Juvenile Hormone Does Not Affect Division of Labor in Bumble Bee Colonies (Hymenoptera: Apidae)

SYDNEY A. CAMERON1 AND GENE E. ROBINSON2

Department of Entomology, Ohio State University, Columbus, Ohio 43210

ABSTRACT Juvenile hormone (JH) is involved in the regulation of division of labor in honey bee colonies, but it was not known whether JH plays a similar role in other social bees. Topical application of 250 μg of the JH analog methoprene or injection of 250 μg JH I did not affect worker foraging or nest activity in colonies of the primitively eusocial bumble bees Bombus (Pyrobombus) impatiens Cresson and B. (P.) bimaculatus Cresson. Because bumble bees do not exhibit strong age polyethism, these results are consistent with findings in honey bees that JH influences only the performance of age-dependent tasks.

KEY WORDS Insecta, Bombus, juvenile hormone, division of labor, age polyethism

The ecological success of social insects is attributed in large part to the ability of colonies to perform several different tasks simultaneously with groups of specialized workers (Oster & Wilson 1978, Wilson 1987). The mechanisms of this division of labor among workers are not well understood.

Age polyethism occurs in many highly eusocial bees, the honey bees (Apiinae), and stingless bees (Meliponinae). Workers perform different ensembles of tasks as they age (reviewed in Michener 1974, Seeley 1985, Winston 1987; also see Sommeijer 1984). Young workers perform tasks such as brood and queen care and nest maintenance within the nest, and older individuals forage.

Bumble bees (Bombinae) share a common origin with the Apinae and Meliponinae (Kimsey 1984, Michener & Sakagami 1987) but are primitively eusocial and exhibit a different pattern of division of labor. Cameron (1989) recently reported that workers of Bombus griseocollis De Geer do not exhibit strong age polyethism. Following a period (about 36 h) of "callow behavior" upon emergence, characterized almost exclusively by brood incubation, workers may engage in nest or foraging activities at virtually any age (Cameron 1989). However, patterns of worker behavior change as the colony ages (Cameron 1989). Brian (1952), Free (1955), and Goldblatt & Fell (1987) have shown that worker size influences the tendency to forage or engage in nest activity; the larger bees most likely become foragers. The mechanisms regulating bumble bee behavioral plasticity and the integration of worker activities under changing colony conditions are not known.

Juvenile hormone (JH) affects the morphological differentiation of worker ants and termites (reviewed by Nijhout & Wheeler 1982). JH also plays a role in the temporal division of labor among workers in the honey bee, Apis mellifera L. A rising titer of JH associated with aging of the worker bee (Hagenguth & Rembold 1978, Fluri et al. 1982, Robinson et al. 1987) is involved in the regulation of age polyethism (Jaycox et al. 1974; Jaycox 1976; Fluri et al. 1982; Robinson 1985, 1987a,b,c; Sasa-gawa et al. 1986). Low levels of JH are associated with nest activities, and higher titers help trigger the onset of foraging among older bees. The intrinsic rise in JH is modulated by environmental factors that accelerate or retard behavioral ontogeny of workers. Extrinsic regulation of JH is a mechanism enabling honey bee colonies to respond to changing conditions by altering the proportions of individuals engaged in various tasks (Robinson et al. 1989).

For several reasons, we tested the hypothesis that JH also controls division of labor in bumble bees. First, knowledge of the social organization of Bombus is important to understanding the evolution of division of labor in the social bees, because Bombus is intermediate in degree of sociality within the Apidae. Second, preliminary observations by van Doorn (1987) suggested that JH did not regulate division of labor in Bombus terrestris (L.). Third, because division of labor in Bombus does not appear to be age-based as it is in A. mellifera, this comparative study should show if JH plays a part in the division of labor only of those social bees that have age polyethism.

Materials and Methods

We observed the effects of experimentally increasing adult worker JH levels on nest activity.
(i.e., brood care and nest maintenance) and foraging behavior, two of the principal activity classes in a bumble bee colony. We tested whether treatment early in life affects the likelihood of initiating nest activity or foraging, or the continued performance of these tasks.

