Photosynthesis: Physiology and Metabolism

Edited by
Richard C. Leegood
Robert Hill Institute,
University of Sheffield,
United Kingdom

Thomas D. Sharkey
Department of Botany,
University of Wisconsin,
U.S.A.

and

Susanne von Caemmerer
Research School of
Biological Sciences,
Australian National University,
Australia

KLUIWER ACADEMIC PUBLISHERS
DORDRECHT / BOSTON / LONDON
Contents

Preface xliii

Color Plates CP1

1 Introduction 1–8
Richard C. Leegood, Thomas D. Sharkey and Susanne von Caemmerer

Summary 1
I. An Overview of Pathways and Mechanisms 2
II. The Impact of Genetic Manipulation 6
References 7

2 The Calvin Cycle and Its Regulation 9–51
William Martin, Renate Scheibe and Claus Schnarranberger

Summary 10
I. Introduction 10
II. The Enzymes of the Calvin Cycle 12
III. Calvin Cycle Gene Organization, Expression, and Regulation in Eubacteria 19
IV. Calvin Cycle Expression in Plants 20
V. Enzyme Interactions and Multienzyme-like Complexes 2a
VI. Biochemical Regulation in Chloroplasts 31
VII. Studies of Calvin Cycle Enzymes with Antisense RNA 34
VIII. Concluding Remarks 35
Acknowledgment 36
References 36

3 Rubisco: Assembly and Mechanism 53–83
Harry Roy and T. John Andrews

Summary 54
I. Introduction 54
II. Rubisco’s Discordant Molecular Phylogeny 56
III. The Folding and Assembly of Rubisco 56
IV. The Catalytic Mechanism of Rubisco 60
V. Conclusion 77
References 77

4 Rubisco: Physiology in Vivo 85–113
Susanne von Caemmerer and W. Paul Quick

Summary 86
I. Introduction 86
II. Rubisco and CO₂ Assimilation Rate, a Quantitative Relationship 88
III. In Vivo Regulation of Rubisco Carboxylation and Activity 95
IV. Rubisco Content of Leaves of Plants Grown in Different Environmental Conditions
V. Rubisco and C₄ Photosynthesis
VI. Rubisco-like CAM Photosynthesis
VII. The Role of Rubisco in C₃-C₄ Intermediates
VIII. Conclusion
References

5 Photosrespiration
Roland Douce and Hans-Walter Heldt

Summary
I. Introduction
II. The Photosrespiratory Pathway
III. Glycine Oxidation
IV. Transfer of Reducing Equivalents from the Mitochondria and the Chloroplasts to the Peroxisomes
V. The Compartimentation of Peroxisomal Metabolism
VI. Transfer of Metabolites Across the Peroxisomal Boundary Membrane
VII. Concluding Remarks
Acknowledgments
References

6 Metabolite Transport Across the Chloroplast Envelope of C₃-Plants
Ulf-Ingo Flügge

Summary
I. Introduction
II. Plastic Phosphate Translocators
III. Transport of Glucose
IV.Dicarboxylate Translocators
V. Transport of Nucleotides
VI. Other Translocators
VII. Channels in Chloroplast Envelope Membranes
VIII. Concluding Remarks
Acknowledgments
References

7 Photosynthesis, Carbohydrate Metabolism and Respiration in Leaves of Higher Plants
O. K. Atkin, A. H. Millar, P. Gardeström and D. A. Day

Summary
I. Introduction
II. Supply and Utilization of Mitochondrial Substrates in Leaves
III. Mitochondrial Function in the Light and Dark
IV. Nitrogen Metabolism, Photosynthesis and Respiration
References

vi
8 Regulation of Carbon Fluxes in the Cytosol: Coordination of Sucrose Synthesis, Nitrate Reduction and Organic Acid and Amino Acid Biosynthesis

Christine H. Foyer, Sylvie Ferrario-Méry and Steven C. Huber

Summary
178
I. Introduction
178
II. Sucrose-P Synthase
184
III. Phosphoenolpyruvate Carboxylase
190
IV. Nitrate Reductase
192
V. Glutamine Synthetase and Glutamate Synthase
195
VI. Plasma Membrane H⁺-ATPase
197
VII. Conclusions
197
Acknowledgment
199
References
199

