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ABSTRACT 
 
This paper introduces a dynamics simulator designed to aid 
the development of control algorithms for biologically 
inspired robots.  We describe the simulator and a two-tier 
framework for control code interfacing that allows control 
code to be written in a standard object-oriented language 
(C++), but encapsulates such code to produce modular, 
reusable, distributed controllers with parameterizable input-
output transmission properties such as delay, sampling rate, 
and noise. 
 
 
INTRODUCTION 
 
A key issue in the field of robotics and artificial intelligence 
is how to achieve adaptive and flexible behavior in a man-
made system such as a walking robot.  Although a number 
of walking robots have been constructed (Brooks 1989; 
Wettergreen et al. 1993), adaptable and flexible control of 
them is still difficult.  The current generation of walking 
robots can handle obstacles, but cannot easily move quickly 
over rough terrain or right themselves if they fall. 
 
Because many insects exhibit adaptable and flexible 
locomotion, some robots have been designed with the 
structural features of insects, on the grounds that such 
features will confer to robots the same flexibility of 
locomotor performance exhibited by the animal system 
after which the robot is modeled (Brooks 1986; Beer et al. 
1997; Delcomyn 1997).  Insects are eminently suitable 
models because they are physiologically relatively simple 
and their walking is inherently stable.  Furthermore, the 
physical features of insect legs and joints can readily be 
determined, then modeled in hardware (Kram et al. 1997). 
 
Despite the intuitive appeal of this approach, the design of 
appropriate controllers for these robots has been difficult.  
Traditional control system engineering has proved 
unsatisfactory because of the large numbers of sensory and 

motor signals and because of the complicated nonlinearities 
involved (Franklin et al. 1990).  A recent alternative has 
been to use parallel distributed control models (e.g. Brooks 
1986; Beer 1990), an approach that has had some success. 
 
In addition to the theoretical control issues, there are 
significant practical impediments to developing controllers 
for biologically inspired robots.  One such impediment is 
the need to have a physical robot interfaced to the control 
code as it is being developed.  As the robot and its control 
system become more complex, the construction of, 
maintenance of, and interface to a physical robot may come 
to consume significant time.  Even when a suitable robot is 
available, hardware constraints and communication 
bottlenecks can impede the design of control code.  A 
second impediment is the requirement that control 
algorithms perform in real-time throughout the development 
cycle.  Simulation can sometimes offer a way around these 
impediments. 
 
In the remainder of this paper, we describe a dynamics 
simulator designed specifically to facilitate the rapid 
development and testing of control algorithms for 
biologically inspired robots.  We show how the application 
of common object-oriented design principles to the issue of 
control code interfacing induces a natural decomposition of 
the control problem.  It separates the design of control code 
from the specific instantiation of robots and their 
controllers, and provides a bridge between the two that 
supports the modular reuse and parameterization of control 
algorithms. 
 
 
THE  SIMULATION  SYSTEM 
 
Our system simulates the dynamics, sensors, and actuators 
associated with articulated robots or animals.  In this paper, 
we focus on its use in the development of controllers for 
biologically inspired legged robots, but it is also possible to 
simulate traditional robotic devices such as robot arms, or 
to investigate strategies of physiological motor control by 
simulating the body, musculature, and sense organs of an 
animal. 
 
The simulator is a dynamics simulator, meaning that objects 
have mass and inertia and behave appropriately when 



subjected to disturbance forces, as opposed to a kinematic 
simulator, which models movements but not forces. The 
entire system consists of approximately 500k of C++ source 
code.  It has been compiled on a variety of Unix platforms, 
and uses the X windows and OpenGL graphics libraries.  
The physical parameters of the robot to be simulated -- the 
size, construction, and placement of its legs and body, and 
the number, location, and properties of sensors and 
actuators (including physiologically based models in 
biological simulations) are specified in configuration files 
accessed by the simulation during initialization.  In this 
way, the system can be configured to emulate a wide variety 
of articulated robots or arthropod animals. 
 
