Developmental Insights Into the Pathology of and Therapeutic Strategies for DM1: Back to the Basics

Anthony Chau1,2,3 and Auinash Kalsotra1,2,3*

1Department of Biochemistry, University of Illinois, Urbana-Champaign, Illinois
2Department of Medical Biochemistry, University of Illinois, Urbana-Champaign, Illinois
3Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Illinois

Myotonic Dystrophy type 1 (DM1), the most prevalent adult onset muscular dystrophy, is a trinucleotide repeat expansion disease caused by CTG expansion in the 3'-UTR of DMPK gene. This expansion results in the expression of toxic gain-of-function RNA that forms ribonuclear foci and disrupts normal activities of RNA-binding proteins belonging to the MBNL and CELF families. Changes in alternative splicing, translation, localization, and mRNA stability due to sequestration of MBNL proteins and up-regulation of CELF1 are key to DM1 pathology. However, recent discoveries indicate that pathogenic mechanisms of DM1 involve many other factors as well, including repeat associated translation, activation of PKC-dependent signaling pathway, aberrant polyadenylation, and microRNA deregulation. Expression of the toxic repeat RNA culminates in the developmental remodeling of the transcriptome, which produces fetal isoforms of proteins that are unable to fulfill the physiological requirements of adult tissues. This review will describe advances in the understanding of DM1 pathogenesis as well as current therapeutic developments for DM1. Developmental Dynamics 244:377–390, 2015. © 2014 Wiley Periodicals, Inc.

Key words: alternative splicing; myotonic dystrophy; RNA toxicity; developmental reprogramming; antisense oligonucleotides

Introduction

The discovery of the genetic mutation responsible for fragile X syndrome and spinal and bulbar muscular atrophy more than 20 years ago revealed the nature of repeat expansion diseases, and changed the way genetically inherited diseases were understood. Repeat expansion diseases include trinucleotide, tetranucleotide, pentanucleotide, and hexanucleotide repeat expansions. Phenotype severity and age of onset vary depending on the expansion size. Although the genetic basis of these diseases is similar, the pathological mechanisms can differ significantly. Repeat expansion in the 5'-UTR (such as in fragile X syndrome) can lead to inhibition of gene expression, while repeat expansion in the 3'-UTR can result in expression of toxic gain-of-function RNAs (such as in myotonic dystrophy type 1). Repeat expansion in the coding region of genes, such as that in Huntington’s disease, can result in the expression of toxic protein that interferes with cellular functions. In this review, we focus on pathogenesis and therapeutic development for myotonic dystrophy type 1.

Myotonic Dystrophy type 1 (DM1) is the second most common cause of muscular dystrophy after Duchenne muscular dystrophy and the most common cause of adult onset muscular dystrophy with a worldwide incidence of 1 in 8,500 (Day and Ranum, 2005). It is autosomal dominantly inherited and affects multiple tissues with symptoms including muscle hyperexcitability (myotonia), progressive muscle wasting, cardiac arrhythmias, insulin resistance, gastrointestinal dysfunctions, posterior iriscent cataracts, and neuropsychiatric disturbances (Harper, 2001). Similar to other trinucleotide expansion diseases, disease severity and age of onset in DM1 approximately correlates with the size of the expansion. Pathology of DM1 stems from an expanded CUG repeat (CUGexp) found at the 3'-UTR of the dystrophia myotonica protein kinase (DMPK) gene (Brook et al., 1992; Caskey et al., 1992), which forms stable hairpin loops (Napieral and Krzyzosiak, 1997) and causes trans dominant effects (Fig. 1). Normal individuals have from 5 to 34 repeats. Symptoms have been identified in individuals with 50 repeats, whereas large repeat sizes (>1,000) typically associate with the worse form of disease (Brook et al., 1992; Day and Ranum, 2005; Cho and Tapscott, 2007). The congenital form is much more severe and is characterized by general muscle hypotonia and respiratory distress at birth, as well as delayed motor and cognitive development.

*Correspondence to: Auinash Kalsotra, 461 Medical Sciences Building, 506 South Mathews Ave., Urbana, IL 61801.
E-mail: kalsotra@illinois.edu

Grant sponsor: American Heart Association; Grant number: 11SDG4980011; Grant sponsor: Basil O’Connor Starter Scholar Research Award from March of Dimes; Grant number: 5-FY14-112; Grant sponsor: Roy J. Carver Charitable Trust Young Investigator Award; Grant number: 44-4535; Grant sponsor: University of Illinois.
The authors declare no competing financial interests.
With the discovery of the repeats, several hypotheses initially emerged regarding the possible mechanisms responsible for the observed DM1 pathologies. One such hypothesis was the DMPK haploinsufficiency model, where DM1 pathology was thought to be a result of CUG-repeat induced inhibition of DMPK protein expression. However, Dmpk knockout mice could not reproduce the major DM1 symptoms, such as myotonia, muscle wasting, and splicing misregulation (Jansen et al., 1996; Berul et al., 1999). Another hypothesis proposed that the presence of CUG repeats could affect expression of genes adjacent to DMPK gene. Although the adjacent gene SIX5 does have reduced expression in DM1 patients (Thornton et al., 1997), Six5 knockout mice do not exhibit any muscle pathology (Klesert et al., 2000). Another hypothesis proposed that the presence of CUG repeats could affect expression of genes adjacent to DMPK gene. Although the adjacent gene SIX5 does have reduced expression in DM1 patients (Thornton et al., 1997), Six5 knockout mice do not exhibit any muscle pathology (Klesert et al., 2000). Furthermore, the CUG^{exp} RNA was discovered to form stable hairpin structures that aggregate into ribonuclear foci (Davis et al., 1997; Napierala and Krzyzosiak, 1997). Transgenic overexpression of untranslated CUG repeats in the mouse skeletal muscle provided the essential evidence for the toxicity of expanded RNA (Mankodi et al., 2000). Remarkably, forced expression of 250 CUG repeats under human skeletal actin promoter (HSA¹⁸ mice) reproduces myotonia, myopathy, ribonuclear foci accumulation, MBNL1 sequestration, as well as splicing misregulation found in DM1 patients. Since then multiple labs have generated tissue-specific constitutive and inducible mouse models expressing different lengths and contexts of CUG^{exp} RNA, which have aided in discovery of much of the currently known DM1 pathology mechanisms (Gourdon et al., 1997; Seznec et al., 2000; Mahadevan et al., 2006; Wang et al., 2007; Orengo et al., 2008). The advantages and disadvantages of each of these models in recapitulating DM1 pathology are reviewed elsewhere (Gomes-Pereira et al., 2011).

