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In this study, we have investigated variations in the potential of floating and submerged
leaves of longleaf pondweed (Potamogeton nodosus) to withstand silver ion (Ag+)-
toxicity. Both floating and submerged leaves changed clear colorless AgNO3 solutions
to colloidal brown in the presence of light. Transmission electron microscopy revealed
the presence of distinct crystalline Ag-nanoparticles (Ag-NPs) in these brown solutions.
Powder X-ray diffraction pattern showed that Ag-NPs were composed of Ag0 and
Ag2O. Photosystem (PS) II efficiency of leaves declined upon exposure to Ag+ with
a significantly higher decline in the submerged leaves than in the floating leaves.
Similarly, Ag+ treatment caused a significant reduction in the carboxylase activity
of the ribulose bisphosphate carboxylase/oxygenase in leaves. The reduction in this
carboxylase activity was significantly higher in the submerged than in the floating
leaves. Ag+ treatment also resulted in a significant decline in the levels of non-
enzymatic and enzymatic antioxidants; the decline was significantly lower in the floating
than in submerged leaves. X-ray photoelectron spectroscopy revealed the presence
of Ag2O in these leaves. Inductively coupled plasma mass spectrometry analysis
revealed a three-fold higher Ag content in the submerged than in floating leaves.
Our study demonstrates that floating leaves of longleaf pondweed have a superior
potential to counter Ag+-toxicity compared with submerged leaves, which could be
due to superior potential of floating leaves to reduce Ag+ to less/non-toxic Ag0/Ag2O-
nanoparticles/nanocomplexes. We suggest that modulating the genotype of longleaf
pondweed to bear higher proportion of floating leaves would help in cleaning fresh water
bodies contaminated with ionic forms of heavy metals.

Keywords: antioxidants, Ag-nanoparticles, ecophysiological adaptation, heterophyllous aquatic plant,
photosystem II, Potamogeton nodosus

Abbreviations: Chl, chlorophyll; DHA, dehydroascorbate; DTNB, 5,5′-dithiobis-(2-nitrobenzoic acid); DTT, dithiothreitol;
EDTA, ethylene diamine tetra acetic acid; EDX, energy dispersive X-ray; fcc, face cubic centered; Fo, minimum chlorophyll
a fluorescence; Fm, maximum chlorophyll a fluorescence; Fv, variable chlorophyll a fluorescence (Fm − Fo); GAE,
gallic acid equivalent (s); GPX, guaiacol peroxidase; GR, glutathione reductase; GSH, reduced glutathione; MDA,
malondialdehyde; MDHAR, monodehydroascorbate reductase; NAD(P)+, oxidized nicotinamide adenine dinucleotide
(phosphate); NAD(P)H, reduced nicotinamide adenine dinucleotide (phosphate); NEM, N-ethylmaleimide; NP, nanoparticle;
PS, photosystem; PVP, polyvinylpyrrolidone; PXRD, powder X-ray diffraction; ROS, reactive oxygen species; Rubisco,
ribulose 1,5-biphosphate carboxylase/oxygenase; SAED, selected area electron diffraction pattern; SOD, superoxide
dismutase; TCA, trichloroacetic acid; TEM, transmission electron microscope; Tris, tris-(hydroxymethyl)-aminomethane.
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INTRODUCTION

Human activities, in particular, industrialization and
urbanization, have led to a drastic acceleration in heavy
metal pollution of our surroundings and ecosystems (Nriagu,
1996). Negative impact of heavy metal(s) on the health of living
beings (including the humans) and ecosystems is of serious
concern; this effect is being increasingly felt over the past few
decades. In view of its ecofriendly nature, bioremediation (i.e.,
use of living beings or their components for detoxification of
pollutants through, e.g., transformation, and degradation) is
being used as one of the key approaches to decrease the level
of heavy metals in the surroundings (Dhir et al., 2009; Rai,
2009). Microbial-assisted removal of heavy metals has been a
popular bioremediation process. However, due to difficulties in
harnessing the microbes from soils or water, plant-based bio-
sorption of heavy metals is now receiving greater attention across
the world. A large number of plants are hyper-accumulators of
heavy metals, so many researchers are now trying to understand
hyper-accumulating strategies in these plants (Kamal et al., 2004;
Dhir et al., 2009; Sharma and Dietz, 2009). Pardha-Saradhi et al.
(2014a,b,c) have shown that terrestrial plants have the potential
to biotransform precious heavy metal ions (e.g., Au3+ and
Ag+) and essential metal ions (e.g., Fe3+) into less/non-toxic
nanoparticles (NPs)/nanocomplexes. Shabnam et al. (2017) have
recently demonstrated that Ag-NPs are significantly less toxic
than ionic Ag.

Heavy metals released from industries and other sources often
find their way into water bodies, e.g., lakes, rivers, and oceans
(Rai, 2009). Phytoplanktons contribute to over 50% of the organic
material produced through photosynthetic CO2 fixation (Arrigo,
2005). However, research has, thus far, been focused mainly on
the macrophytes simply because of the ease with which they can
be handled and harvested. Amongst the macrophytes, attention
has been given mostly to homophyllous aquatic plants. In spite
of being better adapted to the fluctuating climatic conditions
compared to homophyllous aquatic macrophytes, heterophyllous
aquatic plants have received less attention from the researchers
(Iida et al., 2009).

Pardha-Saradhi et al. (2014a) have used silver as an ideal
model heavy metal, since response of plants to Ag+ can
be visually recorded and easily characterized. Anthropogenic
activities such as mining, electroplating and photographic
industry are responsible for the release of silver into our
surroundings (Purcell and Peters, 1998; Ratte, 1999). No attempt
has, thus far, been made to evaluate the impact of silver on
any heterophyllous aquatic macrophyte. Longleaf pondweed has
floating and submerged leaves. While floating leaves are present
on the surface, submerged leaves are under water. Previously,
we reported that the floating leaves have superior photosynthetic
efficiency and antioxidant system compared to the submerged
ones (Shabnam et al., 2015; Shabnam and Pardha-Saradhi,
2016). Therefore, in this study, we chose this plant to evaluate
differences in the tolerance of these types of leaves to Ag+
toxicity. We have evaluated the impact of silver on photosynthesis
and antioxidant system. Our findings revealed that these leaves
possess potential to generate Ag-NPs on exposure to Ag+.

We believe that this potential of leaves to generate Ag-NPs is a
mechanism to restrict the uptake of Ag+ and thus, counter its
toxic effects.