User control code is written in standard C++, but interfaces 
with the simulation in such a way that users need not have 
knowledge of the underlying simulation code.  Multiple 
controllers can be attached to a single robot, and various 
properties of the controller input and output variables can 
be parameterized to simulate transmission delays, sampling 
rates, and noise.  Figure 1 shows the simulation running a 
typical experiment. 
 

 
 

Figure 1.  Typical graphical display during 
simulation run, showing a generic body with 
six articulated legs.  The inset at the top left 
is an interaction panel that allows the user to 
adjust specific parameters during the 
simulation.  The other two insets are windows 
that show stick figure top and side views of 
the simulated object and the forces felt during 
ground contact. 

 
 
 
Dynamics 
 
We have used dynamics algorithms derived from the 
decoupled tree-structure approach (DTS) (Freeman 1989; 

Freeman and Orin 1991), which is itself based on a number 
of previous approaches (e.g. Featherstone 1987; Lilly 1993; 
Shih and Ravani 1987).  The DTS approach models the 
contact between the chains (legs) and the body (hip) as 
rigid, but models ground contact using a penalty based 
spring-damper method (Figure 2).  Penalty-based methods 
have received much criticism due to the stiffness of the 
differential equations and their inherent instability and 
inexactness (Baraff 1992), but can be implemented easily 
and efficiently, and can qualitatively simulate a variety of 
surface types.  We are currently exploring more robust 
contact resolution routines that would enable us to simulate 
grasping, inter-limb contact, and physical interactions 
between robots (see for example Mirtich 1996). 
 

 
Figure 2.  Conceptualization of the DTS 
approach to simulation of a multi-legged 
robot.  Each leg is attached rigidly to the 
base, and each joint is considered to be 
powered.  Ground contact is modeled using a 
penalty based spring and damper method. 

 
 
 
Our implementation of DTS supports a mobile base with 
any number of attached open serial chains composed of 
links with revolute joints.  Links are described using 
modified Denavit-Hartenberg parameters (Lilly 1993). 
Although the DTS approach is amenable to arbitrarily 
branching chains and generalized joints (see for example 
McMillan et al. 1996), we have restricted ourselves to serial 
(non-branching) chains and revolute joints. 
 
 
Sensors and Actuators 
 
Sensors can be attached at arbitrary points on a robot, 
providing information about the movements of the body 
parts and the forces imposed on them.  When the simulation 
is configured to emulate an insect, we simulate insect sense 
organs (Delcomyn et al. 1996) and sensory neurons that 
provide information about cuticular (exoskeletal) strain 
(Delcomyn 1991; Cocatre-Zilgien and Delcomyn 1995).  
Vision is simulated through the use of a simple video 
camera model.  
 

  



Movement may be effected either via torques applied 
directly to the joints or, when simulating an animal, through 
simulated muscles.  For such simulations, we currently use 
a muscle model based on work by Hill (1975; see also 
Krylow et al. 1995).  The model incorporates serial and 
parallel elastic components, shows fatigability, and is 
controlled by incoming nerve impulses, like biological 
muscle.  Additional actuator models, including pneumatic 
cylinder models (Cocatre-Zilgien et al. 1996) and more 
biologically inspired models such as the muscle-like 
rubbertuator device used to control some existing 
anthropomorphic robot arms (Van Der Smagt et al. 1996) 
might also be simulated.  The simulator has been 
specifically designed to allow incorporation of arbitrary 
sensor and actuator models. 
 
 
Configuration Language 
 
One key to the flexibility of our simulation system is the use 
of a simple configuration language that employs a uniform 
hierarchical format for specifying the physical assembly of 
objects and the conditions of an experiment.  This includes 
the specifications of sensors, actuators, and controllers, as 
well as the environment, the graphical displays, the data 
files to read or write, and the kinds of interactions allowed 
on-line during the simulation.  The configuration language 
is modeled after C++ syntax, is modular, easy to read, and 
usable by non-programmers. 
 