The discovery provided the foundation for the paradigm based on “RNA gain of toxic function.” According to this paradigm, the primary pathology of DM1 can be traced to the misregulation of two RNA-binding protein families: muscleblind-like (MBNL) and CUGBP and Elav-like family members (CELF). The molecular mechanisms by which CUG^{exp} RNA results in the disease include: (1) the accumulated CUG^{exp} RNA folds into a hairpin-like structure (Mooers et al., 2005) and binds to MBNL proteins with high affinity, causing their depletion and loss-of-function in the nucleoplasm (Kanadia et al., 2003a); (2) CUG^{exp} RNA activates the protein kinase C pathway and suppresses expression of specific microRNAs culminating in up-regulation of CELF1, resulting in its gain-of-function (Kuyumcu-Martinez et al., 2007; Wang et al., 2007; Kalsotra et al., 2014). Both MBNL1 and CELF1 are required for normal splicing regulation during development (Lin and Ying, 2006; Kalsotra et al., 2008) (Fig. 1). Disruption of their functions by CUG^{exp} RNA leads to missplicing of many genes some of which (CLCN1, BIN1, IR, PKM, and TNNT2) explain the prominent features of the disease. However, it is becoming increasingly clear that expanded CUG repeats cause widespread signaling, transcriptional and post-transcriptional perturbations that are not wholly driven by MBNL1 and/or CELF1.

Loss of Function of MBNL Proteins

MBNL proteins were first characterized as factors involved in the pathogenesis of DM1 but were subsequently shown to be direct
regulators of alternative splicing (Kanadia et al., 2003a; Ho et al., 2004). There are three MBNL paralogues in mammals. MBNL1 and MBNL2 are expressed across many tissues, including brain, heart, muscle, and liver, whereas MBNL3 is expressed primarily in placenta (Kanadia et al., 2003b). The observation that MBNL1 was most highly expressed in heart and skeletal muscle corroborated the fact that the most severe DM1 phenotypes are manifested in these tissues. Further experimentation in DM1 myoblasts showed that MBNL1 is depleted from the nucleoplasm and is extensively sequestered on to the DMPK ribonuclear inclusions (Miller et al., 2000). Moreover, independent of the repeat driving the CUGexp RNA foci resulting in loss-of function of all three of the key features of DM1 including myotonia, myopathy, cardiomyopathy, and misregulation of alternative splicing (Kanadia et al., 2003a; Du et al., 2010). MBNL2 and MBNL3 also co-localize with the CUGexp RNA foci resulting in loss-of function of all three paralogues (Fardaei et al., 2002). Muscleblind is also sequestered in a fly model of DM1 and the muscle and eye phenotype in these flies can be rescued by MBNL1 over-expression (de Haro et al., 2006). Recently, MBNL proteins were shown to play necessary roles in normal erythroid differentiation and proliferation (Cheng et al., 2014) as well as in suppression of embryonic stem cell pluripotency (Han et al., 2013).

Mammalian MBNL proteins contain four-tandem zinc finger domains each composed of three cysteine and one histidine residue that coordinate zinc atoms to bind single-stranded RNA in a sequence-specific manner (Pascual et al., 2006). An initial study showed that MBNL1 strongly binds to CUG, CCUG, and CAG repeats (Kino et al., 2004). Genome-wide analyses, together with crystal structure and biochemical studies revealed that MBNL1 preferentially recognizes a pyrimidine-rich YGCY motif (Y stands for C or U) within pre-mRNA (Castle et al., 2008; Teplova and Patel, 2008; Du et al., 2010; Goers et al., 2010; Wang et al., 2012). The zinc finger motifs lie in between the complementary base pairs of the RNA hairpin such that MBNL1 interactions with the RNA are stabilized through stacking of aromatic and arginine residues with guanine and cytosine bases and a network of hydrogen bonds (Teplova and Patel, 2008; Konieczny et al., 2014).

Human MBNL1 consists of twelve exons, six of which are alternatively spliced, resulting in the expression of seven known MBNL1 variants (Fardaei et al., 2002). It has been shown that alternative splicing of MBNL1 can modulate its affinity towards CUGexp RNA (Kanadia et al., 2003b). Inclusion of exon 3 increases MBNL1’s affinity for CUG repeats, whereas inclusion of exon 7 enhances both MBNL1 self-dimerization and its binding to the repeat RNA. Furthermore, exon 7 is required for MBNL1 nuclear localization, as it is part of a biNLS and conNLS (Kino et al., 2014). Intriguingly, MBNL1 represses its own exon 7 splicing in a dose-dependent manner such that loss of MBNL1 activity results in increased exon 7 inclusion and thereby MBNL1 nuclear retention. In addition to their nuclear role in splicing regulation, MBNL proteins also have significant cytoplasmic expression and can regulate mRNA stability (Osborne et al., 2009; Du et al., 2010; Masuda et al., 2012) and localization (Adereth et al., 2005; Wang et al., 2012). Furthermore, MBNL1 can regulate the circularization of its own transcript (Ashwal-Fluss et al., 2014). The flanking introns of exon 2 in drosophila muscleblind (MBL) transcripts contain numerous MBL-binding sites such that overexpression of MBL isoform A and C increases biogenesis of circMbl expression by 13-fold, whereas knockdown of MBL result in a 2-fold decrease in circMbl. This phenomenon is conserved in humans suggesting MBNL1 is capable of regulating its own mRNA expression via circularization (Ashwal-Fluss et al., 2014).

Direct comparison of transcriptome changes between HSA1 and Mbnl1D3/Δ3 mouse models showed that loss of MBNL1 accounts for greater than 80% of the splicing pathology due to CUGexp RNA (Du et al., 2010). In a combined RNA-seq and CLIP-seq study of MBNL targets in muscle, myoblasts, brain, and heart, MBNL1 and MBNL2 were found to co-regulate certain targets suggesting their splicing functions may be interchangeable (Wang et al., 2012). The extent of DM1 symptoms, however, may vary depending on tissue context and the degree to which MBNL1 and MBNL2 levels are altered as well (Lee et al., 2013). For instance, only a few splicing perturbations were found in the brain of Mbnl1D3/Δ3 mice compared to hundreds found in skeletal muscle (Du et al., 2010; Suenaga et al., 2012). Conversely, Mbnl2D2/Δ2 knockout mice manifest a number of DM1-related central nervous system abnormalities including irregular REM sleep propensity and deficits in spatial memory (Charizanis et al., 2012). Moreover, loss of MBNL2 in the brain triggered misregulation of hundreds of DM1-associated splicing events highlighting tissue-specific requirement of individual MBNL paralogues and their effects in DM1 pathology. This is consistent with the observation that MBNL2 has higher expression in the brain than MBNL1 (Kanadia et al., 2003b).

