A new _Leucospis_ Fabricius (Hymenoptera: Leucospidae), the First Reported Gregarious Species

E. E. Grisell and Sydney A. Cameron

(EEG) USDA, ARS, PSI, Systematic Entomology Laboratory, c/o National Museum of Natural History, Washington, DC 20560-0168, USA, email: egrisell@sei.barc.usda.gov; (SAC) Department of Entomology, 320 Morrill Hall, 505 S. Goodwin Avenue, University of Illinois, Urbana, IL 61801, USA, email: scaameron@life.uiuc.edu

Abstract.—_Leucospis pinna_ Grisell and Cameron, new species, is described from Ecuador. It is a parasitoid of the orchid bee _Eulaema meriana_ (Olivier) (Hymenoptera: Apidae) and is the first species of _Leucospis_ reported to parasitize bees in the tribe Euglossinini. It is the first known member of the family reported to have gregarious larvae.

The genus _Leucospis_ Fabricius was revisited at the world level in 1974 when 109 species were recognized (Bouček 1974a). Since then five new species have been described and one name has been synonymized (Bouček 1974b, Habu 1977, Bouček and Narendran 1981, Naumann 1981, Engel 2002). Of the described species, 44 are from the New World with the great majority being Neotropical (Bouček 1974a, b). Although the entire family of Leucospidae (about 130 species) is thought to be parasitic upon aculeate Hymenoptera—solitary bees and less frequently solitary wasps—hosts are actually known only for about 30 species, and for most of these the biology remains essentially undocumented (Bouček 1974a, Noyes 2001).

Bouček (1974a) reviewed biological reports on leucospids, but most literature amounted to observations about oviposition and egg and larval morphology. Only three species are relatively well known biologically: _L. gigas_ F. (Palaeartic), _L. affinis_ Say (Nearctic), and _L. japonica_ Walker (Palaearctic). Information for _L. gigas_ is largely based on original work done by Fàbre (1855) and subsequently summarized by workers such as Clausen (1940), Malyshev (1968), Bouček (1974a), and Hanson (1995). In this species, several eggs were laid on each host and the active first instar larva “searches out and destroys any competitors that may be present in the same cell” (Hanson 1995). Graenicher (1906) reported on _L. affinis_, stating that it was a solitary external parasitoid with an active first instar larva that sought out the bee host within its cell (or cocoon). He could not confirm active cannibalism but stated that both rival egg and larval destruction was likely, based on his observations of the incessant movement of the single larva he found in each of three cells. _Leucospis japonica_ (data summarized by Habu 1962) follows the same pattern, with the first instar larva moving about by bristles on the abdominal segments and killing off any other leucospid larva present on the host. Other than observations on these three species, relatively little is known about the life history of Leucospidae.

In this paper we describe a new _Leucospis_ species attacking the large orchid bee _Eulaema meriana_ (Olivier) (Hymenoptera: Apidae), the biology of which will be discussed in another paper (Cameron and Ramírez 2001). Our report is the first account of a _Leucospis_ parasitizing bees in the tribe Euglossinini (Apidae), although
three species of the related genus Polistimorpha Westwood are known to attack bees in the genus Euglossa Lepeletier (Bouček 1974a). More significantly, this new species represents the first report of a gregarious ectoparasitoid species (i.e., multiple individuals emerging from the same brood cell) in the genus Leucospis.

Leucospis pinna Grissell and Cameron, new species
(Figs. 1–9, 12–17)