9 Starch Metabolism in Leaves

Richard N. Trehthewey and Allison M. Smith

Summary
205
I. Introduction
206
II. The Occurrence and Function of Transitory Starch
206
III. The Structure of Transitory Starch
208
IV. The Synthesis of Transitory Starch
210
V. The Degradation of Transitory Starch
218
VII. Conclusions
225
Acknowledgments
225
References
225

10 Control of Photosynthesis, Allocation and Partitioning by Sugar Regulated Gene Expression

Ian A. Graham and Thomas Martin

Summary
233
I. Introduction
234
II. Carbohydrate Regulation of Gene Expression in Source and Sink Tissues
234
III. Influence of Other Metabolites on Sugar Regulated Genes
236
IV. Hormones and Sugar Regulation
237
V. Sugar Sensing
238
VI. Signal Transduction
243
VII. Sugar Response Elements in Gene Promoters
244
VIII. Sugar Sensing Mutants
244
IX. Conclusions
245
References
245
11 Intercellular Transport and Phloem Loading of Sucrose, Oligosaccharides and Amino Acids

Christian Schobert, William J. Lucas, Vincent R. Franceschi and Wolf B. Frommer

Summary 249
I. Introduction 250
II. Photoassimilate Movement from the Mesophyll to the Phloem 250
III. Phloem Loading 250
IV. Regulation of Assimilate Export 255
V. Conclusions 270
Acknowledgments 270
References 270

12 Regulation of Sugar Alcohol Biosynthesis

Wayne H. Löffscher and John D. Everard

Summary 275
I. Introduction 276
II. Primary Physiological Roles 276
III. Metabolism 279
IV. Developmental Regulation and Primary Roles 282
V. Localization of Synthetic and Degradative Steps 283
VI. Membrane Transport 283
VII. Secondary Physiological Roles 284
VIII. Regulation at the Molecular Level 289
IX. Conclusions and Considerations for Future Research 292
Acknowledgments 292
References 293

13 Fructans: Synthesis and Regulation

A. J. Cairns, C. J. Pollock, J. A. Gallagher and J. Harrison

Summary 301
I. Introduction 302
II. The Distribution and Structure of Fructan 302
III. Physiology and Enzymology of Fructan Metabolism 303
IV. The Control of Fructan Metabolism 311
V. Fructan Biosynthesis in Transgenic Plants: A Physiological Perspective 315
VI. Concluding Remarks 317
Acknowledgement 318
References 318

14 Acquisition and Diffusion of CO₂ in Higher Plant Leaves

John R. Evans and Francesco Loreto

Summary 321
I. Introduction 322
II. Boundary Layer—CO₂ Diffusion to the Leaf Surface 323
III. Stomata—CO₂ Diffusion into the Leaf 325
15 Carbonic Anhydrase and Its Role in Photosynthesis
John R. Coleman
Summary 303
I. Introduction 354
II. Enzyme Types, Structures And Kinetics 354
III. Localization, Regulation of Expression and Role 356
References 365

16 CO₂ Acquisition, Concentration and Fixation in Cyanobacteria and Algae
Murray R. Badger and Martin H. Spalding
Summary 370
I. Supply of CO₂ in an Aquatic Environment 370
II. Efficient CO₂ Capture Mechanisms Evolved Following Changes in Atmospheric CO₂ and O₂ 371
III. Co-Evolution of CCMs and Rubisco 372
IV. Operation of CCMs in Cyanobacteria 376
V. Components and Adaptation of the CCM in Green Microalgae 381
VI. Diversity of CCM Function in Green and Non-Green Algae 387
References 391

17 Photosynthetic Fractionation of Carbon Isotopes
Enrico Brucoli and Graham D. Farquhar
Summary 400
I. Introduction 400
II. Carbon Isotopes in Nature—The Global Carbon Cycle 401
III. Definitions 402
IV. Photosynthetic Fractionation of Carbon Isotopes 405
V. Variation in Isotope Composition Within the Plant 414
VI. Carbon Isotope Discrimination and the Ratio of Intercellular and Atmospheric Partial Pressures of CO₂ 417
VII. Water Use Efficiency, Productivity and C₄ in C₃ Species 422
VIII. Carbon Isotope Discrimination and Physiological Ecology of Photosynthesis 425
IX. Concluding Remarks 426
Acknowledgments 426
References 426