Gain of CELF1 Activity

CELF1, also called CUG binding protein 1 (CUGBP1), was initially discovered in a screen of HeLa cell proteins that bound the CUG repeat motif (Timchenko et al., 1996). However, it was later found that CELF1 prefers to bind to the base of the CUG hairpin structure and that its affinity for the DMPK transcript is not proportional to the CUG repeat size (Michalowski et al., 1999). Importantly, the localization pattern of CELF1 in DM1 and normal cells is identical, indicating that unlike MBNL proteins CUGexp RNA does not sequester CELF proteins. On the contrary, several studies demonstrated that CELF1 protein but not mRNA steady state levels are increased 2- to 4-fold in DM1 cells and tissues (Timchenko et al., 1996; Philips et al., 1998; Savkur et al., 2001). CELF1 upregulation in DM1 occurs via two independent mechanisms: CELF1 protein stabilization mediated by its hyperphosphorylation by PKC (Kuyumcu-Martinez et al., 2007); and through reduced levels of miR-23a/b (Kalsotra et al., 2014), which normally suppress CELF1 protein translation in heart tissue (Kalsotra et al., 2010). The signaling pathway that activates PKC-mediated hyperphosphorylation of CELF1 in response to CUGexp RNA remains to be determined.

Increased CELF1 proteins levels are thought to significantly contribute to the overall DM1 pathogenesis. For instance, transgenic overexpression of CELF1 in striated muscle tissues results in defects in muscle histology and physiology that recapitulate DM1 phenotypes. Skeletal muscle- and heart-specific overexpression of CELF1 in mice reproduce splicing misregulation as is seen in DM1 patients (Ho et al., 2005). Heart-specific CELF1 overexpression results in dilated cardiomyopathy and conduction abnormalities similar to DM1 heart phenotype (Koshelev et al., 2010). Furthermore, skeletal muscle-specific CELF1 overexpression results in centrally nucleated myofibers, myofiber atrophy, and impaired muscle performance (Ward et al., 2010). Since muscle wasting is not seen in Mbnl1D3/Δ3 mice, CELF1 upregulation is thought to promote the muscle wasting phenotype observed in DM1.
CELF proteins share a common domain structure containing three RNA recognition motifs (RRMs) and a unique linker region called the “divergent domain,” which separates RRM2 and RRM3 (Ladd et al., 2001). There are six CELF paralogues in mammals and most are widely expressed with the highest expression in striated muscle and brain (Good et al., 2000; Ladd et al., 2001; Ladd and Cooper, 2004). CELF1 participates in multiple RNA-processing events in the nucleus and cytoplasm, including alternative pre-mRNA splicing, mRNA editing, decay, deadenylation, and translation (Dasgupta and Ladd, 2012). Muscle cells from DM1 patients can exhibit delayed myogenic differentiation due to their reduced ability to withdraw from cell cycle, which may be due to altered translation of the cell cycle inhibitor p21 or the myogenic transcription factor MEF2A by CELF1 (Timchenko et al., 2001; Timchenko et al., 2004). However, a recent study failed to replicate the result that DM1 patient cell lines are impaired to undergo in vitro myogenesis (Loro et al., 2010).

CELF1 affinity for select mRNAs can be modulated by phosphorylation via AKT or cyclinD3-CDK4/6 (Salisbury et al., 2008). AKT phosphorylates CELF1 in proliferating myoblasts, which increases CELF1’s affinity for cyclinD1 mRNA. During normal myoblast differentiation, cyclinD3-CDK4/6 phosphatases CELF1, which leads to increased CELF1 interaction with p21 and C/EBPβ mRNAs. Myoblasts from DM1 patients have increased interaction between CELF1 and AKT, as well as reduced cyclinD3-CDK4/6 levels during differentiation. CELF1 also destabilizes mRNAs through binding to the GU-rich elements in their 3′-UTRs (Vlasova et al., 2008; Lee et al., 2010). This is likely due to its recruitment of poly(A) specific ribonuclease, which promotes deadenylation of target transcripts (Moraes et al., 2006). Additionally, CELF1 knockdown stabilizes many of its directly bound target transcripts, which are particularly enriched for functions related to muscle differentiation, cell cycle, apoptosis, and RNA processing (Zhang et al., 2008; Rattenbacher et al., 2010).

Developmental Reprogramming of the Transcriptome

Alternative pre-mRNA splicing is a primary source of transcriptome complexity in humans as it allows multiple transcripts with potentially different functions to be produced from a single gene (Nilsen and Graveley, 2010). More than 90% of human genes are alternatively spliced and most are dynamically regulated in a cell-type or developmental stage-specific manner (Castle et al., 2008; Pan et al., 2008; Wang et al., 2008). These different isoforms can considerably impact cellular functions such that regulation of alternative splicing determines specific physiological outcomes (Kalsotra and Cooper, 2011). Splicing is controlled by RNA-binding proteins (RBPs), which bind to the “core” and “auxiliary” elements present on pre-mRNAs and thus influence the spliceosome assembly near the 5′ and 3′ splice sites (Braunschweig et al., 2013). Approximately 50 mammalian RBPs have been characterized and shown to directly regulate splicing by binding to pre-mRNAs (Gabet et al., 2008; Nilsen and Graveley, 2010). Many of these act as tissue- and cell type–specific splicing factors. Cooperative or opposing effects of these factors often control individual splicing events. At the same time, hundreds of splicing events can be sensitive to changes in the level of a single splicing factor (Kalsotra and Cooper, 2011).

Splicing misregulation is a cardinal feature of DM1. The misregulated events are normally developmentally regulated, and in DM1, undergo an adult-to-embryonic switch in splicing patterns. Many of these embryonic isoforms are unable to fulfill the proper adult tissue requirements resulting in specific defects that contribute to the overall disease pathogenesis (discussed in the next section). It is critical to note that the splicing defects in DM1 do not arise due to cis mutations within exons or splice sites at the intron-exon boundaries. Instead, they are a consequence of altered activities of the trans factors, MBNL and CELF proteins, which regulate alternative splicing transitions during normal striated muscle development. For some pre-mRNAs whose splicing is disrupted in DM1, CELF1 and MBNL1 regulate them antagonistically (Savkur et al., 2001; Charlet et al., 2002; Ho et al., 2004). Interestingly, antagonism is not via competition for the same binding site as CELF1 and MBNL1 both bind and regulate splicing independently through distinct cis regulatory sequences.