Observation Colonies. Colonies of Bombus (Pyrrobombus) bimaculatus Cresson and B. (P.) impatiens Cresson were established during the summer of 1987 in Columbus, Ohio, from queens collected in the spring within a 125-km radius. Colonies were maintained (Plowright & Jay 1966) in observation shelters that allowed free flight outside. Ten B. impatiens and 11 B. bimaculatus colonies (queen, workers, and brood clumps) were each transferred into a clear Plexiglas observation box (33.5 x 23.0 x 24.5 cm) after the first workers emerged. Workers from up to three different broods per colony were observed throughout the season. In B. impatiens colonies, we observed 3–5 bees per colony from the first brood, 2–13 from the second, and 13–28 from the third (total observed = 142). In B. bimaculatus colonies, these values were 2–8, 10–11, and 6–13 bees, respectively (total observed = 76).

Treatments. Experiment 1: Effects on Initiation of Nursing and Foraging. Callow workers that had emerged naturally in the nest were individually marked on the thoracic dorsum with a colored, numbered plastic disk (Opalithplättchen) and topically treated with either 250 μg of the JH analog (S) methoprene (Zoecon Corporation, Palo Alto, Calif.) dissolved in 5 μl acetone or with 5 μl acetone alone (control). Although there is recent evidence for different acceptor sites for JH homologs and analogs (Prestwich 1987), methoprene has shown JH-like activity in many different insects (Staal 1975), including honey bees (Robinson 1985, 1987b,c; Robinson & Ratnieks 1987; Sasagawa et al. 1986). A dose of 250 μg was used for bumble bees because the same dose strongly affected the behavior of similarly sized honey bees (Robinson 1985, 1987b). Workers were marked and treated without anesthetization and returned to their nests within 20 min of removal. To allow for the possible effects of age on treatment efficacy, we determined the precise age of each focal bee to within several hours by scanning each colony for worker emergence 8–10 times/d and once every night between 2200 and 2300 hours. Similarly aged individuals were paired, one receiving methoprene and the other acetone alone. Size variation among callows within a brood were minor and not a factor in our pairing. A total of 218 bees was treated in this experiment.

Experiment 2: Effects on the Continuation of Nursing and Foraging. We identified 10 foragers and six nurses in a colony of B. impatiens by observing 22 workers from three broods for 8 h over 2 d. Five pairs of foragers and three pairs of nurses, grouped by similarity in age and size, were treated as in Experiment 1: one member of each pair received 250 μg methoprene and the other, acetone alone (Experiment 2a). Size was a factor when pairing workers in this experiment because variation can occur among broods (S.A.C., unpublished data). In Experiment 2b, we injected 250 μg JH I dissolved in 5 μl triolein oil or pure triolein oil (control) into two identified foragers and six nurses from a different B. impatiens colony, and into four foragers and four nurses from a B. bimaculatus colony. Injections were made through the intersegmental membrane between the fifth and sixth metasomal terga with a finely drawn glass micropipette. Bees were cooled and held in position with modeling clay on a cold table (1–2°C) before they were injected.

In all experiments, treatments were administered from coded vials to allow unbiased observations of behavior.

Observation Methods. Experiment 1. The activity of each marked bee was recorded once during each of four to eight daily scans of each colony. Each bee was located during a scan and observed long enough (usually several seconds) to discern and record her activity. Bees were identified as nest bees or foragers according to the following criteria (Cameron 1985, 1989): nest bees fed and incubated brood and engaged in nest maintenance. Bees returning to the nest with nectar or pollen on at least two consecutive flights were classified as foragers. Individuals away from the nest were presumed to be foraging if they were previously identified as such; scans made late each night verified whether they were still alive. Observations began from one to several hours after treatments. We recorded the date and time of each behavioral observation so that we could quantify, to within a few hours, the age at which foraging began and the latency from treatment to the onset of foraging for each labeled bee. It was important to measure latency from treatment to foraging because the age at which some were treated varied by several hours despite our efforts to minimize these differences. Individuals were observed within one to several hours of treatment over a 14–d period, during which 4,611 observations was recorded.

Experiment 2. Observations were made on nest bees and foragers 5–20 d old. Two-hour scans were made once a day to determine any switches in activity (from nest activity to foraging or vice versa). Individuals were observed for 7 d after treatment in Experiment 2 (unless they died earlier), for 253 observations in Experiment 2a and 150 in Experiment 2b.

