportional-
derivative controller, and instantiate (attach) a controller
that observes the current angle and desired angle of a
specific joint, and that drives the joint torque. The
controller is set to be invoked at every (simulated)
millisecond, but the joint angle input variable is sampled
every two milliseconds, suffers a four millisecond delay,
and is corrupted with white noise on the order of a tenth of
a radian. Note that the controller stub does not require any
information about how the control algorithm functions; it
simply specifies the input and output variables and their
properties.

CONTROLLER jointbrain
 {
 class="SimplePD"; // user-written controller class SimplePD
 samplerate=0.001; // control code is invoked every ms
 INPUTVAR angle
 {
 feature=robot1.leg1.segment1.Joint_Angle;
 samplerate=0.002; // angle sampled every other ms
 delay=0.004; // but value delivered is 4ms old
 noisemodel=uniform; noiseamplitute=0.1;
 }
 INPUTVAR goal
 feature=robot1.leg1.segment1.Joint_GoalAngle;
 OUTPUTVAR torque
 feature=robot1.leg1.segment1.Joint_Torque;
 }

C++ Controller Classes

Control algorithms are written by users as C++ classes that
are derived from a built-in "parent" control class provided

with the simulation. This derivation simply requires the
declaration of any local state variables, and the definition of
a small set of procedures (virtual functions) that the user
must provide. These include a procedure for the
registration (or publishing) of parameters and input and
output variables, an initialization procedure, and a
procedure for actually processing the inputs and driving the
outputs. Optional procedures can be provided to save and
load state information for a learning controller.

User-written control classes can be compiled independently
of the simulation, and are linked into the simulation
automatically. It is easy to modify existing control
algorithms, which may have been written for another
application, to conform to our control class format.
Requiring control algorithms to be derived from the parent
control class ensures that all user-written control algorithms
conform to a standard interfacing format, and can be
attached to robots in a plug-and-play fashion.

A benefit of the two-tier approach is that once a control
algorithm has been written, it exists as a kind of black box
that can be (multiply) instantiated on arbitrarily configured
robots, with widely varying simulated operating parameters
but without modification of the algorithm code itself. The
use of controller stubs and our generalized referencing
scheme, which allows any variable of any object in the
simulation to be referred to by name, also means that
control classes can make internal parameters accessible to
the rest of the simulation for on-line manipulation or
display.

DISCUSSION

Simulation has historically been a valuable tool in the
design of robotic controllers. It has allowed researchers to
explore the stability of control algorithms, automate
training of adaptable control algorithms, and perform tests
that might damage a physical robot or injure a human
operator.

For the control systems engineer interested in non-
traditional robotics, simulation offers additional advantages
by providing a platform for experimenting with robots that
cannot economically be built or acquired and for evaluating
control algorithms independently of real-time
implementation issues like execution speed or the impact of
transmission delays or sampling rates. For example, in
designing a controller to recover from missteps, an engineer
might like to be able to test basic algorithms without
worrying about execution speed, and then, given a
candidate algorithm, explore implementation details like
how fast and accurately the algorithm would have to
execute in order to be effective. Simulation can address
questions like how well a control algorithm will perform if
the transmission delay of a specific sensor is doubled, if its
sampling rate is halved, or if noise is introduced into a
transmission line. Interestingly, these are the kinds of
questions that are crucial in building real robots, but can be

the most difficult to answer in hardware because of its fixed
characteristics.

We have described a robotic simulation system that we
believe makes it possible to study such issues with very
little overhead, and that provides support for biologically
inspired and nontraditional actuators and sensors. In this
paper, we have focused on two aspects of the system that
we believe may be of potential interest to robotics and
control systems researchers: First, a simple configuration
language and generalized referencing scheme that allows
control structures and user interface elements to
communicate flexibly with each other and access arbitrary
state information. Second, a control code interfacing
scheme that facilitates the integration of modular,
distributed control code written in C++, and that supports
the simulation of signal properties such as sampling rates,
transmission delays, and signal noise.

We note that while the core articulated-body dynamics
algorithms employed by the simulation are well founded,
the contact force routines that we currently use are penalty-
based methods, and can only be said to provide gross
approximations of physical contacts. The same must be
said of our sensor and actuator models. We therefore
consider the simulator to be useful in producing qualitative
models rather than quantitative ones.

In summary, our work has been motivated by a desire to
reduce the overhead often incurred in robotic control
systems research. Specifically, we have attempted to
address the needs of researchers interested in non-
traditional sensors and actuators, and non-traditional
control algorithms. Our strategy has been simple: Allow
the actual control code to be written using a standard
objected oriented language, but provide a bridge between
the control code and the dynamics simulator. It is this
“bridge,” embodied by the configuration language, that
makes it easy to reconfigure robots, parameterize controller
instantiations, and extend the simulation.

REFERENCES

Baraff, D. 1992. "Dynamic Simulation of Non-Penetrating
Rigid Bodies." Ph.D. Thesis, Cornell University.

Beer, R.D. 1990. Intelligence as Adaptive Behavior. An
Experiment in Computational Neuroethology. Perspectives
in Artificial Intelligence, vol. 6. Academic Press, New
York.