Postnatal loss of CELF and gain in MBNL activity is part of the normal developmental program that facilitates embryonic-to-adult switch in splicing patterns of a large number of genes. MBNL1 activity in striated muscle increases postnatally via at least two different mechanisms. In skeletal muscle, MBNL1 becomes more nuclear through a change in its localization (Lin et al., 2006), whereas in cardiac muscle, the protein levels increase by 4-fold during postnatal development (Kalsotra et al., 2008). MBNL proteins bind core YGGY intronic motifs surrounding many developmentally regulated alternative exons (Goers et al., 2010; Grammatikakis et al., 2011). These intronic motifs fold into hairpins, which resemble the GC-rich secondary structure of CUG-39 RNA (Warf and Berglund, 2007; Yuan et al., 2007). In contrast to MBNL1, CELF proteins are posttranscriptionally downregulated during postnatal development (Ladd et al., 2001; Kalsotra et al., 2008). The downregulation is mediated by microRNA-mediated translation repression and protein destabilization by dephosphorylation (Kuyumcu-Martinez et al., 2007; Kalsotra et al., 2010). Normally CELF1 is hyperphosphorylated by PKCa/βII during embryonic stage, but a developmentally regulated reduction in PKCa/βII during heart development mediates a decrease in steady state levels of CELF1.

CELF and MBNL proteins regulate the developmental splicing transitions independently, synergistically, as well as antagonistically (Kalsotra et al., 2008; Giudice et al., 2014). This shift occurs as part of a normal transition of cells adapting to the needs of the maturing organ. Interestingly, CELF and MBNL binding motifs have a positional effect on splicing such that binding in the upstream intron correlates with exon skipping while binding in the downstream intron correlates with increased exon inclusion (Kalsotra et al., 2008; Du et al., 2010). In DM1, the postnatal regulation of MBNL1 and CELF1 is reversed, which reprograms the developmentally regulated splicing network towards the embryonic state. Such transcriptome changes restructure the adult tissue function mimicking earlier developmental stages. For example, T-tubule organization in adult cardiomyocytes with elevated CELF1 levels resembles immature early postnatal structures (Giudice et al., 2014).

In addition to alternative splicing, alternative polyadenylation (APA) also contributes in expanding the RNA transcript diversity required for mammalian tissue development (Di Giambartino et al., 2011). Alternative 3′UTR’s formed through APA alter interactions of transcripts with trans-acting factors to modulate their translation, localization, and turnover (Tian and Manley, 2013). Misregulation of developmentally regulated APA due to MBNL1 sequestration in DM1 tissues was recently discovered (Batra et al., 2011).
Mbnl1/Mbnl2 double knockout (DKO) and DKO/Mbnl3 knockdown (DKO/3KD) mouse embryonic fibroblasts showed a large-scale and predominant shift towards the proximal polyadenylation sites. A large proportion of these events was developmentally regulated (Batra et al., 2014). Importantly, 66% of genes with altered polyadenylation in HSA_LR mice reverted back towards the embryonic pattern such that the distal to proximal ratio of APA site selection in adult HSA_LR muscle was similar to that of wild-type neonatal muscles. Similar misregulation of APA was observed in human DM1 skeletal muscle (Batra et al., 2014).

Developmental reprogramming of the transcriptome extends to miRNA expression as well. Of the 54 miRNA that are differentially expressed in the heart between DM1 and control mice, 45 are developmentally regulated (Kalsotra et al., 2014). Forty-two of these miRNAs are normally upregulated during heart development but are strongly reduced upon CUG expansion expression in adult DM1 mice. This adult to embryonic shift in miRNA expression pattern contributes to the remodeling of the transcriptome towards a more embryonic-like pattern. One such consequence is the reduced expression of miR-23a/b that results in an increase in expression of CELF1 (Kalsotra et al., 2010).

Pathogenic Consequences of Splicing Defects

Some of the phenotypes in DM1 can be attributed to misregulation of alternative splicing. Here we describe key examples that have direct impact on the disease symptoms (Fig. 2).

Missplicing of CLCN1

Myotonia is defined as excessive muscle excitability upon voluntary activation followed by repetitive action potentials, stiffness, and delayed relaxation. Myotonia in DM1 occurs due to abnormal splicing of the muscle-specific chloride channel (CLCN1) and
Missplicing of IR

The insulin resistance phenotype in DM1 (Moxley et al., 1978) is attributed to the aberrant splicing of Insulin Receptor (IR). DM1 patients express the exon 11 skipped isoform of IRα subunit in skeletal muscle (Savkur et al., 2001), which has a lower signaling capability and a lower tyrosine kinase activity compared to the normal full-length isoform (Kellerer et al., 1992) (Fig. 2B). Expression of CUGexp RNA in cell culture is sufficient to induce this splicing switch resulting in impairment of insulin-stimulated glucose uptake and incorporation into glycogen (Savkur et al., 2001). During normal development, exon 11 splicing of IR is antagonistically regulated by CELF1 and MBNL1. CELF1 represses and MBNL1 enhances the inclusion of exon 11 via direct binding to the respective intronic silencer and enhancer sequences in IR pre-mRNA (Ho et al., 2004; Sen et al., 2010; Grammatikakis et al., 2011).

Missplicing of BIN1

Bridging integrator 1 (BIN1), also known as amphiphysin 2, is a nucleocytoplasmic adapter protein involved in the organization of the T-tubule network, a specialized membrane structure that supports excitation–contraction coupling in the skeletal muscle (Razzaq et al., 2001). Exon 11 skipping of BIN1 in DM1 skeletal muscle results in an isoform that cannot bind phosphoinositides and tubulmembranes (Lee et al., 2002; Fugier et al., 2011) (Fig. 2C). Expression of CUG repeats or MBNL1 depletion represses inclusion of exon 11 of BIN1 minigene whereas forced skipping of this exon in wildtype mice disrupts T-tubule biogenesis and produces significant reduction in muscle strength. Remarkably, the tubular membrane defects in DM1 muscle cells can be restored upon expression of the normal isoform of Bin1 indicating missplicing contributes to the muscle weakness phenotype in DM1 (Fugier et al., 2011).