MATERIALS AND METHODS

Experimental Procedure
Longleaf pondweed (Potamogeton nodosus, Potamogetonaceae)
was grown at the University of Delhi, as described by Shabnam
et al. (2015). For studying the impact of Ag+ on floating and
submerged leaves of longleaf pondweed, fully expanded mature
leaves were used. Leaves, after washing three times with double-
distilled water, were acclimatized under laboratory conditions
for 3 h. Silver nitrate (AgNO3) was used to impose silver ion
(Ag+)-toxicity. The leaves were exposed to different levels (0, 5,
10, 50, 100, 250, and 500 µM) of AgNO3 in Borosil dishes
(190 mm diameter × 100 mm height) under continuous white
light (120 µmol photons m−2 s−1) for 24 h. Understandably,
in this experimental setup floating leaves float and submerged
leaves get submerged in test solution during experimental
exposure.

Impact of Ag+ on floating and submerged leaves of longleaf
pondweed was evaluated by measuring (i) photosystem (PS)
II efficiency; (ii) carboxylase activity of ribulose bisphosphate
carboxylase/oxygenase (Rubisco); and (iii) enzymatic and non-
enzymatic antioxidants according to the protocols of Shabnam
and Pardha-Saradhi (2016).

Analytical Methods
Photosystem II Efficiency
For determining PS II efficiency, leaves were dark-adapted for
40 min and Chl a fluorescence induction measurements were
made on 8–10 different portions of leaves. Fluorescence transient,
from 10 µs to 1 s, was measured using plant efficiency analyzer
(PEA) (Handy PEA; Hansatech Ltd, Norfolk, United Kingdom);
leaves were excited with red light (peak at 650 nm) at an intensity
of 3,500 µmol photons m−2 s−1, provided by an array of six light-
emitting diodes (LEDs). At least five leaves were used for each
treatment. Biolyzer software HP 3 (Bioenergetics Laboratory,
University of Geneva, Geneva, Switzerland) was used to plot
Chl a fluorescence data. For details on measurement of Chl a
fluorescence, see Shabnam et al. (2015). Quantum efficiency of
PS II activity was inferred from the ratio of variable (Fv) to
maximum (Fm) Chl a fluorescence, where Fv = Fm − Fo, Fo
being the minimum fluorescence (see Govindjee, 2004). Chl a and
Chl b levels of leaves were quantified according to the method and
equations used by Arnon (1949).

Carboxylase Activity of Rubisco
Carboxylase activity of Rubisco (EC 4.1.1.39) was measured as
described earlier (Shabnam and Pardha-Saradhi, 2016). Leaves
were homogenized in chilled 50 mM Tris–HCl buffer (pH 7.6)
containing 1 mM DTT, 5 mM EDTA and 5% PVP with acid
washed sand in pre-chilled mortar and pestle. The homogenate
was centrifuged at 15,000 × g for 20 min at 4◦C, and the
supernatant was used as a crude enzyme. The carboxylase
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activity of Rubisco was measured, at 25 ± 2◦C, using an
assay mixture containing crude enzyme extract, Tris-HCl buffer
(200 mM, pH 8.5), 1 mM RuBP, 10 mM NaHCO3, 5 mM
MgCl2, 0.1 mM DTT, 1 mM ATP, 5 units of phosphoglycerate
kinase, 5 units of glyceraldehyde-3-phosphate dehydrogenase,
and 0.2 mM NADH. Oxidation of NADH was recorded as
decrease in absorbance at 340 nm; the carboxylase activity of
Rubisco was initially calculated in terms of nmoles of NADH
oxidized min−1 g−1 fresh weight. Subsequently carboxylase
activity of Rubisco was extrapolated and expressed in terms of
CO2 fixed min−1 g−1 fresh weight.

Determination of Silver in Leaves
Silver content of leaves was measured using inductively coupled
plasma mass spectrometry (ICP-MS) (NexION 300D, Perkin
Elmer, Waltham, MA, United States) and expressed as mg silver
g−1 dry weight. Leaves exposed to Ag+ were also analyzed by
X-ray photoelectron spectroscopy (XPS; Phi 5000 VersaProbe,
Ulvac-Phi, Chigasaki, Japan).

Determination of Non-enzymatic Antioxidants
Levels of non-enzymatic antioxidants (i.e., phenolics, thiols, and
ascorbate) were measured as described earlier (Shabnam and
Pardha-Saradhi, 2016). Leaves were homogenized in chilled 5%
TCA in mortar and pestle. The homogenate was centrifuged at
20,000 × g for 15 min at 4◦C, and the supernatant was used
for determining the levels of total ascorbate, total phenolics and
thiols, as described below.

Total ascorbate
The reaction mixture consisted of 200 µl supernatant, 100 µl
DTT (10 mM), 100 µl NEM (0.5%), 500 µl TCA (10%), 400 µl
orthophosphoric acid (43%), 400 µl α-α′-bipyridyl (4%) and
200 µl FeCl3 (3%); it was immediately vortexed to avoid the
formation of any precipitate. This reaction mixture was incubated
at 37◦C for 1 h and the absorbance was measured at 525 nm.
The amount of total ascorbate was expressed as nmoles g−1 fresh
weight.

Total phenolics
One ml of supernatant was incubated with a mixture of 1 ml
Folin–Ciocalteu reagent and 2 ml Na2CO3 (700 mM) for 1 h
in dark at room temperature. Subsequently, absorbance of the
reaction mixture was measured at 765 nm. Total phenolic content
was expressed as nmoles of GAE g−1 fresh weight, using a
standard curve obtained with gallic acid.

Thiols
To 200 µl supernatant, 775 µl K2HPO4 (500 mM) and 25 µl
5,5′-Dithiobis (2-nitrobenzoic acid) (DTNB) (10 mM in 100 mM
phosphate buffer, pH 7.0) were added. Absorbance of the samples
was measured at 412 nm and corrected against the absorbance
of a sample without added DTNB. Thiol content was expressed
as nmoles g−1 fresh weight, using an extinction coefficient of
13.6 mM−1 cm−1 at 412 nm.

