Respiration in Archaea and Bacteria
Diversity of Prokaryotic Electron Transport Carriers

Edited by
Davide Zannoni
Department of Biology University of Bologna, Italy
Contents

Editorial v

Contents x

Preface xiv

Color Plates CP-1

1 Evolution and Phylogenetic Analysis of Respiration 1-14
 Jose Castresana
 Summary 1
 I. Introduction 2
 II. Chemical Composition of the Primitive Atmosphere and Oceans 2
 III. Heterotrophic vs. Autotrophic Origin of Energy Conversion 3
 IV. The Comparative Genomics Evidence on the Evolution of Respiration 3
 V. Ancient Respiratory Mechanisms 5
 VI. Respiratory Mechanisms Evolved in Archaea 8
 VII. The Last Universal Ancestor Was a Generalist Organism 9
 VIII. The Respiration-Early Hypothesis: Photosynthesis Came Later 9
 Acknowledgments 10
 References 10

2 NADH Dehydrogenase (NADH-Quinone Oxidoreductase) 15-40
 Takao Yagi, Salvatore Di Bernardo, Eiko Nakamur-Ogiso, Miou-Chien Kao, Byoung Boo Suro, and Akemi Matsuno-Yagi
 Summary 15
 I. Introduction 16
 II. Genes and Regulations of H+-Translocating NADH-Quinone (Q) Oxidoreductase (NDH-1) and NADH-Q Oxidoreductase (Non-Energy Transducing, NDH-2) 17
 III. NDH-1 20
 IV. NDH-2 31
 Acknowledgments 33
 References 33

3 Bacterial Hydroquinone: Cytochrome c Oxidoreductases. Physiology, Structure and Function 41-55
 Jason W. Cooley, Elisabeth Darrouzet and Fawzi Daldai
 Summary 41
 I. Introduction 42
 II. Experimental Systems Used in the Study of the Cyt bc1 44
 III. Structure of the Cyt bc1 46
 IV. Function of the Cyt bc1; The Modified Q cycle 50