Missplicing of PKM

Pyruvate kinase M (PKM) gene encodes a key metabolic enzyme that produces pyruvate during glycolysis. Alternative splicing of mutually exclusive exons 9 and 10 in PKM transcript determines the fate of glucose metabolism in proliferating versus differenti-ated cells. Exon 9 inclusion gives rise to the constitutively active PKM1 isoform and exon 10 inclusion produces the allosterically regulated PKM2 isoform (Noguchi et al., 1986; Christofk et al., 2008a; Luo and Semenza, 2012). Proliferating cells express PKM2 isoform, which favors lactate production over oxidative phosphorylation whereas differentiated cells express PKM1 isoform that promotes oxidative phosphorylation. PKM2 can additionally bind to the phosphotyrosine residues, which release its allosteric activator, fructose 1–6 bisphosphate (Christofk et al., 2008b). This causes a transient inhibition of PKM activity in dividing cells resulting in accumulation of glycolytic intermediates that may be used for other biosynthetic processes (Fig. 2D).

Normally, in skeletal muscle, PKM2 is expressed at the initial embryonic stages, but is replaced by PKM1 towards the late embryonic and early postnatal stages (Noguchi et al., 1986). In DM1 skeletal muscle, PKM2 mRNA increases to 30% of total PKM transcripts compared to 7% in normal tissue (Gao and Cooper, 2013). PKM2 is specifically upregulated in type 1 myofibers, which is the fiber type that is susceptible to wasting in DM1 (Fig. 2D). Notably, MBNL depletion has minimal effect on PKM splicing in cultured muscle cells. However, CELF1 overexpression in skeletal muscle upregulates PKM2 suggesting PKM splicing switch in DM1 is likely due to increased CELF1 levels (Gao and Cooper, 2013). Forced expression of PKM2 isoform in cultured myotubes lowers the oxygen consumption rate and increases the glucose consumption rate. Furthermore, morpholino-based promotion of PKM2 splice isoform in mice results in increased energy expenditure (Gao and Cooper, 2013). Taken together, these data suggest that missplicing of PKM disrupts energy metabolism in DM1 skeletal muscle.

Missplicing of TNNT2

Although the exact function of different splice isoforms of cardiac troponin T (TNNT2) is not understood, myofibrils expressing the isoform containing exon 5 are more sensitive to calcium when compared to the exon 5 skipped isoform (McAuliffe et al., 1990; Godt et al., 1993). Individuals with DM1 show increased inclusion of exon 5, which is antagonistically regulated by CELF1 and MBNL1 (Philips et al., 1998; Ho et al., 2004). Direct binding of CELF1 to the five CUG repeats in the TNNT2 intron promotes the alternative exon inclusion whereas MBNL1 binding to the helical region of the stem-loop represses it (Philips et al., 1998; Mankodi et al., 2005; Warf and Berglund, 2007). The stem-loop in TNNT2 pre-mRNA contains two mismatches, which resembles the structure of CUG repeats in DMPK 3′-UTR confirming MBNL1 prefers binding to the structured stem-loops with pyrimidine mismatches (Moers et al., 2005; Warf and Berglund, 2007). Furthermore, exon 5 skipping is developmentally regulated and induced expression of CUGexp RNA or MBNL1 deletion in adult mouse heart shifts Tnnt2 splicing pattern to the embryonic stage (Wang et al., 2007; Kalsotra et al., 2008).
of the steady-state transcript level changes observed in repeat expressing HSA^R mice were completely absent in Mbnl1^5/3 mice (Osborne et al., 2009; Du et al., 2010). Many of these changes occur in the genes involved in extracellular matrix function and some are implicated in other muscular dystrophies and connective tissue diseases. While direct evidence for what drives these transcript level changes is missing, several attractive hypotheses exist including depletion of other MBNL paralogues and increase in CELF1 activity. CUG^exp RNA also disrupts other cellular processes including “leaching” of transcription factors (Ebralidze et al., 2004), abnormal DNA methylation (Lopez Castel et al., 2011), processing of repeats into small RNAs that produce unwanted gene silencing (Krol et al., 2007), activation of PKC-dependent signaling pathways (Kuyumcu-Martinez et al., 2007), bidirectional transcription of genes containing CUG expansions (Nakamori et al., 2011), repeat associated non-AUG translation (Perbellini et al., 2011), microRNA deregulation (Rau et al., 2011; Kalsotra et al., 2013; Kalsotra et al., 2014), and nonsense-mediated decay pathway (Garcia et al., 2014). Some of these splicing-independent abnormalities are discussed below.

RAN Translation

Termed as Repeat Associated Non-AUG Translation (RAN translation), the phenomenon was first discovered in spinocerebellar ataxia type 8 (SCA8) (Zu et al., 2011), a neurodegenerative disease caused by expansion of CUG repeat tracts in the ATXN8 gene (Koo et al., 1999). Cells that were transfected with an ATXN8 minigene containing the CUG expansion but without a canonical AUG initiation codon unexpectedly produced homopolymeric PolyGln, PolyAla, and PolySer proteins in all three frames (Zu et al., 2011). These homopolymeric peptides formed aggregates both in the nucleus and cytoplasm. Because DMPK is transcribed bidirectionally (Nakamori et al., 2011), CUG expansions in DM1 also undergo RAN translation producing a DM1-PolyGln expansion protein in DM1 patients and mice (Zu et al., 2011). Remarkably, RAN translation efficiency increases proportionately with repeat tract size, and RAN translation occurs predominately when the RNA forms hairpin structures (Cleary and Ranum, 2013). Furthermore, cells producing RAN protein products have increased annexin-V staining, suggesting that RAN products can induce apoptosis. How and whether RAN proteins directly affect DM1 pathogenesis will further improve our understanding of the molecular mechanisms that are currently focused more on the RNA toxicity.

MicroRNA Deregulation

Tissue-specific changes in microRNA expression may also play a major role in DM1 pathology. For instance, it was recently demonstrated that nuclear accumulation of CUG^exp RNA in mouse heart triggers a decrease in expression of a group of microRNAs including mir-1, which is normally upregulated during postnatal development (Kalsotra et al., 2014). The same subset is also downregulated in hearts of DM1 individuals, including several whose depletion is associated with cardiac arrhythmias and fibrosis. In a separate study, MBNL1 was shown to bind to pre-mir-1, which blocks the binding of LIN28 under normal conditions, a protein known to repress mir-1 biogenesis (Rau et al., 2011). It was proposed that due to MBNL1 sequestration, LIN28 could readily bind and inhibit mir-1 processing in DM1 cardiac tissues.