Holotype female (Fig. 1).—Length 8.3 mm. Black to reddish brown with weak metallic tinge except yellow as follows: venter of flagellum, scape entirely, pronotum with narrow transverse band along apical and posterior margins, apical band extending to anterolateral corner and forming ovoid spot, midlobe of scutum with narrow band on lateral and posterior margins, posterior half of acropleuron, apex of metacoxa, apex of pro- and mesofemora, dorsal and ventral band on metatenuir (Fig. 8, indicated by dotted lines), dorsum of all tibiae, pro- and mesotarsi, metatarsus ventrally (shading to brown dorsally), ovipositor sheath. Brown to reddish brown are: dorsum of flagellum, tegula, wing veins, upper third of wing, and trochanters. **Head:** Distinctly narrower than pronotum, dorsally about 3.5× wider than long, in facial view about as high as wide (Fig. 3); occipital carina sharp, elevated, visible from front of head (Fig. 3); postocellar length (POL) 2.0× ocellocular length (OOL); ocellar area about 2.8× as broad as long; scrobal depression transversely lightly striate, carinate dorsally and basolaterally but not mediolaterally (Fig. 3); eye distinctly emarginate along inner margin. Frontovertex punctate, changing to reticulate rugose at eye emargination to lower margin of face; interantennal area with slight median keel extending partially to clypeus. Clypeus (Fig. 4) slightly broader than high, apical margin produced, slightly bilobed, without median tooth, margin carinate, slightly depressed along carina, laterally carinate at some angles of view (not apparent at some angles), apicomedian area punctate with carinae radiating dorsally to slightly above midpoint, area above with well-defined setose punctures about own diameter apart. Antenna as in Fig. 6, scape about 3× as long as broad, ventrally flat, polished (Fig. 7), otherwise covered with nearly contiguous setose punctures. Mandible (Fig. 4) with deeply semicircular broad gap separating sharp lower tooth. Eye and face (except scrobal depression) covered with short, silvery setae. **Mesosoma:** Except as noted, covered with nearly contiguous setose punctures separated by interstices less than 0.2 to 0.5 puncture
diameter, interspaces finely aciculate; dor-
sellum and propodeum more densely
punctate and pubescent than scutum; lat-
eral pronotum rugulose; femoral depres-
sion deep, polished to aciculate. Pronotum
without transverse carinae. Mesoscutum
without vestiges of parapsidal line or no-
taulus. Tegula punctate with edges barely
aciculate. Scutellum about 1.8× wider
than long. Dorsellum distinctly transverse,
rectangular, 4× wider than long; lateral
panel of metanotum obscured by long, sil-
very pubescence. Propodeum medially 3×
as long as dorsellum, median carina raised
into fin-like lamella, dorsally curved and
posteriorly concave (Fig. 5); plica extreme-
ly well-developed, raised distinctly above
surface of propodeum; spiracle, postspi-
racular sulcus, and callus obscured by
long, dense golden pubescence; postero-
lateral corner angled with deep carinate
concavity between it and metapleuron.
Pro- and mesocoxae transversely carinate
on outer surface; metacoxa (Fig. 8) in lat-
eral (flat) view with depression evenly
punctate, punctures several times own di-
ameter apart and interstices appear poli-
ished (Fig. 8a), in oblique view punctures
appear longitudinally elongate, separated
by minute parallel striae (Fig. 8b), and sur-
face appears covered with minute carinae
or striae; ventral surface with minute
punctures separated by polished interstic-
es less than puncture diameter apart;
punctures on entire coxa each with minute
setae (less than puncture diameter in
length). Metatibia (Fig. 8) about 2× as
long as broad, basal tooth in middle fol-
lowed by 6 or 7 smaller, irregular-sized
teeth; punctation nearly touching, dense
evenly spaced over entire surface (Fig.
8c), each with minute seta. Apex of met-
tatibia (Fig. 9) with outer spur distinctly
articulated basally, curved, pointed, and
about 0.8× width of tibial apex; inner spur
apically blunt but with tuft of setae mak-
ing spur appear pointed, in side (Fig. 9,
inset) view spur flattened, curving distal-
ly, and about 0.8× width of tibial apex.

Metabasitarbus (Fig. 8) dorsally about
1.5× apical breadth of tibia. Forewing
with ratio of submarginal:marginal:stig-
mal:postmarginal about 11:3:2:8, pat-
terned brown as in Fig. 12. Metasoma: In
dorsal view, apical terga (2–5) parallel sid-
ed (Fig. 13), metasomal terga 6 (apparent
4) bulging; in side view (Fig. 14) metaso-
mal tergum 6 greatly convex dorsally,
slightly angled near apex above ovipositor
sheaths; metasomal tergum 1 (petiole) not
apparent; metasomal tergum 2 (first ap-
parent) with anterolateral corners angled
sharply, anterior margin polished, poste-
rior margin with narrow polished band,
otherwise densely punctate, each punc-
ture with recumbent, backward projecting
seta about 2× length of puncture diame-
ter; apical punctures medially somewhat
crenulate to longitudinally elongate, near-
ly touching, becoming round laterally and
posteriorly, separated at least by own di-
ameter, interspaces polished; metasomal
tergum 3 not visible from above; metaso-
mal tergum 4 visible as narrow band with
slight transverse striae, without punctu-
tures; metasomal tergum 5 with complete
median split, covered with contiguous
dense punctation obscured by elongate
golden or silvery setae each 5 or more
times puncture diameter; metasomal ter-
gum 6 with slight median split from apex
about one-third distance to posterior mar-
gin, entirely covered with nearly contiguous
dense punctures less than own diam-
eter apart, interspaces slightly striate, each
puncture with appressed silvery seta, set-
tae increasing in length from dorsal sur-
face (about 2 or 3 puncture diameters in
length) posteriorly (near ovipositor sheaths)
to about same length as on metasomal tergum 5; metasomal tergum 7
and 8 (syntergum) similar to dorsum of 6,
7 dorsally split; ovipositor sheath straight,
exserted scarcely greater than length of in-
ner metatibial spur; hypopygium apically
pointed, reaching nearly to posterior of
metasomal tergum 6.