An important feature of the configuration language is the 
use of a generalized referencing scheme that allows any 
variable or parameter of an object to be specified as the 
target or source of subsequent operation.  All objects 
(robots, sensors, controllers, etc.) are named in 
configuration files.  Reference to a state variable or 
parameter of an object is accomplished via the standard 
C/C++ language convention of listing a hierarchical trail of 
parent objects followed by the name of the parameter to 
access (e.g., “simplebot.leftfrontleg.knee.Joint_Angle”). 
 
The generalized referencing scheme provides a single, 
uniform interface to the multitude of internal simulation 
parameters.  All displays, interactive panels, and control 
code structures use this scheme to specify their inputs and 
outputs.  The user can, for example, specify that the current 
angle of a specific revolute joint (on a specific leg of a 
specific robot) should be saved periodically to a data file, or 
be made available for on-line manipulation by the user, or 
be provided as an input variable of a specific controller. 
 
In addition to standard graphical displays, movies and raw 
data files can be recorded for later analysis.  Movies are 
recorded in a custom format that preserves all internal 
simulation data rather than simply saving graphic images of 
the simulation.  This allows the user to manipulate camera 
views during playback and to examine disturbances and 
forces as they originally occurred.  State information may 
also be saved at designated intervals in a file format easily 

readable by Matlab, Mathematica, or other data analysis 
programs. 
 
INTERFACING  WITH  THE  SIMULATOR 
 
The issue of interfacing control code is often considered of 
secondary importance in robotic dynamics simulations.  For 
projects where the primary objective is accurately 
reproducing a complex physical plant, this may be justified.  
In such projects, control code development is either not part 
of the simulation effort at all, or is considered a custom 
application to be developed upon completion of the 
dynamics simulation. 
 
We have channeled our efforts in a different direction.  We 
have focused on the construction of a tool for designing and 
testing complex, non-traditional robotic control algorithms.  
From this standpoint, having a quantitatively precise model 
of a physical robot is less important than being able rapidly 
to interface complex distributed control algorithms, and to 
explore the performance features of these algorithms.  The 
contribution of this work is not in the development of new 
dynamics algorithms or sensor and actuator models, but 
rather in the application of a few basic ideas from object 
oriented programming to the interface of user-written 
control code in a robotic simulation system. 
 
We have used a two-tier approach to control code 
interfacing that allows control code to be written in a 
standard high level language (C++), but encapsulates such 
code to produce modular, reusable, parameterizable, 
distributed controllers that can be developed without 
knowledge of the underlying simulation code.  The first tier 
consists of "controller stubs," which form the bridge 
between the configuration language and external control 
code algorithms.  Controller stubs are attached to robots 
from within configuration files and specify the input and 
output variables to which controllers have access.  The 
second tier consists of a set of extensible C++ classes that 
support communication and coordination between the 
simulation and user-derived control structures, and are 
responsible for simulating transmission properties such as 
delays and noise.  These built-in classes provide the 
standard foundation for all control code development. 
 
 
Controller Stubs 
 
Controllers observe sensors and drive actuators.  A single 
robot may have many controllers, and may possess 
hierarchical controllers that govern other controllers.  
Controllers are "attached" to robots within configuration 
files, using "controller stubs" that serve as a bridge between 
the simulation and user-written control code.  A controller 
stub specifies the name of the control class, the inputs and 
outputs that the controller has access to, and the 
transmission properties to be simulated.  As configuration 
files are parsed, controller stubs instruct the program to 
locate the appropriate user-written C++ class and instantiate 
a new copy of the control code with its own independent 



state variables.  The separation of controller code and 
controller stubs means that control libraries can be 
developed independently of the assembly of robots, and 
then parameterized and plugged into robots as desired. 
 