However, because mir-1 and most other microRNAs affected in DM1 are unchanged in Mbnl1^5/3 mice and the fact that their primary microRNA transcripts are reduced in parallel, their downregulation in DM1 is likely due to transcriptional defects. Indeed, subsets of these microRNAs are direct targets of MEF2 family of transcription factors, which are reduced in hearts of DM1 patients and mice (Kalsotra et al., 2014). Consequently, loss of MEF2 activity in DM1 heart tissue perturbs the MEF2-microRNA regulatory circuit resulting in global reprogramming of the cardiac transcriptome.

In DM1 skeletal muscle, alterations in microRNA expression have been reported both at the steady state levels and in their cellular distribution (Gambardella et al., 2010; Perbellini et al., 2011). Comparison of microRNA expression in a DM1 drosophila model and muscle biopsies of DM1 patients showed that multiple conserved microRNAs including mir-1, mir-7, and mir-10 are downregulated (Fernandez-Costa et al., 2013). As several of the downstream targets of these microRNAs are upregulated in DM1 skeletal muscle. More recently, a set of nine microRNAs was identified that are deregulated in peripheral blood plasma of DM1 patients (Persetti et al., 2014). mir-133a in particular displayed an inverse correlation with skeletal muscle strength. It remains to be seen if these circulating microRNAs can serve as non-invasive diagnostic biomarkers.

Misregulation of Transcription Factors

Besides MEF2, a few other transcriptional networks may also be affected in DM1. Termed “RNA leaching,” transcription factors were redistributed from chromatin to ribonuclear foci upon CUG repeat RNA expression in a DM1 cell line (Ebralidze et al., 2004). The sequestration of SP1 for instance may contribute to the DM1 myotonia phenotype in addition to the non-sense-mediated decay of splicing in DM1 also undergo RAN translation producing a DM1-PolyGln expansion protein in DM1 patients and mice (Zu et al., 2011). Remarkably, RAN translation efficiency increases proportionately with repeat tract size, and RAN translation occurs predominately when the RNA forms hairpin structures (Cleary and Ranum, 2013). Furthermore, cells producing RAN protein products have increased annexin-V staining, suggesting that RAN products can induce apoptosis. How and whether RAN proteins directly affect DM1 pathogenesis will further improve our understanding of the molecular mechanisms that are currently focused more on the RNA toxicity.

Misregulation of Transcription Factors

Besides MEF2, a few other transcriptional networks may also be affected in DM1. Termed “RNA leaching,” transcription factors were redistributed from chromatin to ribonuclear foci upon CUG repeat RNA expression in a DM1 cell line (Ebralidze et al., 2004). The sequestration of SP1 for instance may contribute to the DM1 myotonia phenotype in addition to the non-sense-mediated decay of splicing in DM1 also undergo RAN translation producing a DM1-PolyGln expansion protein in DM1 patients and mice (Zu et al., 2011). Remarkably, RAN translation efficiency increases proportionately with repeat tract size, and RAN translation occurs predominately when the RNA forms hairpin structures (Cleary and Ranum, 2013). Furthermore, cells producing RAN protein products have increased annexin-V staining, suggesting that RAN products can induce apoptosis. How and whether RAN proteins directly affect DM1 pathogenesis will further improve our understanding of the molecular mechanisms that are currently focused more on the RNA toxicity.

The cardiac transcription factor NKX2–5 regulates the expression of genes that are important for normal cardiac conduction. NKX2–5 is overexpressed in heart and skeletal muscle of DM1 patients (Yadava et al., 2008), which is recapitulated in mice overexpressing the DMPK 3’UTR containing CUG repeats. NKX2–5 expression correlates with muscle pathology severity in both DM1 patient samples and DM1 mouse model (Gladman et al., 2014). Overexpression of Nkx2–5 in C2C12 culture inhibits myogenic differentiation, while overexpression of Nkx2–5 in mice exhibits decreased muscle strength, worsened muscle histopathology, and impaired muscle regeneration. Downstream
targets of Nkx2–5, such as Nppb and Ankrd1, were significantly up-regulated in these mice upon transgene expression (Yadava et al., 2008). Moreover, Nkx2–5 haploinsufficiency had a cardioprotective effect on the toxic RNA-expressing mice, which suggests Nkx2–5 is a modulator of RNA toxicity. Whether misregulation of transcription factors such as MEF2, MyoD, and Nkx2–5 is a primary event in response to CUGexp RNA expression and what mechanisms affect their normal expression in DM1 remain to be determined.

Mechanisms That Reduce RNA Toxicity

There is mounting evidence for the role of cellular defensive mechanisms in reducing toxic RNA expression in DM1. The nonsense-mediated decay (NMD) pathway is a surveillance mechanism that detects mRNAs with premature stop codons and targets them for degradation to prevent the expression of potentially toxic truncated proteins (Chang et al., 2007). RNAi silencing of smg-2, an RNA helicase component of the NMD pathway, in a DM1 C. elegans model causes an increase in CUG repeat containing mRNA (Garcia et al., 2014). Mutations in other NMD pathway genes, specifically smg-1 and smg-6, also resulted in a similar increase in CUG repeat RNA. Addition of non-repeat GC-rich elements into the 3′-UTR of a GFP reporter was sufficient to reduce GFP expression, whereas mutations in smg-1, smg-2, or smg-6, elevated the GFP expression. Thus, the NMD pathway plays a direct role in reducing toxic RNA expression through recognition of GC-rich elements. This recognition is nucleotide composition specific but not sequence specific, suggesting that the secondary structure formed by these GC-rich regions may be important for NMD recognition.

Dicer is a ribonuclease that cleaves double-stranded RNA to produce 21 nucleotide duplexes, which act as guides for the RNA-induced silencing complex (RISC) to target mRNAs for degradation (Bernstein et al., 2001; Elbashir et al., 2001). CNG (N=A, C, U, or G) repeat RNA can also act as Dicer substrate, with Dicer exhibiting higher affinity for CAG and CUG repeats (Krol et al., 2007). Interestingly, DM1 patient-derived cells showed a 40% decrease in mutant DMPK transcript (containing 1,000 CUG) compared to DM1 patient cells treated with siDicer, demonstrating a possible role for Dicer in reducing RNA toxicity. Another double stranded RNA-binding protein, Staufen-1, is increased in DM1 patient skeletal muscles and mouse models (Ravel-Chapus et al., 2012). Staufen1 interacts with CUGexp mRNA, aids in its nuclear export and translation, and surprisingly rescues alternative splicing of two key pre-mRNAs that are aberrantly spliced in DM1.