Experiment to Test for Methoprene Mimicry of JH Activity in Bombus. To clarify our interpretation of the results of the experiments described herein, we tested whether methoprene can cause JH-like effects in Bombus. New queens (1–2 wk old) of B. fervidus emerging naturally in a wild colony in late summer were topically treated with 250 μg methoprene or acetone alone (n = 14 for each treatment). The results of these treatments
were compared with Röseler's (1977a) finding that newly emerged Bombus queens (gynes) injected with 50 μg JH I exhibit worker behavior instead of entering diapause. Behavioral observations on treated gynes began within one to several hours after treatment and continued 1–3 h daily for 10 d. Gyres were observed for the worker activities of foraging, nest activity, and guarding (see Cameron 1989).

Statistical Analyses. Foraging, guarding, and nest activity of gyres treated with methoprene or acetone were analyzed for treatment effect using multivariate analysis of variance (MANOVA), implemented in the GLM procedure from SAS (SAS Institute 1982). The Hotelling-Lawley, a multivariate t test, was used to test the hypothesis of no overall treatment effect. T tests (Experiment 1) and Mann-Whitney U tests (Experiment 2) were used for intergroup comparisons of methoprene or JH I- and acetone-treated workers.

Voucher specimens of *B. bimaculatus* and *B. impatiens* are deposited in the Snow Entomological Museum at the University of Kansas, Lawrence.

Results.

Methoprene is active in gyres of *B. ferulifolius*. Gyres treated with methoprene exhibited a significantly higher frequency of worker behavior than acetone-treated gyres (Table 1). All 14 gyres treated with methoprene were observed performing workerlike behavior at least once, compared with only a single acetone-treated gyn. Two treated gyres were observed guarding; this behavior has never been observed in untreated Bombus gyres. These results are similar to those obtained with JH I treatments of *B. terrestris* (Röseler 1977a).
Table 3. Effects of methoprene and JH I on persistence of foraging in *B. impatiens* (i) and *B. bimaculatus* (b) workers over a 7-d period after treatment

<table>
<thead>
<tr>
<th>Methoprene</th>
<th>Control</th>
<th>JH I</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foragers</td>
<td>% Time foraging n</td>
<td>Foragers</td>
<td>% Time foraging n</td>
</tr>
<tr>
<td>25i</td>
<td>100 3</td>
<td>27i</td>
<td>95 21</td>
</tr>
<tr>
<td>22i</td>
<td>95 20</td>
<td>31i</td>
<td>88 17</td>
</tr>
<tr>
<td>36i</td>
<td>67 15</td>
<td>26i</td>
<td>88 26</td>
</tr>
</tbody>
</table>

* All foragers are identified by bee number.

n, number of observations. P > 0.20; two-tailed Mann–Whitney U tests.

Discussion

Our results suggest that division of labor in bumble bee colonies is not controlled by JH. A dose of 250 μg methoprene did not affect the ontogeny of worker foraging behavior but was able to induce effects in larger sized gynes comparable with those caused by JH treatment (Rösel er 1977). Effects on gynae behavior were evident within 16 h and persisted for up to 10 d, whereas no effects were observed in workers beginning 16 h after treatment. This suggests that methoprene was still present in workers, at least during the initial period of our observations. Our observations were sufficiently detailed to detect species differences in the ontogeny of foraging behavior, suggesting that treatment effects, if they existed, also would have been detected. Although the same methoprene dose we used for bumble bees strongly influenced the behavior of honey bees that are of similar size and mass (Robinson 1985, 1987, 1989), perhaps a larger quantity is needed to penetrate the more extensive pilation of *Bombus* workers. Our dose of injected JH I was much higher, however, than endogenous titers of JH in *Bombus* (Rösel er & Rösel er 1975, 1986) and it, too, failed to elicit a behavioral effect. Although this conclusion is based on small sample sizes, it is consistent with the results of methoprene treatment and with a report that injection of 50 μg JH I did not cause observable changes in the timing of foraging behavior in *B. terrestris* (van Doorn 1987). Together, these results suggest that even if there are differences in the endogenous JH titers of nurses and foragers as suggested by Rösel er (1977), they may not influence the division of labor. Quantitative analyses of JH titers (Berg et al. 1981, Strambi et al. 1981, Rembold & Lackner 1985) of workers engaged in different tasks are needed to confirm our findings. JH titers in bumble bee prepupae have been successfully measured (Strambi et al. 1984).