Determination of Activities of Enzymatic Antioxidants
The activities of antioxidant enzymes, such as SOD (EC
1.15.1.1), catalase (EC 1.11.1.6), GPX (EC 1.11.1.7), ascorbate

peroxidase (APX, EC 1.11.1.11), MDHAR (EC 1.6.5.4),
DHA reductase (DHAR, EC 1.8.5.1), and GR (EC 1.6.4.2)
were measured as described earlier (Shabnam and Pardha-
Saradhi, 2016). Leaves were homogenized in chilled 50 mM
Tris–HCl buffer (pH 7.6) containing 1 mM DTT, 5 mM
EDTA and 5% PVP with acid washed sand in chilled
mortar and pestle. The homogenate was centrifuged at
15,000 × g for 20 min at 4◦C. The supernatant was taken
as a crude enzyme extract and was used for estimating
activities of various antioxidant enzymes as briefly described
below.

Superoxide dismutase
To 4 ml of 200 mM Tris-HCl buffer (pH 7.6), we added
200 µl L-methionine (20 mM), 200 µl EDTA (0.1 mM),
100 µl hydroxylamine, 100 µl Triton X (0.1%), 200 µl
riboflavin (0.5 mM) and the enzyme extract. Tubes containing
the resultant reaction mixture were exposed to 120 µmol
photons m−2 s−1 of white light, using an incandescent lamp,
at 25 ± 2◦C. After exposure to light for 45 min, 2 ml of
freshly prepared Greiss reagent [containing equal volumes of
0.1% naphthylethylenediamine dihydrochloride (NED) and 1%
sulphanilamide dissolved in 5% orthophosphoric acid] was added
to the reaction mixture and absorbance was measured at 543 nm.
SOD activity was expressed in terms of nmoles of O2

− consumed
min−1 g−1 fresh weight.

Catalase
Activity of catalase (CAT, EC 1.11.1.6) was determined by
measuring the rate of oxygen evolution in a reaction mixture
containing the enzyme extract in 200 mM phosphate buffer
(pH 6.5) and 20 mM H2O2 at 25± 2◦C, using a Clark-type liquid
phase O2 electrode (Hansatech, United Kingdom). The enzyme
activity was expressed as nmoles of oxygen evolved min−1 g−1

fresh weight.

Guaiacol peroxidase
The reaction mixture for determining activity of guaiacol
peroxidase activity consisted of a reaction mixture consisting of
200 mM phosphate buffer (pH 6.5), 2 mM guaiacol and 20 mM
H2O2 incubated with enzyme extract, at 25 ± 2◦C. Enzyme
activity was measured by recording increase in absorbance at
470 nm with time. The enzyme activity was expressed as nmoles
of tetraguaiacol formed min−1 g−1 fresh weight, using an
extinction coefficient of 26.6 mM−1 cm−1 at 470 nm.

Ascorbate peroxidase
Ascorbate peroxidase (APX, EC 1.11.1.11) activity was
determined by estimating the rate of oxidation of ascorbate
at 290 nm in a reaction mixture consisting of 200 mM Tris-HCl
buffer (pH 7.6), 20 mM H2O2, 1 mM sodium azide, 2 mM
ascorbate and the enzyme extract, at 25 ± 2◦C. The activity of
APX was expressed as nmoles of ascorbate oxidized min−1 g−1

fresh weight, using an extinction coefficient of 2.8 mM−1 cm−1,
at 290 nm.

Monodehydroascorbate reductase
For measuring activity of MDHAR (EC 1.6.5.4), the
reaction mixture consisted of 200 mM Tris-HCl buffer
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(pH 7.6), the enzyme extract, 2 mM ascorbate, 10 units
of ascorbate oxidase and 0.2 mM NADH. Decrease in
absorbance at 340 nm, due to the oxidation of NADH, was
measured at 25 ± 2◦C. Extinction coefficient of 6.2 mM−1

cm−1 (at 340 nm) was used to express the activity of
MDHAR as nmoles of NADH oxidized min−1 g−1 fresh
weight.

Dehydroascorbate reductase
The reaction mixture for the determination of dehydroascorbate
reductase (DHAR, EC 1.8.5.1) activity included 200 mM Tris-
HCl buffer (pH 7.6), enzyme extract, 1 mM reduced glutathione
(GSH), and 1 mM dehydroascorbate. An increase in absorbance
at 265 nm, due to the formation of ascorbate, from DHA by
DHAR, in the presence of GSH, was measured at 25 ± 2◦C.
Enzyme activity was expressed in terms of nmoles of ascorbate
formed min−1 g−1 fresh weight, using an extinction coefficient
of 14 mM−1 cm−1at 265 nm.

Glutathione reductase
The reaction mixture for measuring GR (EC 1.6.4.2) activity
consisted of 200 mM Tris-HCl buffer (pH 7.6), enzyme extract,
1 mM oxidized glutathione (GSSG) and 0.2 mM NADH.
Decrease in absorbance at 340 nm, due to the oxidation
of NADH, was measured at 25 ± 2◦C. The activity of GR
was expressed as nmoles of NADH oxidized min−1 g−1

fresh weight, using extinction coefficient of 6.2 mM−1 cm−1

(at 340 nm).

Characterization of Ag-NPs
For TEM studies, 10 µl of colloidal solution was drop-coated on
a 200 mesh copper grid with an ultrathin continuous carbon film,
and allowed to dry in a desiccator at room temperature. Grids
were viewed under a TEM (Technai G2 T30, Lonate Pozzolo,
Italy) at a voltage of 300 KV. The hardware associated with the
instrument allowed us to obtain (i) the EDX analysis to measure
the elemental composition of the particle sample; and (ii) the
SAED analysis to determine the crystalline/amorphous nature
of NPs.

For PXRD studies, colloidal solutions were centrifuged.
The pellet obtained was re-suspended in distilled water, drop-
coated on silica surface, dried in a desiccator, and then used
for collecting PXRD pattern, using Rigaku Rotaflex RAD-B
with copper target CuK(α)1 radiation, with a tube voltage
of 40 kV and a current of 60 mA in 2 theta (θ) range of
30–80◦.

Statistical Analysis
All the experiments were carried out independently six
times. The data obtained were statistically tested with
ANOVA using the general linear model. The variations
between the means of treatments were compared using
Duncan’s multiple range test (at P ≤ 0.05). All these
statistical analyses were performed using IBM-SPSS statistical
software, version 22.0 (IBM Corporation, Armonk, NY, United
States).