Overall, these studies suggest that DM1 pathogenic mechanisms are complex and comprise changes in alternative splicing and gene expression, unconventional translation, and microRNA deregulation.

From Mechanism to Therapeutics

There are no treatments for DM1 at this time, and drugs currently in clinical trials are only for symptom management. However, the currently available data describing the major pathological mechanisms allows for targeted therapeutic development. MBNL1 loss of function accounts for >80% of splicing pathology in mice models, so overexpression of MBNL1 through virus infection could be one viable therapeutic approach (Fig. 3A). This is supported by previous studies that demonstrated overexpression of MBNL1 ameliorates splicing abnormalities, myotonia, and myopathy in DM1 mice (Kanadia et al., 2006; Chamberlain and Ranum, 2012). Reducing CELF1 steady state levels could combat some of the DM1 symptoms as well. Inhibition of the PKC pathway to reduce CELF1 phosphorylation and steady state levels increases survival rate in mice (Wang et al., 2009) (Fig. 3B), while Celf1 knockout mice expressing the DMPK 3′-UTR-(CUG), transcript are more resilient to muscular pathology (Kim et al., 2014). Combination therapy modulating MBNL1 and CELF1 levels could also be an effective approach to address DM1 symptoms, but direct targeting of RNA-binding proteins could have deleterious effects (Childs-Disney et al., 2013).

Since DM1 results from the formation of toxic gain of function RNA, targeting the toxic RNA should provide the most comprehensive results. Targeting of the toxic RNA can be approached in two ways, either targeting it for degradation, or covering the RNA in order to render its binding sites unavailable for interaction with RNA-binding proteins. One such approach to target the toxic repeat RNA is antisense oligonucleotides (ASO), which has been the most successful therapeutic development so far (Fig. 3C). One of the first applications of ASOs towards DM1 was the use of a retrovirus that expressed an ASO complimentary to (CUG)\textsubscript{13} and the proceeding 110 bp (Furling et al., 2003). DM1 myoblasts expressing the ASO showed marked improvement in myotube formation, fusion index, and glucose uptake. CELF1 expression was reduced to wildtype levels as well. However, ASO expression reduced both repeat containing and normal DMPK transcripts, so further modifications are needed to increase specificity towards the mutant transcript.

The development of CAG7, a fully 2′-O-methyl-phosphorothioate modified ASO complementary to CUG repeats, provided proof of principle that ASO-mediated silencing can be applicable for DM1 treatment to correct missplicing and reduce ribonuclear foci formation in vivo (Mulders et al., 2009). This was shortly followed by the development of CAG25, which was the first demonstration of morpholino ASO application for DM1 (Wheeler et al., 2009). Morpholino ASO binds to the target RNA and sterically inhibits interaction with the RNA-binding proteins. Treatment of HSALR mice with CAG25 resulted in a significant reduction of RNA foci, reduction of CUGexp RNA, re-distribution of MBNL1, rescue of missplicing, reduction of myotonia, as well as increased translation of the CUG-repeat mRNA. Since morpholino oligonucleotides do not induce cleavage of target mRNA, CAG25 should not cause degradation of endogenous CUG-repeat carrying transcripts.

ASOs containing 8–10 consecutive phosphorothioate nucleotides at the center for RNase II binding were developed in order to test the efficacy of ASOs that are capable of eliciting RNase H-mediated degradation (Lee et al., 2012). Termed “MOE-gapmers” these ASOs are additionally flanked by 2′-O-Methoxymethyl modified nucleotides for increased nuclease resistance and RNA affinity. Treatment with MOE-CAG14 gapmer significantly reduced ribonuclear foci formation in vivo, but reversal of splicing abnormalities was only modest. The lack of improvement in splicing could be due to an insufficient decrease in ribonuclear foci, or a switch towards embryonic splicing pattern triggered by muscle regeneration in response to muscle damage. Both MOE-CAG14 gapmer and MOE-CTG14 control gapmer treatment induced muscle regeneration, indicating that gapmer treatments targeting a repeat sequence may induce muscle damage.
Although ASO studies thus far have produced promising results, each study revealed issues that limited the efficacy of the treatment. Morpholino oligonucleotides are RNase H inactive, so treatment would require repeated, locally administered injections. MOE-CAG gapmer treatment induced muscle damage that may be due to the targeting of a repeat sequence. To circumvent the requirement of repeated injections, a modified hU7-snRNA with 15 CAG repeats was developed for long-term reduction of toxic repeat RNA (Francois et al., 2011). In addition, design of ASO gapmers that targeted the 5’- or 3’-UTRs of the CUG repeat containing transcript in HSALR mice demonstrated that targeting outside of the repeat tract can reduce toxicity and increase the viability of systemic delivery via I.P. injection (Wheeler et al., 2012). The effect of ASO gapmer targeting the 3’-UTR downstream of the repeat tract persisted strongly even after treatment had been discontinued for 31 weeks. Most importantly, nuclear retained CUGexp RNA was highly sensitive to RNase H mediated degradation, which can be taken advantage of in future ASO developments.

The first in vivo study of synthetic siRNA targeting CUGexp RNA produced the best results compared to all ASO or small molecule studies to date (Sobczak et al., 2013). siRNA treatment in HSA1KR mice drastically reduced CUG repeat transcript levels and nuclear foci formation when observed 7 days after a single injection. Both siCAG and siCAG-tail (containing an additional 5’-AGUGUU-3’ nuclear localization signal) treated mice exhibited almost complete reversion of aberrantly spliced genes and myotonia. A concern regarding siCAG and siCAG-tail treatment is that several endogenous CUG-repeat containing transcripts were reduced as well. Further modifications would be required to reduce possible off target effects.

Despite the promising results from ASO development, small molecules continue to be the more attractive therapeutic approach due to their efficiency and low cost of production as well as simplicity of administration. Small molecule-based strategies generally involve binding of the CUGexp RNA to sterically inhibit interaction with RNA-binding proteins (Fig. 3D). The first small molecule to demonstrate efficacy in DM1 cell culture models was pentamidine, which was discovered in a screen of nucleic acid binding compounds for disruption of MBNL1 binding to CUGexp RNA (Warf et al., 2009). Pentamidine treatment fully rescued splicing defects in a DM1 cell culture model. Although its ability to rescue splicing defects in HSA1KR mice was modest at best, this study was the first to demonstrate that small molecules are a viable therapeutic approach for DM1.