18 C₄ Photosynthesis: Mechanism and Regulation
Summary 438
I. Introduction 438
II. Mechanism and Function of C₄ Photosynthesis 438
19 Transport During C\textsubscript{3} Photosynthesis

Richard C. Leegood

Summary
I. Introduction
II. Intercellular Metabolite Transport in C\textsubscript{3} Plants
III. Gaseous Fluxes Between Bundle-Sheath and Mesophyll
IV. Intracellular Metabolite Transport in C\textsubscript{3} Plants
V. Concluding Remarks

References

20 Developmental Aspects of C\textsubscript{3} Photosynthesis

Nancy G. Dengler and William C. Taylor

Summary
I. Introduction
II. Formation of Tissue Pattern
III. Cell Pattern within Tissues
IV. Bundle Sheath and Mesophyll: Cell Structural Differentiation
V. Compartmentation of Photosynthesis
VI. Gene Regulation Mechanisms
VII. Future Directions and Model Experimental Systems

Acknowledgments

References

21 The Physiological Ecology of C\textsubscript{3} Photosynthesis

Rowan F. Sage and Robert W. Pearcy

Summary
I. Introduction
II. Physiological Considerations
III. Primary Environmental Controls—Temperature and Light
IV. Secondary Environmental Controls—Water Supply, Salinity, Nitrogen
V. The Functional Role of Photosynthetic Subtype
VI. C\textsubscript{3} Photosynthesis in the Future
VII. Conclusion: C\textsubscript{3} Plants and the Human Factor

Acknowledgment

References

22 CO\textsubscript{2} Assimilation in C\textsubscript{3}-C\textsubscript{4} Intermediate Plants

Russell K. Monson and Stephen Rawsthorne

Summary
I. Introduction
II. The Distribution of C\textsubscript{3}-C\textsubscript{4} Intermediates and the Advantages of CO\textsubscript{2} Assimilation in C\textsubscript{3}-C\textsubscript{4} Plants

References
III. Photosynthetic Metabolism and Compartmentation in C₃ Plants, C₄ and Intermediate Species 535
IV. C₃-C₄ Gas-Exchange Patterns as a Result of the Unique Compartmentation of Photosynthetic Metabolism 537
V. The Biochemical Intermediacy of Flavonoids C₃-C₄ Intermediates and Its Relationship to Reductions in Photosynthesis 541
VI. Interorgano Metabolite Movement in C₃-C₄ Leaves 543
VII. Carbon Isotope Discrimination Patterns in C₃-C₄ Intermediates 544
VIII. C₃-C₄ Intermediates and the Evolution of C₃ Photosynthesis 545
IX. Concluding Statement 547
References 548

23 Induction of Crassulacean Acid Metabolism—Molecular Aspects 551-582
John C. Cushman, Tahar Tayi and Hans J. Bohness

Summary 551
I. Introduction 552
II. Permutations and Metabolic Plasticity of CAM 553
III. Control of CAM Induction 553
IV. Genes, Transcripts, and Proteins 560
V. Regulation of CAM Gene Expression 561
VI. Signal Transduction 566
VII. Future Prospects 571
VIII. Conclusions 573
Acknowledgments 573
References 574

24 Ecophysiology of Plants with Crassulacean Acid Metabolism 583-605
Anne M. Borland, Kate Maxwell and Howard Griffiths

Summary 583
I. Introduction: Traditional Understanding and Approaches 584
II. H₂O: Cellular Limitations Imposed by Deficit and Excess 586
III. CAM as a Carbon Concentrating Mechanism: Morphological and Biochemical Considerations 588
IV. Daily Integration of Environmental Conditions 592
V. Seasonal Integration of CAM Performance and Productivity 596
Acknowledgments 601
References 601

Index 607