Male paratypes (Fig. 2).—All about 7 mm
in length. Similar to female except as follows: Scape reddish brown, ventrally with irregular punctures similar to, but less dense than, those on sides and dorsum. In dorsal view metasoma bulging laterally (Fig. 16), in side view dorsal margin convex (Fig. 15); metasomal tergum 3 not apparent from above (possibly seen as small laterotergite at side, Fig. 15), terga 4–7 fused dorsally, with 4 (apparent 2) separated from 5 by row of distinct pits, terga 8 and 9 distinct; metasomal terga 2 and 4 with distinct laterotergites (Fig. 15), tergum 5 with indistinct laterotergite (fused along top margin but slightly indicated at anterodorsal corner, Fig. 15), punctuation on metasomal tergum 2 about as on scutellum, remainder of terga sculptured about as for female; setae similar overall but slightly longer on posterior of terga 4–7; metasomal sterna rigid, wide (Fig. 17), punctures largest on apparent sternum 1 decreasing in size to sternum 6, which is medially impunctate, sternum 7 impunctate; sternum 1 with median hook-like projection (best seen in profile, Fig. 15), apex of sterna 1 and 2 medially angled, surface of sterna 6 and 7 slightly to moderately medially concave.

Variation.—Females range in length from about 7 to 9 mm. The type series is consistent in most features. In some females, metasomal tergum 4 is scarcely visible as a narrow strip, whereas on others it is wide enough to see weak punctures and setae. The few males we have seen do not appear to vary even in length.

Host.—Cells of Eulaema meriana (nest deposited at the Illinois Natural History Survey, University of Illinois).

Distribution.—Known only from the type locality in Ecuador. It is the fifth species reported from this country (Bouček 1974a, b, Noyes 2001).

Etymology.—The species name is derived from the Latin pinna meaning “fin,” in reference to the distinctive finlike pro- podeal projection.

Discussion.—This species would be placed in the cayennensis species-group as defined by Bouček (1974a), with the exception of one character, the ovipositor sheath length. Within New World Leucospis, the cayennensis species-group is unique in having the lower tooth of the mandible separated from the upper edge by a broad semicircular gap (Fig. 4). This group, composed of 8 species, is also defined by the following: the body has a slight metallic tinge, the pronotum is without a premarginal cross-carina, the propodeum is densely pilose, the sterna in males are broad and sculptured, and all species have a Central to South American distribution. In all respects, Leucospis pinna fits these criteria. It disagrees from other members of the group only in having extremely short ovipositor sheaths (Fig. 14), which Bouček (1974a) used, in part, to define the texana species group. This latter group has a stout metafemur with 4–5 long ventral teeth and a small basal tooth. All remaining New World Leucospis, including the cayennensis species group, have the metafemur with a broad basal tooth followed by 7 or more small teeth (Fig. 8).

Although Bouček’s key to world leucospid species (1974a; supplemented by a modified key in 1974b) is a comprehensive monograph, the discovery of a new species that somewhat alters or modifies a species-group concept suggests that additional such cases are probable. It is likely that species groups may even change composition and definition depending on new species certainly awaiting discovery. For this reason, and because of the autapomorphy discussed below, we outline the
major differences and distinctions of *Leucospis pinna* relative to Bouček's key and other species of the genus.