The second significant step in the search for small molecule therapeutics occurred with the evidence that modular assembly methods and chemical similarity searching could be applied to improve the specificity and affinity of previously discovered RNA-binding compounds. Using an azide handle to modularly assemble a Hoechst 33258 [a known RNA 5’CUG/1’GUC binding molecule (Cho and Rando, 2000)] derivative on a peptoid backbone yielded several compounds that exhibit more significant improvement in potency, selectivity, cell permeability, and localization than the parent compound (Pushechnikov et al., 2009; Childs-Disney et al., 2012). This proved that multivalent
compounds could be modularly assembled to take advantage of the numerous binding sites present on CUG^p hairpin RNA for improved potency. Furthermore, a comprehensive study on the effect of backbone composition in modularly assembled compounds demonstrated that peptide tertiary amidites (PTA) scaffolds provide improved bioactivity over polyamine, α-peptide, or β-peptide scaffolds (Rzuczek et al., 2013). Chemical similarity searching with pentamidine and Hoechst 33258 as query molecules, using the National Cancer Institute and eMolecules database, provided compounds with increased efficacy for improving DM1 splicing defects in vivo compared to the parent compounds (Parkesh et al., 2012). Taken together, these studies indicate that not only is screening for hit compounds capable of binding DM1 repeat RNA a viable therapeutic approach, but modular assembly of multivalent compounds can drastically improve the efficacy of hit compounds.

The third significant step in small molecule therapeutics development was the discovery of heptamidine, which demonstrated for the first time that small molecule therapeutics can revert DM1 phenotype in an animal model (Coonrod et al., 2013). Heptamidine was discovered through experimentation with the methylene linker length in pentamidine to produce additional analogues. Heptamidine, which has a 7-carbon linker, significantly reduced myotonia and rescued missplicing of Clcn1 and Atp2a1 in HSA^{3R} mice.

In addition to pentamidine and Hoechst 33258 derived compounds, a triaminotriazine-acridine conjugate has been discovered to inhibit MBNL1-CUG repeat complex formation (Arambula et al., 2009). However, the compound was ineffective in cell culture due to its low solubility and low permeability. To improve upon these parameters, a cationic polyanime side chain was attached to take advantage of the polyanime transporting system of cells (Jahromi et al., 2013b). The resulting compound exhibited partial rescue of IR minigene missplicing. In order to further improve upon the triaminotriazine-acridine hit compound, a small library of bivalent compounds containing two triaminotriazine-acridine units linked by various linker types and lengths was synthesized (Jahromi et al., 2013a). Compound 9, which contained a polyanime linker, exhibited a 266-fold increase in potency compared to the monomer. Despite the efficacy of the triaminotriazine-acridine compounds in dispersing RNA foci in cell culture, toxicity remained a significant problem. Upon realization of the fact that the CUG repeat hairpin structure was very similar to the HIV-1 frameshift RNA stem loop, a new compound was synthesized based on DB213, a small molecule binder of the HIV-1 frameshift RNA stem loop (Marcheschi et al., 2011; Wong et al., 2014). This compound, which replaced the dimethylammonium groups with triaminotriazine units, exhibited reduced toxicity and was able to improve the glossy and rough eye phenotype in a Drosophila DM1 model.

In addition to ASOs and small molecules, other therapeutic approaches show some promise as well. The discovery of ABP1 peptide is one such example (Garcia-Lopez et al., 2011). This peptide was discovered in a screen of D-amino acid hexapeptides using the Drosophila model. ABP1 was able to induce relaxation of CUG repeat hairpin structure in vitro, and could bind the CUG^p RNA without displacing MBNL1 (Fig. 3E). In addition, ABP1 treatment in HSA^{3R} mice improved muscle histopathology and partially rescued missplicing of several genes. The most important advantage of this peptide is that it directly targets the CUG repeat hairpins and induces the relaxation of its secondary structure, which indirectly prevents the binding of MBNL1 to the RNA. This mechanism of action would not affect endogenous transcripts containing short CUG repeats, a significant issue among the ASOs. Future screening of peptide libraries could yield additional hits, especially with the development of more precise screening methods based on ribonuclear foci elimination and high content imaging in DM1 cells (Ketley et al., 2014).

Future Directions

Much of the molecular basis of DM1 pathology has been successfully uncovered in the past decade. The investigation into DM1 has led to many unexpected discoveries that have increased our understanding and appreciation of the nature of repeat expansion diseases. Although the pathogenic mechanism has only become increasingly more complex as more details are uncovered, the currently available information and animal models serve as excellent tools for further disease characterization and efficient development of potential therapeutics that can address the most debilitating symptoms. Progress towards new therapeutics has been accelerating since the discovery of Hoechst33528 in 2000, with a significant influx of studies published within the last five years. ASOs have demonstrated promising results in mice models, while improvements in screening and rational design techniques have accelerated development for increasingly potent small molecules. At the current rate of progress, new therapeutics could be available in the near future. For instance, ISIS Pharmaceuticals recently began phase 1 clinical trials for an antisense-based therapeutic designed to target mutant DMPK RNA, named ISIS-DMPKRx.

Acknowledgments

We thank people in the Kalsota lab for helpful discussions and comments on the manuscript. We apologize to those whose work was not cited or discussed here. A.K. is supported by the Scientist Development Grant from American Heart Association (11SDG4980011), Basil O’Connor Starter Scholar Research Award from March of Dimes (5-FY14-112), Roy J. Carver Charitable Trust Young Investigator Award (14-4335) and the startup funds from the University of Illinois.

References

sis and hyperexcitability in myotonic dystrophy type-1 mus-

Lueck JD, Mankodi A, Swanson MS, Thornton CA. Dirksen RT. 2007b. Muscle chloride channel dysfunction in two mouse mod-

Luo W, Semenza GL. 2012. Emerging roles of PKM2 in cell metabo-
lism and cancer progression. Trends Endocrinol Metab 23:560–
566.

Mahadevan MS, Yadava RS, Yu Q, Balijepalli S, Frenzel-McCardell CD, Bourne TD, Phillips LH. 2006. Reversible model of RNA tox-

Pascal M, Vicente M, Monferrer L, Artero R. 2006. The Muscleblind family of proteins: an emerging class of regulators of develop-

tion of specific miRNAs in myotonic dystrophy type 1. Neuro-

Philips AV, Timchenko LT, Cooper TA. 1998. Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy. Sci-
ence 280:737–741.

Razzaq A, Robinson IM, McMahon HT, Skeper JN, Su Y, Zehlo AC, Jackson AP, Gay NJ, O’Kane CJ. 2001. Amyphiphins is nec-