RESULTS

Potential of Floating and Submerged
Leaves to Generate Ag-NPs
We observed alteration of clear colorless AgNO3 solutions to
colloidal brown when incubated with floating and submerged
leaves of longleaf pondweed within 24 h (Figures 1A,B).
Clear colorless AgNO3 solutions turned colloidal brown due
to the formation of Ag-NPs (Shabnam et al., 2016). AgNO3
solutions incubated in the absence of leaves did not show any
alteration in color, thus confirming that leaves were responsible
for the observed color change. Floating leaves turned AgNO3
solutions colloidal brown more intensively compared to the
submerged leaves, although only one side of floating leaves were
in contact with test solution. Supplementary Figure 1 shows
experimental setup revealing that the floating leaves possess
superior potential to turn clear colorless AgNO3 (500 µM)
solutions colloidal brown compared to submerged leaves. For
depicting the gradation in color with better clarity the test
solutions (i.e., different concentrations of AgNO3) incubated
with floating and submerged leaves for 24 h were transferred to
test tubes along with leaves (Figures 1A,B). However, absorption
spectra of the brown colloidal solution did not show any Ag-NP
specific absorption peak.

Transmission electron microscopy revealed the presence of
distinct NPs of varying shapes and sizes (∼10–80 nm) in
these colloidal brown solutions (Figures 1C–F). EDX of these
NPs showed peaks specific to Ag (Figures 1I,J). SAED pattern
revealed the crystalline nature of these Ag-NPs (Figures 1G,H).
PXRD patterns showed Bragg reflections (111), (200), and (311),
revealing crystalline nature and face centered cubic structure
of Ag0-NPs (Figures 1K,L) (Pardha-Saradhi et al., 2014a).
Additional peaks observed in the PXRD spectra might be due
to Bragg reflections (111)∗, (211)∗, (220)∗, (221)∗ of cubic Ag2O
(Figures 1K,L).

Impact of Ag+ on Photosynthesis in
Floating and Submerged Leaves
In view of large differences in photosynthetic activities between
floating and submerged leaves (Shabnam et al., 2015), we
examined the effects of Ag+ on Photosystem II (PS II) efficiency
of these leaves. Photosystem II efficiency (maximum quantum
yield) is often determined as a ratio of variable Chl a fluorescence
to maximum Chl a, i.e., Fv/Fm. Chl a fluorescence of oxygenic
organisms shows a rise from a basal level (Fo) (i.e., minimum
fluorescence) to the maximum (Fm) (Strasser et al., 1995;
Stirbet and Govindjee, 2012; Shabnam et al., 2015, 2017). Fo
and Fm values of both floating and submerged leaves declined
significantly on exposure to Ag+; the decline was significantly
higher in the submerged leaves than in the floating ones
(Table 1). Ag+, like other heavy metal ions, brought about a
significant decline in the quantum yield of PS II activity, as
inferred from Fv/Fm values, in both floating and submerged
leaves (Figure 2). However, at any given concentration, the
decline in Fv/Fm was significantly higher in the submerged
leaves.

Frontiers in Plant Science | www.frontiersin.org 4 June 2017 | Volume 8 | Article 1052

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive
gov
Inserted Text
the

gov
Cross-Out

gov
Inserted Text
was

gov
Sticky Note
See line in between 413-414



fpls-08-01052 June 12, 2017 Time: 19:7 # 5

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

Shabnam et al. Differential Ag+-Tolerance in Heterophyllous Leaves

FIGURE 1 | Potential of floating and submerged leaves of longleaf pondweed (Potamogeton nodosus) to generate Ag-NPs. Photographs were taken after 24 h
exposure of floating (A) and submerged (B) leaves to varying concentrations of AgNO3 (in µM) in Borosil dishes (190 mm diameter × 100 mm height, in order to
ensure that floating leaves remain floating and submerged leaves remain submerged in respective test solution during the course of exposure to AgNO3). TEM (C–F),
SAED pattern (G,H), EDX (I,J) and PXRD patterns (K,L) of Ag0/Ag2O-NPs generated by floating (C,D,G,I) and submerged leaves (E,F,J,L) of longleaf pondweed.
PXRD patterns (K,L) show Bragg reflections specific to crystalline face-centered cubic structure of Ag0 (in parenthesis without star) and cubic structure of Ag2O (in
parenthesis with star).

Figure 3 shows the fast (up to a second) polyphasic Chl
a fluorescence transients of floating and submerged leaves
which were exposed to different Ag+ levels. All oxygen-evolving
organisms show polyphasic Chl a fluorescence transients (also
called the OJIP curves) with distinct O, J, I, and P steps (Figure 3).
In these curves, “O” is the minimum fluorescence (Fo), “P” is the
peak (Fm), and “J” and “I” are intermediate levels. The polyphasic
rise of Chl a fluorescence transient was severely reduced in both
floating and submerged leaves, exposed to Ag+ (Figure 3), which

is in agreement with the decline in Fv/Fm. The decline in the
amplitude of fluorescence was significantly higher in submerged
leaves than in floating leaves, revealing superior potential of the
latter to tolerate Ag+ than the former. Extreme sensitivity of
submerged leaves to Ag+-toxicity was also evident from the loss
in the polyphasic nature of Chl a fluorescence transients even at
concentration as low as 5 µM of Ag+.

Chlorophyll a fluorescence kinetics is affected by such factors
as Chl content. Therefore, we evaluated the impact of 24 h Ag+
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TABLE 1 | Variations in Fo (the minimum fluorescence) and Fm (maximum
fluorescence) of floating and submerged leaves of longleaf pondweed
(Potamogeton nodosus) exposed to different concentrations of AgNO3.

Ag+ (µM) Fo Fm

Floating Submerged Floating Submerged

0 302± 29.6a

(100)
468± 26.1a

(100)
1355± 87.7a

(100)
1272± 101.8a

(100)

5 255± 18.5a

(84.4)
257± 24.3b

(54.9)
936± 68.3b

(69.1)
377± 21.1b

(29.6)

10 238± 21.6ab

(78.8)
253± 19.7b

(54.1)
549± 39.9c

(40.5)
391± 19.8b

(30.7)

50 257± 11.7a

(85.1)
250± 17.5b

(53.4)
501± 42.4c

(36.9)
299± 23.7c

(23.5)

100 213± 13.3b

(70.5)
248± 11.8b

(52.9)
365± 24.5d

(26.9)
311± 28.5c

(24.4)

250 162± 11.3c

(53.6)
258± 26.7b

(55.1)
160± 11.1e

(11.8)
245± 16.9d

(19.3)

500 152± 11.1c

(50.3)
142± 11.5c

(30.3)
144± 8.9e

(10.6)
128± 9.6e

(10.1)

Data are a mean of recordings from six independent experiments. Data represent
mean ± standard error. Values followed by the same small letter (in superscript)
within a column do not differ significantly at P ≤ 0.05 level (Duncan’s multiple range
test). Values in parenthesis represent the percent change over respective controls.

