Light-Harvesting Antennas in Photosynthesis

Edited by

Beverley R. Green
University of British Columbia, Vancouver, Canada

and

William W. Parson
University of Washington, Seattle, U.S.A.

KLUWER ACADEMIC PUBLISHERS
DORDRECHT / BOSTON / LONDON
Contents

Editorial vii
Contents xi
Preface xvii
Color Plates CP-1

Part I. Introduction to Light-Harvesting

1 Photosynthetic Membranes and Their Light-Harvesting Antennas 1–28
 Beverley R. Green, Jan M. Anderson and William W. Parson
 Summary 2
 I. Introduction 2
 II. Photosynthetic Prokaryotes 6
 III. Chloroplasts of Photosynthetic Eukaryotes 14
 To be Continued... 23
 Acknowledgments 23
 References 23

2 The Pigments 29–81
 Hugo Scheer
 Summary 29
 I. Introduction 30
 II. Functions: A Short Overview 30
 III. The Pigments 34
 IV. Analytics 67
 V. Pigment Substitution Methods 69
 References 71

3 Optical Spectroscopy in Photosynthetic Antennas 83–127
 William W. Parson and V. Nagaratnam
 Summary 84
 I. Introduction 84
 II. Absorption Coefficient 85
 III. Charge-Transfer Transitions 86
 IV. Circular Dichroism 86
 V. Configuration interactions 90
 VI. Dipole Strength 92
 VII. Electromagnetic Radiation 92
 VIII. Excitons 95
 IX. Fluorescence Yield and Lifetime 100
X. Infrared Spectroscopy
XI. Internal Conversion
XII. Linear Dichroism and Fluorescence Anisotropy
XIII. Mathematical Tools
XIV. Raman Scattering
XV. Resonance Energy Transfer
XVI. Singlet and Triplet States
XVII. Spectral Bandshapes and Dynamics
XVIII. Spontaneous Fluorescence
XIX. Time-Resolved Spectroscopy
XX. Transition Dipoles
XXI. Wavefunctions
Acknowledgement
References

4 The Evolution of Light-harvesting Antennas

Beverley R. Green

Summary
I. Introduction
II. Origins
III. How Proteins and Their Genes Evolve
IV. Pigment Biosynthesis Genes
V. Photosynthetic Reaction Centers and the Core Antenna Family
VI. Phycobiliproteins
VII. LHC Superfamily
VIII. Single Membrane Helix Antennas of Purple and Green Filamentous Bacteria
IX. Antenna Proteins Unique to Certain Groups
X. The Big Picture: The Five Divisions of Photosynthetic Bacteria
References

Part II. Structure and Function in Light-Harvesting

5 The Light-Harvesting System of Purple Bacteria

Bruno Robert, Richard J. Cogdell and Rienk van Grondelle

Summary
I. Introduction
II. Components of the Light-Harvesting System of Purple Bacteria
III. Structure-Function Relationships in Bacterial Antennas
IV. Energy Transfer in Light-Harvesting Proteins from Purple Bacteria
V. Conclusion
Acknowledgments
References

6 Antenna Complexes from Green Photosynthetic Bacteria

Robert E. Blankenship and Katsumi Matsuura

Summary

xii
I. Introduction
II. Chorosome Structure, Pigment Stoichiometry and Protein Content
III. Redox-Dependent Regulation of Energy Transfer in Chlorosomes
IV. Fenna-Matthews-Olson Protein
V. Kinetics and Pathways of Energy Transfer in Chlorosomes and Membranes of Green Bacteria
VI. Conclusions and Future Work
Acknowledgments
References

7 Light-Harvesting in Photosystem II
Herbert van Amerongen and Jan P. Dekker

Summary
I. Introduction
II. The Photosystem II Genes and Proteins
III. Individual Photosystem II Antenna Complexes
IV. Reaction Center Containing Photosystem II Complexes
V. Overall Trapping of Excitation Energy
References

8 Structure and Function of the Antenna System in Photosystem I
Petra Fromme, Eberhard Schlodder and Stefan Jansson

Summary
I. Introduction
II. The Architecture of Cyanobacterial Photosystem I
III. Structural Organization of the Core Antenna System
IV. Plant Photosystem I
V. Excitation Energy Transfer and Trapping in PS I
Acknowledgment
References