Our results, coupled with the finding that workers of *Bombus griseocollis* do not exhibit strong age polyethism (Cameron 1989), are consistent with reports that JH affects only age-dependent tasks of honey bees (Robinson 1987). Although *B. impatiens* and *B. bimaculatus* were not examined specifically for age polyethism in our study, our observations suggest that worker size was the major factor governing foraging and nest activity. In both species, only the largest individuals in the colony were foragers, engaging in both foraging and nest activities on the same day. The same is true of *B. griseocollis* (Cameron 1985, 1989).

In *B. griseocollis*, virtually all major activities can be performed by workers of any age following a period of callow behavior limited to brood incubation, a probable consequence of incomplete morphological development. However, individuals

Table 4. Effects of methoprene and JH I on persistence of nest activity in *B. impatiens* (i) and *B. bimaculatus* (b) workers over a 7-d period after treatment

<table>
<thead>
<tr>
<th>Methoprene</th>
<th>Control</th>
<th>JH I</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nest activity</td>
<td>% Nest activity n</td>
<td>Nest activity</td>
<td>% Nest activity n</td>
</tr>
<tr>
<td>17i</td>
<td>100 19</td>
<td>22i</td>
<td>100 6</td>
</tr>
<tr>
<td>46i</td>
<td>55 14</td>
<td>41i</td>
<td>94 17</td>
</tr>
<tr>
<td>45i</td>
<td>87.5 16</td>
<td>44i</td>
<td>95 19</td>
</tr>
<tr>
<td>12b</td>
<td>100 11</td>
<td>24b</td>
<td>57 7</td>
</tr>
</tbody>
</table>

* All bees engaged in nest activity are identified by bee number.

n, number of observations. P > 0.20; two-tailed Mann–Whitney U tests.
that emerge at different times of the season and under different colony conditions display distinct patterns of task performance (Cameron 1985, 1989). Division of labor in other species of bumble bees is based, in part, on worker size; foragers are among the largest bees in the colony and nest bees are smaller (Brian 1952, Free 1955, Garófalo 1978). In general, division of labor in bumble bees probably is not based on a stereotyped pattern of behavioral development within the lifetime of a bee, and a timing mechanism such as JH provides apparently is not involved. The physiological mechanisms underlying worker division of labor in bumble bee colonies are still not known.

We are left with the question of the commonality of hormonal regulation of division of labor in the social insects. The role of JH in the differentiation of morphologically distinct castes of social insects is well known (reviewed by Nijhout & Wheeler 1982). The regulation by JH of division of labor among workers in species without physical castes may be limited to Apis, or to species with well-developed age polyethism. Alternatively, JH may not regulate both worker reproductive maturation and division of labor in a species. In Bombus, JH regulates reproductive behavior in gynes and workers (Röse1er 1975, Röse1er & Röse1er 1977, van Honk et al. 1981) and does not appear to be involved in division of labor. In Apis, JH underlies division of labor, but elevated levels of JH do not appear to play the role usual in insects in the reproductive development of queens (Hrédy & Slama 1963, Engel & Ramamurty 1976, Kaatz 1987) or in the oviposition behavior of egg-laying workers (G.E.R., C. Strambi, A. Strambi, unpublished data). Studies of other primitively eusocial and highly eusocial species are needed to determine the generality of this regulatory mechanism. Premier candidates are stingless bees, a highly eusocial group that shares a common ancestry with Apis and Bombus, and the warm-founding polybiine wasps, such as Polybia occidentalis (Oliviera), that have large colonies and strong age polyethism (Jeanne et al. 1988).

Acknowledgment

We thank M. K. Fondrk, W. A. Foster, R. Hancock, and D. Metzger for technical help; A. J. Nachbau for supplying pollen for raising bumble bees; G. B. Staal (Zoeeon Corporation) for providing methoprene; D. L. Denlinger, P.-F. Röse1er, and A. R. Templeton for advice; J. B. Whitfield for valuable discussions; and C. D. Michener, R. E. Page, A. Strambi, and J. B. Whitfield for reading the manuscript. This research was supported in part by Ohio State University Postdoctoral Fellowships to both authors and National Science Foundation grant BNS-8615381 to R. E. Page.

References Cited

Received for publication 13 April 1989; accepted 11 September 1989.