It is the use of controller stubs, as a layer of abstraction 
between the simulation and user-written code, that allows us 
to perform simple but powerful manipulations of controller 
input and output data as it passes between the simulation 
and any control algorithm.  A controller stub can specify 
sampling rates that govern how often the controller is 
invoked and how often each of the input variables (sensors) 
are updated.  Transmission delays for both input and output 
variables can instruct the simulation to buffer and pipeline 
signals in order to simulate delays that might be present in a 
physical system.  A noise model can introduce uniform or 
gaussian noise into input and output variables.  The 
manipulation of sampling rates, transmission delays, and 
noise can be used to reproduce a more realistic (and hence 
more difficult) control problem, and can be useful in testing 
the robustness of a control algorithm. 
 
The code below shows a simple controller stub that might 
be included inside a robot configuration file.  It instructs the 
simulation to locate the user-written control class 
“SimplePD,” in this case a traditional proportional-
derivative controller, and instantiate (attach) a controller 
that observes the current angle and desired angle of a 
specific joint, and that drives the joint torque.  The 
controller is set to be invoked at every (simulated) 
millisecond, but the joint angle input variable is sampled 
every two milliseconds, suffers a four millisecond delay, 
and is corrupted with white noise on the order of a tenth of 
a radian.  Note that the controller stub does not require any 
information about how the control algorithm functions; it 
simply specifies the input and output variables and their 
properties. 
 
CONTROLLER jointbrain 
 { 
 class="SimplePD"; // user-written controller class SimplePD 
 samplerate=0.001; // control code is invoked every ms 
 INPUTVAR angle 
  { 
  feature=robot1.leg1.segment1.Joint_Angle; 
  samplerate=0.002; // angle sampled every other ms 
  delay=0.004; // but value delivered is 4ms old 
  noisemodel=uniform; noiseamplitute=0.1; 
  } 
 INPUTVAR goal 
  feature=robot1.leg1.segment1.Joint_GoalAngle; 
 OUTPUTVAR torque 
  feature=robot1.leg1.segment1.Joint_Torque; 
 } 
 
 
C++ Controller Classes 
 
Control algorithms are written by users as C++ classes that 
are derived from a built-in "parent" control class provided 

with the simulation.  This derivation simply requires the 
declaration of any local state variables, and the definition of 
a small set of procedures (virtual functions) that the user 
must provide.  These include a procedure for the 
registration (or publishing) of parameters and input and 
output variables, an initialization procedure, and a 
procedure for actually processing the inputs and driving the 
outputs.  Optional procedures can be provided to save and 
load state information for a learning controller. 
 
User-written control classes can be compiled independently 
of the simulation, and are linked into the simulation 
automatically.  It is easy to modify existing control 
algorithms, which may have been written for another 
application, to conform to our control class format.  
Requiring control algorithms to be derived from the parent 
control class ensures that all user-written control algorithms 
conform to a standard interfacing format, and can be 
attached to robots in a plug-and-play fashion.   
 
A benefit of the two-tier approach is that once a control 
algorithm has been written, it exists as a kind of black box 
that can be (multiply) instantiated on arbitrarily configured 
robots, with widely varying simulated operating parameters 
but without modification of the algorithm code itself.  The 
use of controller stubs and our generalized referencing 
scheme, which allows any variable of any object in the 
simulation to be referred to by name, also means that 
control classes can make internal parameters accessible to 
the rest of the simulation for on-line manipulation or 
display. 
 
 
DISCUSSION 
 
Simulation has historically been a valuable tool in the 
design of robotic controllers.  It has allowed researchers to 
explore the stability of control algorithms, automate 
training of adaptable control algorithms, and perform tests 
that might damage a physical robot or injure a human 
operator. 
 