FIGURE 2 | Impact of Ag+ on the quantum yield of Photosystem II activity (as
inferred from Fv/Fm; see text) of floating and submerged leaves of longleaf
pondweed (P. nodosus) after 24 h exposure to varying concentrations of
AgNO3 (µM). Data are a mean of recordings from six independent
experiments. Vertical lines on data points represent standard errors. Different
small letters over the bars reflects that the values recorded for leaves (floating
or submerged) exposed to different concentrations of AgNO3 do not differ
significantly at P ≤ 0.05 level (Duncan’s multiple range test).

treatment on both Chl a and Chl b levels. Decline of these Chls
was recorded in both floating and submerged leaves, as a function
of silver concentration (Table 2). However, the decline in the
levels of both Chl a and Chl b levels were significantly lower
in the floating leaves. Interestingly, decline in levels of Chl a

was significantly higher than that of Chl b in both floating and
submerged leaves.

Figure 4 depicts impact of 24 h Ag+ treatment on carboxylase
activity of Rubisco in floating and submerged leaves. Upon
exposure to 10 µM Ag+, the carboxylase activity of Rubisco
declined by 50% in the submerged leaves, whereas it remained
unaltered in the floating ones. However, 100 µM Ag+ caused
∼50 and ∼90% decline in Rubisco activity in the floating and
submerged leaves, respectively (Figure 4).

Levels of Ag in Floating and Submerged
Leaves
Since there was a significant variation in the impact of Ag+
on photosynthetic efficiency between floating and submerged
leaves, we measured Ag content in these leaves. Both floating
and submerged leaves of longleaf pondweed exposed to Ag+
showed the presence of Ag. The level of Ag in these leaves
increased as a function of Ag+ concentration to which they were
exposed (Figure 5A). At any Ag+ concentration, silver content in
submerged leaves was∼3 times higher than that in floating ones.
XPS analysis also confirmed the presence of Ag in both leaves.
XPS spectra showed two peaks at binding energies of 368 and
374 eV (Figures 5B,C), which arise due to the emission of 3d5/2
and 3d3/2 photoelectrons, respectively (Adegboyega et al., 2013).

Impact of Ag+ on Antioxidant System in
Floating and Submerged Leaves
Like our earlier findings (Shabnam and Pardha-Saradhi, 2016),
we did not observe any significant variation in the levels of
ascorbate, phenolics, and thiols amongst floating and submerged
leaves which were not exposed to Ag+. However, both floating
and submerged leaves exposed to 10 and 100 µM Ag+ showed a
decline in the levels of all these three non-enzymatic antioxidants
(Figure 6). Irrespective of the Ag+ concentrations to which
leaves were exposed, the decline in the level of phenolics
was significantly higher in the submerged leaves (Figure 6A).
However, the decline in the levels of ascorbate and thiols was
almost similar for both leaves (Figures 6B,C).

Antioxidant enzymes, such as SOD, catalase (CAT), GPX,
ascorbate peroxidase (APX), MDHAR, dehydroascorbate
reductase (DHAR), and GR play an important role in scavenging
ROS in plants exposed to heavy metals (Prasad et al., 1999; Dhir
et al., 2009). Therefore, we evaluated the impact of Ag+ on
activities of these enzymes in both floating and submerged leaves
of longleaf pondweed. Ag+ treatment caused a significant decline
in SOD activity in both floating and submerged leaves, although
the decline was significantly higher in the latter compared to the
former (Figure 7A). Both floating and submerged leaves, with
the exception of floating leaves exposed to 10 µM Ag+, showed
a significant decrease in the catalase activity compared to their
respective controls (Figure 7B). However, the degree of loss in
catalase activity was higher in submerged leaves. Contrary to
decreased activity of SOD and catalase, activity of GPX increased
by 2–2.5-fold in submerged leaves exposed to Ag+ (Figure 7C).
However, floating leaves showed a decrease in GPX activity on
exposure to Ag+.
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FIGURE 3 | Effect of Ag+ on chlorophyll a fluorescence transient, the OJIP curve (see text), of floating and submerged leaves of longleaf pondweed (P. nodosus)
after 24 h exposure to varying concentrations of AgNO3 (in µM). Chl a fluorescence induction curves of floating (A) and submerged (B) leaves of longleaf pondweed
exposed to varying concentrations of AgNO3 (in µM) for 24 h. Chl a fluorescence induction curves were plotted by normalizing data at the Fo values.

TABLE 2 | Variation in Chl a and Chl b levels (µg g−1 fresh weight) in floating and
submerged leaves of longleaf pondweed (P. nodosus) exposed to different
concentrations of AgNO3.

Ag+ (µM) Chl a Chl b

Floating Submerged Floating Submerged

0 626 ± 33.3a

(100)
490 ± 27.3a

(100)
492 ± 21.5a

(100)
471 ± 20.1a

(100)

5 598 ± 28.9a

(95.5)
438 ± 30.3a

(89.4)
486 ± 26.7a

(98.8)
429 ± 25.4a

(91.1)

10 492 ± 31.1b

(78.6)
368 ± 23.7c

(75.1)
391 ± 23.3b

(79.4)
367 ± 26.7b

(77.9)

50 431 ± 23.3b

(68.8)
298 ± 16.9d

(60.8)
381 ± 18.4b

(77.4)
342 ± 19.5bc

(72.6)

100 401 ± 23.5bc

(64.1)
214 ± 21.1e

(43.7)
368 ± 25.4bc

(74.7)
273 ± 20.3c

(57.9)

250 369 ± 19.7c

(58.9)
184 ± 14.5e

(37.6)
340 ± 16.7c

(69.1)
242 ± 14.7c

(51.3)

500 227 ± 20.8d

(36.2)
144 ± 9.1f

(29.4)
298 ± 17.4d

(60.6)
191 ± 16.7d

(40.5)

Data are a mean of recordings from six independent experiments. Data represent
mean ± standard error. Values followed by same small letter (in superscript) within
a column do not differ significantly at P ≤ 0.05 level (Duncan’s multiple range test).
Values in parenthesis represent the percent change over respective controls.

Activities of enzymes of ascorbate-glutathione cycle, e.g.,
APX, MDHAR, DHAR, and GR, decreased significantly in both
floating and submerged leaves as a function of given Ag+
level (Figure 8). In general, irrespective of the concentration of

Ag+ used, the activities of ascorbate-glutathione cycle enzymes
were significantly higher in floating leaves. Amongst enzymes of
ascorbate-glutathione cycle, Ag+ induced highest decrease in the
activity of GR, followed by those of APX, MDHAR, and DHAR.