Leucospis pinna does not precisely fit any of the couplets in Bouček (1974) and splits the first couplet by having the ovipositor sheaths as described for the *texana* species-group (i.e., barely exserted) but the metafemur as described for all the remaining species of *Leucospis*. Ignoring the oviposi-
tor, Leucospis pinna then keys directly to the cayennensis species-group by virtue of all the characters mentioned above. Within the group, L. pinna will key positively only through the first species-group couplet (Bouček 1974a, couplet 6) separating it from L. cayennensis Westwood and L. mexicana Walker on the basis of the depression of the metacoxa being punctate (polished and smooth in the latter two species). Leucospis pinna splits couplet 7 by having a combination of characters. It differs from L. metatibialis Bouček in having a heavily setose dorsellum (as in L. metatibialis), but it is convex not flat, as in L. metatibialis. It differs also in having the metatibia densely punctured (sparsely so in L. metatibialis), and the short ovipositor (reaching metasomal tergum 2 in L. metatibialis). In couplet 8a (Bouček 1974b) L. pinna differs from L. genalis Bouček and L. leptomera Bouček in the broad metafemur (narrow in L. genalis and L. leptomera) and in having metasomal tergum 2, in dorsal view, narrower in width than the remainder of the metasoma (subequal in width in L. genalis and L. leptomera) but agrees in the malar space greater than two-thirds the length of the scape (one-half or less in other species of the cayennensis species-group). If Leucospis pinna is taken further in the key, it would stop at couplet 9 based on the densely setose and finely punctate propodeum, which it shares with L. ignota Walker. It differs from this latter species, however, in the convex dorsellum (flattened and lamellate in L. ignota) as well as the barely exerted ovipositor (reaching nearly one-third distance to propodeum in L. ignota).

Leucospis pinna is well-defined based upon an autapomorphy of the propodeum, namely an expansion of the median carina into an asymmetric, thin, hook-like lamella (Fig. 5). No other member of the cayennensis species-group (and apparently no other described species) has such a pronounced median propodeal carina. In a few New World members of the speifera species-group the propodeum has a median, slightly raised keel, which takes the form of a thickened, gradual arch the length of the propodeum.

Another character that aids in the recognition of this species is the structure of the metatibial spurs. In L. pinna they are elongate (nearly 0.8× length of tibial apex), with the outer spur distinctly articulated basally, curved, and sharply pointed apically, and the inner spur somewhat flattened, and curved with a tuft of setae at the apex (Fig. 9). Within the cayennensis species-group, species have the spurs relatively short and stout (Figs. 10, 11; less than 0.5× tibial apex). The apex of the outer spur may be bluntly chisel-shaped (Fig. 10) or sharp (Fig. 11), and in some cases they may appear to have no basal articulation (Fig. 11).

Biology.—Leucospis pinna is the ninth species known for the cayennensis species-group, within which only L. cayennensis has had positive biological associations. These associations have all been exclusive with the genus Centris (Hymenoptera: Apinae), including C. tarsata Smith (Fritz and Genise 1980, Chandler et al. 1985), C. bicornuta Mocsáry, C. nitida F. Smith, C. analis F., and C. vittata Lepeletier (Cooperband et al. 1999, Vieira de Jesus and Garofalo 2000). Bouček (1974a) stated that L. ignota (Walker) was collected at adobe walls "presumably at the nesting sites of host bees." Other than these sketchy reports, little is known about the biology of other members of the cayennensis species-group.

Leucospis pinna was collected from a single nest of E. meriana. As described by Cameron and Ramírez (in press), a total of 51 individuals emerged from only 2 cells (28 from one cell, 23 from another). Thus, there is no doubt about the gregarious nature of this species. The sex ratio was highly female-skewed within each cell, with only 6 males emerging from the first cell and 5 from the second, respectively. Further study is required to determine
whether gregarious adult emergence is a derived state or the ancestral condition within Leucospidae.

Mimicry.—Leucospis pinna resembles L. legaia Walker and L. latifrons Schletterer at least superficially in both color and size. Both of these are said to mimic Polybia occidentalis (Olivier) (Hanson 1995) as might L. pinna (Chris Starr, pers. comm.). As has been pointed out by Bouček (1974a), Leucospis species appear to mimic taxa having no apparent relationship to the hosts upon which they oviposit.

ACKNOWLEDGMENTS

We thank Prof. Ayres Menezes (Universidade Estadual de Londrina, Londrina, Brazil) for sharing information from his unpublished revision of Brazilian Leucospidae. Additionally we thank Ron Ochoa, Michael Gates, and Dave Smith for reviewing the manuscript, and Terry Nuhn and Linda Lawrence (all Systematic Entomology Laboratory, Beltsville, MD, and Washington, DC) for preparing Figures 1 and 2. We also thank Chris Starr (University of the West Indies, St. Augustine, Trinidad) for providing information on possible models for mimicry.

LITERATURE CITED