Beer, R.D., R.D. Quinn, H.J. Chiel, and R.E. Ritzmann.
1997. "Biologically Inspired -- What Can We Learn from
Insects?" Communications of the ACM 40, no. 3: 31-38.

Brooks, R.A. 1986. "A Robust Layered Control System for
a Mobile Robot." IEEE Journal of Robotics and
Automation RA-2/1: 14-23.

Brooks, R.A. 1989. "A Robot that Walks: Emergent
Behaviors from a Carefully Evolved Network." Neural
Computation 1: 253-262.

Cocatre-Zilgien, J. and F. Delcomyn. 1995. "Computer
Simulation of Campaniform Sensilla in an Insect Leg." In
Proceedings of the 4th International Congress of
Neuroethology. M. Burrows, T. Matheson, P.L. Newland,
and H. Schuppe, eds. Georg Thieme Verlag, Stuttgart. 448.

Cocatre-Zilgien, J.H., F. Delcomyn and J.M. Hart. 1996.
“Performance of a Muscle-like ‘Leaky’ Pneumatic Actuator
Powered by Modulated Air Pulses.” Journal of Robotic
Systems 13: 379-390.

Delcomyn, F. 1991. “Activity and Directional Sensitivity of
Leg Campaniform Sensilla in a Stick Insect.” Journal of
Comparative Physiology A 168: 113-119.

Delcomyn, F. 1997. “Insect Models for Robotics.” In
Encyclopedia of Neuroscience, 2nd edition (CD-ROM), G.
Adelman and B. Smith, eds. Elsevier, Amsterdam.

Delcomyn, F., M.E. Nelson, and J.H. Cocatre-Zilgien.
1996. “Sense Organs of Insect Legs and the Selection of
Sensors for Agile Walking Robots.” International Journal
of Robotics Research 15: 113-127.

Featherstone, R. 1987. Robot Dynamics Algorithms.
Kluwer Academic Publishers, Boston.

Franklin, J. and O. Selfridge. 1990. "Some New Directions
for Adaptive Control Theory in Robotics." In Neural
Networks for Control, W.T. Miller, R. Sutton, and P.
Werbos, eds. MIT Press, Cambridge, MA. 349-365.

Freeman, P. 1989. "Decoupled Tree-Structure Approach to
Efficient Dynamic Simulation of a Quadruped Robotic
Vehicle." Masters Thesis, Ohio State University.

Freeman, P. and D. Orin. 1991. "Efficient Dynamic
Simulation of a Quadruped Using a Decoupled Tree-
Structure Approach." International Journal of Robotics
Research 10, no. 6: 619-626.

Hill, T. 1975. "Theoretical Formalism for the Sliding
Filament Model of Contraction of Striated Muscle, Part II."
Progress in Biophysics and Molecular Biology 29: 105-
159.

Kram, R., B. Wong, and R.J. Full. 1997. “Three-
Dimensional Kinematics and Limb Kinetic Energy of
Running Cockroaches.” Journal of Experimental Biology
200: 1919-1929.

Krylow, A., T. Sandercock and W. Rymer. 1995. "Muscle
Models." In Handbook of Brain Theory and Neural
Networks, M.A. Arbib, ed. MIT Press, Cambridge, MA.
609-613.

Lilly, K. 1993. Efficient Dynamic Simulation of Robotic
Mechanisms. Kluwer Academic Publishers, Boston.

McMillan, S., D. Orin, and R. McGhee. 1996. "A
Computational Framework for Simulation of Underwater
Robotic Vehicle Systems." Autonomous Robots 3: 253-268.

Mirtich, B. 1996. "Impulse-Based Dynamic Simulation of
Rigid Body Systems." Ph.D. Thesis, University of
California at Berkeley.

Shih, F.A. and B. Ravani. 1987. "Dynamic Simulation of
Legged Machines Using a Compliant Joint Model."
International Journal of Robotics Research 6, no.4: 33-46.

Van Der Smagt, P., F. Groen, and K. Shulten. 1996.
"Analysis and Control of a Rubbertuator Arm." Biological
Cybernetics 75: 433-440.

Wettergreen, D., C. Thorpe, and R. Whittaker. 1993.
“Exploring Mount Erebus by Walking Robot.” Robotics
and Autonomous Systems 11: 171-185.

BIOGRAPHY

Jesse Reichler is a graduate student in Computer Science at
the University of Illinois at Urbana-Champaign. He
received his bachelors degree in Computer Science and
Applied Mathematics at the State University of New York
at Stonybrook, and spent a year abroad at the University of
Sussex, in Brighton, England. His research interests
involve the development of adaptive, large-scale,
biologically inspired motor controllers.

Fred Delcomyn, who received his Ph.D. from the
University of Oregon, is a professor of Entomology and of
Molecular and Integrative Physiology at the University of
Illinois at Urbana-Champaign. He is a Fellow of the
American Association for the Advancement of Science, and
has been a senior Fulbright Scholar at the University of
Kaiserslautern, Germany. His research interests are in
neural mechanisms of coordination, especially during
locomotion in insects.