DISCUSSION

Leaves of Longleaf Pondweed Generate
Ag-NPs as a Defense Mechanism
Earlier, Pardha-Saradhi et al. (2014a,b,c) reported that plants
reduce toxic ionic forms of heavy metals into non/less-toxic
NPs as a defense mechanism. During our investigations, we
found that both floating and submerged leaves of longleaf
pondweed could turn clear colorless AgNO3 solutions to colloidal
brown (Figures 1A,B and Supplementary Figure 1). TEM
coupled with SAED and EDX confirmed the presence of distinct
crystalline NPs composed of Ag in these colloidal brown solutions
(Figures 1C–F). However, similar to our earlier findings (Pardha-
Saradhi et al., 2014a), these brown colloidal solutions did not
show any Ag-NP specific peak in the absorption spectra. In
addition to SAED, PXRD confirmed the crystalline nature of
Ag-NPs; PXRD pattern showed peaks specific to face centered
cubic structured Ag0 and cubic structured Ag2O. These PXRD
analyses clearly showed that Ag-NPs generated by floating and
submerged leaves are composed of both Ag0 and Ag2O. XPS
analysis confirmed the presence of Ag in both leaves and that
the accumulated Ag in these leaves existed predominantly as
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FIGURE 4 | Impact of Ag+ on the carboxylase activity of Rubisco of floating
and submerged leaves of longleaf pondweed (P. nodosus) after 24 h exposure
to 10 or 100 µM AgNO3. Data are a mean of recordings from six independent
experiments. Vertical lines on bars represent standard errors. Different small
letters over the bars reflect that the values recorded for leaves (floating or
submerged) exposed to different concentrations of AgNO3 do not differ
significantly at P ≤ 0.05 level (Duncan’s multiple range test).

Ag2O state. It is well-known that Ag0 and Ag0-NPs are prone to
oxidation (Pardha-Saradhi et al., 2014a; Shabnam et al., 2016).
Recently, Shabnam et al. (2016) demonstrated the potential of
photosynthetic electron transport to reduce Ag+ to Ag0 and
to generate Ag0-NPs. They also specifically showed that O2
released as a byproduct during photosynthetic electron transport
promotes oxidation of Ag0 and/or Ag0-NPs to generate Ag2O-
NPs. Therefore, we believe that O2 released by light harvesting
photosynthetic machinery of leaves promotes oxidation of Ag0

and/or Ag0-NPs to generate Ag2O-NPs.
As evident from the Supplementary Figure 1, only one side

of floating leaves is in immediate contact with test solution and
further, overall size (i.e., surface area) of submerged leaves is
nearly double of floating leaves (Shabnam and Pardha-Saradhi,
2016). In spite of such a vast variation in the surface area in
contact with the test solution, the color intensity of the AgNO3
solutions incubated with floating leaves was higher than the ones
incubated with submerged leaves. This reveals superior potential
of floating leaves to generate Ag-NPs compared to submerged
leaves. Superior potential of floating leaves to generate Ag-NPs
might be due to their superior photosynthetic photochemical
reactions (Shabnam et al., 2015; Shabnam and Pardha-Saradhi,
2016).

Inductive coupled plasma analysis revealed that submerged
leaves exposed to Ag+ possessed three–fourfold higher levels of
silver than by floating leaves, which discloses that the uptake of
Ag by the former leaves is significantly higher than the latter

leaves. Higher levels of Ag in submerged leaves can be accounted
to (i) larger surface area (as detailed above) available for uptake
of Ag; and (ii) lower potential to reduce Ag+ and generate Ag-
NPs, compared to floating leaves. We have recently demonstrated
that the uptake of Ag by plants of Spirodela polyrhiza in the ionic
state is 3–4 times higher than its NP state (Shabnam et al., 2017).
Therefore, we believe that superior potential to efficiently reduce
Ag+ and generate Ag-NPs is one of the mechanisms acquired by
floating leaves to curb the uptake of Ag.

Floating Leaves Possess Superior
Potential to Protect Photosynthetic
Machinery Against Ag+-Toxicity Than
Submerged Leaves
Photosystem II plays a vital role in photochemical reactions.
Accordingly, overall photosynthetic capacity of plants often relies
on PS II activity (Shabnam et al., 2015). Therefore, during the
present investigations, we evaluated the impact of Ag+ on PS
II efficiency. Fv/Fm is a commonly used parameter to determine
Photosystem II efficiency of plants (Strasser et al., 1995; Stirbet
and Govindjee, 2012). PS II efficiency, measured in terms of
Fv/Fm as well as through Chl a fluorescence kinetics, was
significantly higher in floating leaves compared to submerged
leaves, just as in our earlier findings (Shabnam et al., 2015).

In this paper, we found that Ag+ caused a significant decline
in PS II efficiency of both floating and submerged leaves of
longleaf pondweed. Ag+-induced decline in the quantum yield
of PS II activity has also been reported in submerged P. crispus,
as well as in free floating S. polyrhiza (Xu et al., 2010; Jiang
et al., 2012; Shabnam et al., 2017). However, Ag+-induced
suppression in PS II efficiency was significantly lower in the
floating leaves compared to that in the submerged leaves. These
findings unequivocally demonstrate the prevalence of superior
mechanism(s) in floating leaves to counter Ag+.

As mentioned earlier, all oxygen-evolving organisms show
polyphasic Chl a fluorescence transients with distinct O-J,
J-I, and I-P photochemical phases (Figure 3). While O-J rise
(0.05–2 ms) involves the reduction of QA to QA

−, the J-I rise
(2–30 ms) denotes reduction of PQ pool and the I-P rise
(30–300 ms) implies reduction of the acceptor side of PS I
(Strasser et al., 1995; Stirbet and Govindjee, 2012; Hamdani
et al., 2015; Shabnam et al., 2015, 2017). The OJIP transient
kinetics are highly sensitive to various stresses including heavy
metal stress (Appenroth et al., 2001; Oukarroum et al., 2012;
Shabnam et al., 2015, 2017). During this study, we observed
a drastic negative impact of Ag+ on the OJIP transients in
longleaf pondweed leaves, even at a concentration of 5 µM.
Negative impact of Ag+ on the OJIP transients was significantly
higher in the submerged leaves. As shown in Figure 3, while
floating leaves retain polyphasic nature of the OJIP transients,
the submerged leaves showed a complete loss in the polyphasic
nature of this transient on exposure to 5 µM Ag+. Severe loss
in fluorescence intensity or polyphasic nature of OJIP transients
has also been observed in several algae and plants exposed to
heavy metals (Appenroth et al., 2001; Oukarroum et al., 2012;
Wang et al., 2014; Shabnam et al., 2017). There are reports
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FIGURE 5 | Ag content in floating and submerged leaves of longleaf pondweed (P. nodosus) after 24 h exposure to 10 or 100 µM AgNO3. (A) Bars are a mean of
data from three independent experiments for different treatments. Vertical lines on data points represent standard errors. Different small letters over the bars reflect
that the values recorded for leaves (floating or submerged) exposed to different concentrations of AgNO3 do not differ significantly at P ≤ 0.05 level (Duncan’s
multiple range test). High resolution XPS (B,C) of floating (B) and submerged (C) leaves showing presence of peaks specific to Ag2O.