For the control systems engineer interested in non-
traditional robotics, simulation offers additional advantages 
by providing a platform for experimenting with robots that 
cannot economically be built or acquired and for evaluating 
control algorithms independently of real-time 
implementation issues like execution speed or the impact of 
transmission delays or sampling rates.  For example, in 
designing a controller to recover from missteps, an engineer 
might like to be able to test basic algorithms without 
worrying about execution speed, and then, given a 
candidate algorithm, explore implementation details like 
how fast and accurately the algorithm would have to 
execute in order to be effective.  Simulation can address 
questions like how well a control algorithm will perform if 
the transmission delay of a specific sensor is doubled, if its 
sampling rate is halved, or if noise is introduced into a 
transmission line.  Interestingly, these are the kinds of 
questions that are crucial in building real robots, but can be 



the most difficult to answer in hardware because of its fixed 
characteristics. 
 
We have described a robotic simulation system that we 
believe makes it possible to study such issues with very 
little overhead, and that provides support for biologically 
inspired and nontraditional actuators and sensors.  In this 
paper, we have focused on two aspects of the system that 
we believe may be of potential interest to robotics and 
control systems researchers: First, a simple configuration 
language and generalized referencing scheme that allows 
control structures and user interface elements to 
communicate flexibly with each other and access arbitrary 
state information.  Second, a control code interfacing 
scheme that facilitates the integration of modular, 
distributed control code written in C++, and that supports 
the simulation of signal properties such as sampling rates, 
transmission delays, and signal noise. 
 
We note that while the core articulated-body dynamics 
algorithms employed by the simulation are well founded, 
the contact force routines that we currently use are penalty-
based methods, and can only be said to provide gross 
approximations of physical contacts.  The same must be 
said of our sensor and actuator models.  We therefore 
consider the simulator to be useful in producing qualitative 
models rather than quantitative ones. 
 
In summary, our work has been motivated by a desire to 
reduce the overhead often incurred in robotic control 
systems research.  Specifically, we have attempted to 
address the needs of researchers interested in non-
traditional sensors and actuators, and non-traditional 
control algorithms.  Our strategy has been simple:  Allow 
the actual control code to be written using a standard 
objected oriented language, but provide a bridge between 
the control code and the dynamics simulator.  It is this 
“bridge,” embodied by the configuration language, that 
makes it easy to reconfigure robots, parameterize controller 
instantiations, and extend the simulation.  
 
 
REFERENCES 
 
Baraff, D. 1992. "Dynamic Simulation of Non-Penetrating 
Rigid Bodies."  Ph.D. Thesis, Cornell University. 
 
Beer, R.D. 1990. Intelligence as Adaptive Behavior.  An 
Experiment in Computational Neuroethology.  Perspectives 
in Artificial Intelligence, vol. 6.  Academic Press, New 
York. 
 
Beer, R.D., R.D. Quinn, H.J. Chiel, and R.E. Ritzmann. 
1997. "Biologically Inspired -- What Can We Learn from 
Insects?"  Communications of the ACM 40, no. 3: 31-38. 
 
Brooks, R.A. 1986. "A Robust Layered Control System for 
a Mobile Robot."  IEEE Journal of Robotics and 
Automation RA-2/1: 14-23. 
 

Brooks, R.A. 1989. "A Robot that Walks: Emergent 
Behaviors from a Carefully Evolved Network." Neural 
Computation 1: 253-262. 
 
Cocatre-Zilgien, J. and F. Delcomyn. 1995. "Computer 
Simulation of Campaniform Sensilla in an Insect Leg."  In 
Proceedings of the 4th International Congress of 
Neuroethology. M. Burrows, T. Matheson, P.L. Newland, 
and H. Schuppe, eds.  Georg Thieme Verlag, Stuttgart. 448. 
 
Cocatre-Zilgien, J.H., F. Delcomyn and J.M. Hart.  1996.  
“Performance of a Muscle-like ‘Leaky’ Pneumatic Actuator 
Powered by Modulated Air Pulses.”  Journal of Robotic 
Systems 13: 379-390. 
 
Delcomyn, F. 1991. “Activity and Directional Sensitivity of 
Leg Campaniform Sensilla in a Stick Insect.” Journal of 
Comparative Physiology A 168: 113-119. 
 