9 Antenna Systems and Energy Transfer in Cyanophyta and Rhodophyta
Mamoru Mimuro and Hiroto Kikuchi

Summary
I. Introduction
II. Molecular Architecture of Antenna System in Cyanobacteria and Red Algae
III. Energy Flow in Antenna Systems of Cyanobacteria
IV. Three-Dimensional Structures of Phycobiliproteins
V. Electronic States of Chromophores in Phycobiliproteins
VI. Energy Transfer
VII. Concluding Remarks
Acknowledgments
References
10 Antenna Systems of Red Algae: Phycobilisomes with Photosystem II and Chlorophyll Complexes with Photosystem I

Elisabeth Gantt, Beatrice Grabowski and Francis X. Cunningham, Jr.

Summary

I. Introduction
II. Structure and Composition of the Antenna Systems
III. Phylogenetic Implications of LHC Structure and Function
IV. Light Acclimation Responses
V. Energy Distribution
VI. Future Problems to be Addressed
Acknowledgments
References

307–322

11 Light-Harvesting Systems in Chlorophyll c-Containing Algae

Alisdair N. Macpherson and Roger G. Hiller

Summary

I. Introduction
II. Groups Having One Main Light Harvesting System
III. Groups Having Two Distinct Light Harvesting Systems
IV. Concluding Remarks
Acknowledgments
References

323–352

Part III. Biogenesis, Regulation and Adaptation

12 Biogenesis of Green Plant Thylakoid Membranes

Kenneth Cline

Summary

I. Introduction
II. Methodologies for Higher Plant Chloroplasts
III. Overview of Localization Processes
IV. Different Mechanisms Address Different Translocation Problems
V. The In Vivo Site of Thylakoid Protein Transport and Insertion
VI. Chlorophyll Synthesis And The Insertion Of Antenna Proteins
VII. Future Prospects
References

353–372

13 Pulse Amplitude Modulated Chlorophyll Fluorometry and its Application in Plant Science

G. Heinrich Krause and Peter Jahns

Summary

I. Introduction
II. The Measuring Principle of the Pulse Amplitude Modulation Fluorometer
III. Initial and Variable Fluorescence
IV. Ratio of Maximum Variable to Maximum Total Fluorescence, Fv/Fm
V. Fluorescence Quenching

373–399

xiv
14 Photostasis in Plants, Green Algae and Cyanobacteria: The Role of Light Harvesting Antenna Complexes
Norman P. A. Huner, Gunnar Öquist and Anastasios Melis

Summary
402
I. Introduction
402
II. Stress and Photostasis
404
III. Acclimation and Photostasis
409
IV. Chloroplast Biogenesis and Photostasis
415
V. Sensing Mechanisms Involved in Photostasis
416
Acknowledgments
416
References
417

15 Photoacclimation of Light Harvesting Systems in Eukaryotic Algae
Paul G. Falkowski and Yi-Bu Chen

Summary
424
I. Introduction
424
II. Photoacclimation
425
III. Light in aquatic environments
425
IV. Physiological Responses to Changes in Spectral Irradiance
429
V. Light Harvesting Systems and the Effective Absorption Cross Section of Photosystem II
432
VI. Light Harvesting Complexes
438
VII. The 'Nested Signal' Hypothesis
442
Acknowledgments
443
References
443

16 Multi-level Regulation of Purple Bacterial Light-harvesting Complexes
Conan S. Young and J. Thomas Beatty

Summary
450
I. Introduction
450
II. Gene Organization and Expression
452
III. Assembly of LH Complexes
459
IV. Other genes and proteins relevant to LH complex assembly or structure
462
V. Concluding Remarks and Future Prospects
464
Acknowledgments
465
References
465
17 Environmental Regulation of Phycobilisome Biosynthesis 471–495
Arthur R. Grossman, Lorraine G. van Walsbergen and David Kane

Summary 471
I. Introduction 471
II. Phycobilisome Structure 471
III. Complementary Chromatic Adaptation 471
IV. Model for the Control of Complementary Chromatic Adaptation 471
V. Control of Phycobilisome Biosynthesis During Nutrient Limitation 481
VI. Concluding Remarks 486
Acknowledgments 486
References 495