FIGURE 6 | Impact of Ag+ on the levels of non-enzymatic antioxidants. Levels of phenolics (A); ascorbate (B); and thiols (C) in floating and submerged leaves of
longleaf pondweed (P. nodosus) after 24 h exposure to 10 or 100 µM AgNO3. Bars are a mean of data from six independent experiments for different treatments.
Vertical lines on bars represent standard errors. Different small letters over the bars reflect that the values recorded for leaves (floating or submerged) exposed to
different concentrations of AgNO3 do not differ significantly at P ≤ 0.05 level (Duncan’s multiple range test).

of inhibition of the oxygen evolving complex (OEC) by metal
ions such as Cd and Cr (see e.g., Atal et al., 1991). Severe
negative impact of Ag+ on the OJIP transients during this study
suggests that Ag+ could be inhibiting the OEC of PSII as well
as the flow of electrons from QA

− to the electron acceptor
side of PS I (via the PQ-pool), in both floating and submerged
leaves of longleaf pondweed. Higher Ag content in submerged
leaves could be responsible for a significantly higher decline
in their photosynthetic efficiency, compared to that of floating
leaves.

As noted earlier, Chl a fluorescence kinetics can be affected
by such factors like Chl content. A 24-h Ag+ treatment caused
a decline in the levels of Chl a and Chl b in a concentration-
dependent manner, in both floating and submerged leaves
(Table 2). However, the decline in the levels of both Chl a
and Chl b were significantly lower in the floating leaves. Our
present findings clearly demonstrate that floating leaves are better
equipped to protect their photosynthetic machinery against Ag+-
toxicity than submerged leaves. Superior potential of the floating
leaves to withstand Ag+ induced suppression of photosynthetic
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FIGURE 7 | Impact of Ag+ on the activities of antioxidant enzymes. Activity of SOD (A); catalase (CAT) (B), and guaiacol peroxidase (GPX) (C) in floating and
submerged leaves of longleaf pondweed (P. nodosus) after 24 h exposure to 10 or 100 µM AgNO3. Bars are a mean of data from six independent experiments for
different treatments. Vertical lines on data points represent standard errors. Different small letters over the bars reflect that the values recorded for leaves (floating or
submerged) exposed to different concentrations of AgNO3 do not differ significantly at P ≤ 0.05 level (Duncan’s multiple range test).

FIGURE 8 | Impact of Ag+ on the activities of antioxidant enzymes of ascorbate-glutathione cycle. Activity of ascorbate peroxidase (APX) (A);
monodehydroascorbate reductase (MDHAR) (B); dehydroascorbate reductase (DHAR) (C); and glutathione reductase (GR) (D) in floating and submerged leaves of
longleaf pondweed (P. nodosus) after 24 h exposure to 10 or 100 µM AgNO3. Data are a mean of recordings from six independent experiments. Vertical lines on
data points represent standard errors. Different small letter over the bars reflects that the values recorded for leaves (floating or submerged) exposed to different
concentrations of AgNO3 do not differ significantly at P ≤ 0.05 level (Duncan’s multiple range test).

Frontiers in Plant Science | www.frontiersin.org 10 June 2017 | Volume 8 | Article 1052

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-08-01052 June 12, 2017 Time: 19:7 # 11

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

Shabnam et al. Differential Ag+-Tolerance in Heterophyllous Leaves

FIGURE 9 | A hypothetical model depicting the key metabolic events in floating and submerged leaves of longleaf pondweed (P. nodosus) influenced by Ag+-stress.
Note that the superior photosynthesis enables floating leaf to be better equipped with carbon skeletons and energy resources required to counter heavy metal stress
than submerged leaves.

efficiency could be due to (i) higher potential to reduce Ag+ to
Ag-NPs at the surface, and (ii) restricted uptake of Ag compared
to submerged leaves.

In spite of having similar carboxylase activity of Rubisco,
the control submerged leaves possess lesser carbon skeletons
compared to the control floating leaves. Higher carbon skeletons
in floating leaves is due to significantly higher and efficient light
harvesting photochemical reactions (pivotal for the generation of
assimilatory power essential for CO2 fixation and the synthesis of
various carbon skeletons). Lower decline in carboxylase activity
of Rubisco in floating leaves revealed that floating leaves are
better equipped to protect the carboxylase activity of Rubisco
than submerged leaves.

Decline in the carboxylase activity of Rubisco has been
reported earlier in terrestrial plants, such as Phaseolus vulgaris,
Zea mays, Oryza sativa, and Citrus grandis, exposed to Zn, Cd,
and Mn (Van Assche and Clijsters, 1986; Krantev et al., 2008;
Li et al., 2010; Wang et al., 2014) and aquatic plants, such as
Salvinia natans and Ceratopteris pteridoides, exposed to Cr and
Cd (Dhir et al., 2008; Deng et al., 2014). Ag+ induced decline in
PS II efficiency and carboxylase activity of Rubisco of these plants
may be due to (i) ROS induced inactivation (Sharma and Dietz,
2009; Foyer and Noctor, 2016), (ii) enhanced proteolytic activity
(Hajduch et al., 2001; Gajewska et al., 2013), (iii) interference
with enzyme’s structure by substitution of native ions (Van Assche
and Clijsters, 1986) and/or interaction with SH groups (e.g., by

Cu and Cd) (Stiborova, 1998; Stiborova et al., 1998), and (iv)
impaired protein biosynthesis (Kremer and Markham, 1982).
A simple comparison of the impact of Ag+ on PSII efficiency with
carboxylase activity of Rubisco reveals that the light harvesting
photochemical reactions are more sensitive to Ag+ than carbon
fixation reactions.