Delcomyn, F. 1997. “Insect Models for Robotics.”  In 
Encyclopedia of Neuroscience, 2nd edition (CD-ROM), G. 
Adelman and B. Smith, eds. Elsevier, Amsterdam. 
 
Delcomyn, F., M.E. Nelson, and J.H. Cocatre-Zilgien. 
1996.  “Sense Organs of Insect Legs and the Selection of 
Sensors for Agile Walking Robots.” International Journal 
of Robotics Research 15: 113-127. 
 
Featherstone, R. 1987. Robot Dynamics Algorithms. 
Kluwer Academic Publishers, Boston. 
 
Franklin, J. and O. Selfridge. 1990. "Some New Directions 
for Adaptive Control Theory in Robotics." In Neural 
Networks for Control, W.T. Miller, R. Sutton, and P. 
Werbos, eds. MIT Press, Cambridge, MA. 349-365. 
 
Freeman, P. 1989. "Decoupled Tree-Structure Approach to 
Efficient Dynamic Simulation of a Quadruped Robotic 
Vehicle."  Masters Thesis, Ohio State University. 
 
Freeman, P. and D. Orin. 1991. "Efficient Dynamic 
Simulation of a Quadruped Using a Decoupled Tree-
Structure Approach." International Journal of Robotics 
Research 10, no. 6: 619-626. 
 
Hill, T. 1975. "Theoretical Formalism for the Sliding 
Filament Model of Contraction of Striated Muscle, Part II." 
Progress in Biophysics and Molecular Biology 29: 105-
159. 
 
Kram, R., B. Wong, and R.J. Full. 1997. “Three-
Dimensional Kinematics and Limb Kinetic Energy of 
Running Cockroaches.” Journal of Experimental Biology 
200: 1919-1929. 
 
Krylow, A., T. Sandercock and W. Rymer. 1995. "Muscle 
Models." In Handbook of Brain Theory and Neural 
Networks, M.A. Arbib, ed. MIT Press, Cambridge, MA. 
609-613. 
 



Lilly, K. 1993. Efficient Dynamic Simulation of Robotic 
Mechanisms. Kluwer Academic Publishers, Boston. 
 
McMillan, S., D. Orin, and R. McGhee. 1996. "A 
Computational Framework for Simulation of Underwater 
Robotic Vehicle Systems." Autonomous Robots 3: 253-268. 
 
Mirtich, B. 1996. "Impulse-Based Dynamic Simulation of 
Rigid Body Systems." Ph.D. Thesis, University of 
California at Berkeley. 
 
Shih, F.A. and B. Ravani. 1987. "Dynamic Simulation of 
Legged Machines Using a Compliant Joint Model." 
International Journal of Robotics Research 6, no.4: 33-46. 
 
Van Der Smagt, P., F. Groen, and K. Shulten. 1996. 
"Analysis and Control of a Rubbertuator Arm." Biological 
Cybernetics 75: 433-440. 
 
Wettergreen, D., C. Thorpe, and R. Whittaker. 1993. 
“Exploring Mount Erebus by Walking Robot.” Robotics 
and Autonomous Systems 11: 171-185. 
 

BIOGRAPHY 
 
Jesse Reichler is a graduate student in Computer Science at 
the University of Illinois at Urbana-Champaign.  He 
received his bachelors degree in Computer Science and 
Applied Mathematics at the State University of New York 
at Stonybrook, and spent a year abroad at the University of 
Sussex, in Brighton, England.  His research interests 
involve the development of adaptive, large-scale, 
biologically inspired motor controllers. 
 
Fred Delcomyn, who received his Ph.D. from the 
University of Oregon, is a professor of Entomology and of 
Molecular and Integrative Physiology at the University of 
Illinois at Urbana-Champaign.  He is a Fellow of the 
American Association for the Advancement of Science, and 
has been a senior Fulbright Scholar at the University of 
Kaiserslautern, Germany. His research interests are in 
neural mechanisms of coordination, especially during 
locomotion in insects. 
 