Superior Antioxidant System of Floating
Leaves Counters Ag+-Toxicity
In general, heavy metals promote generation of ROS by
interfering with electron transport and redox reactions (Prasad
et al., 1999; Hall, 2002; Metwally et al., 2003; Sharma
and Dietz, 2009; Pardha-Saradhi et al., 2014b). Accordingly,
plants have evolved antioxidant systems, both non-enzymatic
and enzymatic, to counter oxidative stress (Prasad et al.,
1999; Shabnam and Pardha-Saradhi, 2016). Amongst the non-
enzymatic antioxidants, ascorbate, phenolics and thiols play
important roles in scavenging ROS and/or chelating heavy metals
(Sakihama et al., 2002; Shabnam et al., 2014; Shabnam and
Pardha-Saradhi, 2016). Plants exposed to heavy metal ions, such
as Cd, Pb, and Zn, show enhanced levels of non-enzymatic
antioxidants (Prasad et al., 1999; Oncel et al., 2000; Mishra
et al., 2006). On the contrary, we observed a decline in the
levels of all the non-enzymatic antioxidants in both floating
and submerged leaves exposed to Ag+ (Figure 6). Significantly
lower Ag+-induced decline in the content of phenolics in floating
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leaves could be one of the factors contributing to their superior
potential to withstand Ag+-stress. Posmyk et al. (2009) also
reported a decline in the phenolics content in red cabbage under
Cu stress. A significant decline in the levels of ascorbate and/or
thiols/GSH has been reported in studies with (i) submerged
P. crispus plants exposed to Ag+ (Xu et al., 2010); (ii) pigeon
pea seedlings exposed to Ni2+ and Zn2+ (Rao and Sresty, 2000);
(iii) roots of soybean exposed to Cd2+ (Balestrasse et al., 2001);
and (iv) roots and shoots of maize exposed to Cd2+ (Tukendorf
and Rauser, 1990; Meuwly and Rauser, 1992). Ag+ has a strong
affinity for thiols (Rao and Sresty, 2000; Blaske et al., 2013) like
other heavy metals. A positive correlation has been established
between the depletion of thiol content and the amount of metal
ions (Cu2+, Zn2+) accumulated by plants (Tripathi et al., 2006).
Thus, a decline in the levels of thiols, shown in this study, could
be due to the binding of thiols to Ag+. In general, decrease
in the levels of non-enzymatic antioxidants could be due to (i)
enhanced catabolic degradation, (ii) alteration in their structure
via chelation or reduction of metal ions, and/or (iii) decreased
biosynthesis.

Significantly higher activities of antioxidant enzymes in
floating leaves impart superior potential to counter oxidative
damage compared to submerged leaves. Ag+ induced a
significant decline in activity of SOD and catalase in both floating
and submerged leaves; the decline was significantly higher in the
latter (Figure 7A). Contrary to the decreased activity of SOD
and catalase, the activity of GPX increased by 2–2.5-fold in the
submerged leaves exposed to Ag+ (Figure 7C). However, the
floating leaves showed a decrease in GPX activity on exposure
to Ag+. In contrast to the decline in the activities of SOD
and catalase, and an increase in GPX activity recorded in the
submerged leaves of longleaf pondweed (present study), Xu et al.
(2010) noted increase in activities of SOD and catalase, and a
decline in the activity of GPX in submerged P. crispus, exposed to
Ag+. Salvinia natans exposed to Cr-rich water, however, showed
an increase in GPX activity, without any significant alteration
in CAT activity (Dhir et al., 2009). Interestingly, Shah et al.
(2001) also noted enhancement of GPX activity accompanied
with a decline in CAT activity in rice exposed to cadmium.
Peroxidases play a significant role in the synthesis of lignin, which
is impermeable to metal ions (Hegedüs et al., 2001; Parrotta
et al., 2015). Therefore, we believe that an increased GPX activity
in submerged leaves might be a strategy to restrict the uptake
of Ag+.

Silver ions also suppressed activities of enzymes of the
ascorbate glutathione cycle in both types of the leaves. Ag+
induced decline in the activities of antioxidant enzymes in both
floating and submerged leaves, except GPX in the submerged
leaves, which is in agreement with those measured in the roots
of soybean and poplar exposed to Cd2+ (Balestrasse et al., 2001;
Schutzendubel et al., 2002). A similar decline in the activities
of several antioxidant enzymes was observed in cotyledons and
leaves of sunflower seedlings under Cd2+, Fe2+, and Cu2+

stress (Gallego et al., 1996a,b). In addition, the potential of
Ag+ to displace native metal cations from their usual binding
sites in enzymes has been reported (Ghandour et al., 1988).
Ag+ induced decline in the activity of the antioxidant enzymes

might be due to the effect of Ag+ on expression of the relevant
genes at the transcriptional/translational level by binding with
DNA/RNA. Further, this effect might be at the post-translational
level. The binding of Ag+ to SH and other active groups might
alter 3-D structure of these antioxidant enzymes affecting the
catalytic/active site(s) vital for their activities (Ghandour et al.,
1988).

A summary of the differential impacts of Ag+ on the
floating and the submerged leaves of longleaf pondweed
is presented in a hypothetical model (Figure 9). Superior
photosynthesis in floating leaves leads to production of more
carbon skeletons and energy resources compared to that
in submerged leaves. Accordingly, floating leaves are better
equipped to counter/tolerate stress imposed by heavy metals,
such as Ag+. This includes (i) a superior capacity to biotransform
toxic ionic state of heavy metals (such as Ag+) into less/non-
toxic NPs (such as Ag0/Ag2O-NPs); and (ii) a better capacity to
counter oxidative stress through a superior antioxidant system.
In addition, significantly higher levels of Ag accumulated in
submerged leaves would also directly interfere with their cellular
metabolism.

CONCLUSION

In this paper, we have demonstrated for the first time that the
floating leaves of longleaf pondweed possess a significantly higher
potential to withstand Ag+-toxicity compared to that in the
submerged leaves due to (i) superior photosynthetic machinery
and an antioxidant system, (ii) superior potential to reduce Ag+
to Ag0 and generate Ag-NPs (Ag0/Ag2O-NPs) on their surface;
and (iii) superior potential to restrict uptake of Ag. Our findings
suggest that any effort made to increase the proportion of floating
leaves to the submerged leaves in longleaf pondweed would be
beneficial for apt detoxification of water bodies contaminated
with heavy metal ions.
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