Photosystem II
The Light-Driven Water: Plastoquinone Oxidoreductase

Edited by

Thomas J. Wydrzynski
The Australian National University,
Canberra, Australia

and

Kimiyuki Satoh
Okayama University,
Okayama, Japan

Assistant Editor

Joel A. Freeman

Springer
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Editorial</td>
<td>v</td>
</tr>
<tr>
<td>Contents</td>
<td>xi</td>
</tr>
<tr>
<td>Preface</td>
<td>xxi</td>
</tr>
<tr>
<td>Author Index</td>
<td>xxvii</td>
</tr>
<tr>
<td>Color Plates</td>
<td>CP1–CP16</td>
</tr>
<tr>
<td>Dedication/Perspective: A tribute to Jerry Babcock</td>
<td>1–10</td>
</tr>
</tbody>
</table>

Part I: Perspective of Photosystem II Research

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to Photosystem II</td>
<td>11–22</td>
</tr>
<tr>
<td></td>
<td>Kimiyuki Satoh, Thomas J. Wydrzynski and Govindjee</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>I. Discovery of Oxygen and O$_2$ Production by Plants</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>II. Conceptual Development of Photosystem II</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>III. O$_2$ Production — Phenomenology</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>IV. Isolation of the Chemical Entity—Structural Organization of Photosystem II</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>V. Functional Sites — Catalytic Role of Photosystem II</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>VI. Future Perspectives</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>19</td>
</tr>
</tbody>
</table>

Part II: Protein Constituents of Photosystem II

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Distal and Extrinsic Photosystem II Antennas</td>
<td>23–44</td>
</tr>
<tr>
<td></td>
<td>Beverley R. Green and Elisabeth Ganit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>I. Introduction</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>II. Phycobiliproteins and Phycobilisomes</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>III. Prochlorophyte Antennas and the IsiA Proteins</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>IV. The LHC Superfamily of Chloroplasts</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>The CP47 and CP43 Core Antenna Components</td>
<td>45–70</td>
</tr>
<tr>
<td></td>
<td>Julian J. Eaton-Rye and Cindy Putnam-Evans</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>I. Introduction</td>
<td>46</td>
</tr>
</tbody>
</table>
II. The psbB and psbC Genes 49
III. Overview of Energy Transfer and Chlorophyll Binding 50
IV. The Hydrophilic Domains of CP47 and CP43 54
V. Conclusions 64
Acknowledgments 65
References 65

4 The D1 and D2 Core Proteins 71–94
Peter J. Nixon, Mary Sarcina and Bruce A. Diner

Summary 72
I. Introduction 72
II. Identification of the D1 and D2 Proteins 72
III. The Primary Structures of D1 and D2 73
IV. Identification of the D1 and D2 Proteins as the Photosystem II Reaction Center Subunits 74
V. Mutagenesis of the D1 and D2 Proteins 76
VI. Concluding Remarks 86
Acknowledgments 86
References 87

5 The Extrinsic Proteins of Photosystem II 95–120
Terry M. Bricker and Robert L. Burnap

Summary 95
I. Introduction 96
II. The 33 kDa Manganese-Stabilizing Protein (PsbO) 96
III. The 24 kDa and 16 kDa Proteins (PsbP and PsbQ) in Higher Plants 103
IV. Multiple Expressed Genes of the Extrinsic Proteins in Higher Plants 107
V. Cytochrome c_{553} (PsbV) in Cyanobacteria 108
VI. The PsbU Protein in Cyanobacteria 112
VII. Conclusions 113
Acknowledgments 114
References 114

6 The Low Molecular Weight Proteins of Photosystem II 121–138
Leeann E. Thornton, Johnna L. Roose, Himadri B. Pakrasi and Masahiko Ikeuchi

Summary 121
I. Introduction 122
II. Membrane Spanning Subunits 123
III. Extrinsic Subunits 132
IV. Conclusion 133
Acknowledgments 133
References 133
Part III: Organization of Functional Sites in Photosystem II

7 Primary Electron Transfer 139–175
Gemot Renger and Alfred R. Holzwarth
Summary 140
I. Introduction 140
II. Cofactors of Stable Charge Separation in Photosystem II 140
III. Photophysical Properties of Pigment Protein Complexes 142
IV. Nature and Properties of P680 and Pheo 150
V. Kinetics and Kinetics of Charge Separation 158
VI. Forward, Back and Side Reactions of Radical Ion Pair P680+ Qh2 166
VII. Concluding Remarks and Future Perspectives 167
Acknowledgments 168
References 168

8 The Iron-Quinone Acceptor Complex 177–206
Vasili Petrouleas and Antony R. Crofts
Summary 178
I. Introduction 178
II. Probing the Iron-Quinone Complex Through the Iron Site 178
III. Organization of the Quinone Binding Sites: The Two-Electron Gate 185
IV. Conclusions 199
Acknowledgments 199
References 200

9 The Redox-Active Tyrosines Y2 and Y6 207–233
Bruce A. Diner and R. David Britt
Summary 207
I. Introduction 208
II. Chemical Nature of Signal II 209
III. Protonation States of the Oxidized and Reduced Forms of Tyrosine 214
IV. Localization of Y2 and Y6 216
V. The Proton Acceptor and Hydrogen-Bonding 216
VI. Kinetics of Y2 Oxidation and Reduction 222
VII. Kinetics of Y6 Oxidation and Reduction and Comparison 225
VIII. Mechanisms for Y2 Oxidation and Reduction 226
IX. Concluding Remarks 227
Acknowledgments 228
References 228

10 The Catalytic Manganese Cluster: Organization of the Metal Ions 235–260
Vittal K. Yachandra
Summary 235
I. Introduction 236
II. Oxidation States of the Manganese 237
III. Structure of the Manganese Cluster 242
IV. Structural Role of the Calcium Cofactor 249
V. Structural Role of the Chloride Cofactor 253
VI. Mechanism of Water Oxidation and O₂ Evolution 254
Acknowledgments 256
References 256

11 The Catalytic Manganese Cluster: Protein Ligation 261–284
Richard J. Debus

Summary 261
I. Introduction 262
II. The D1 Polypeptide 263
III. The CP43 Polypeptide 279
IV. Concluding Remarks 280
Acknowledgments 280
References 280

Karin A. Åhling, Ronald J. Pace and Michael C. W. Evans

Summary 285
I. Introduction 286
II. S-State Spectroscopy 286
III. A Spectroscopic Model for the Catalytic Site 300
References 302

13 The Calcium and Chloride Cofactors 307–328
Hans J. van Gorkom and Charles F. Yocum

Summary 308
I. Introduction 308
II. Chloride 309
III. Calcium 314
IV. Concluding Remarks 323
Acknowledgments 323
References 323

14 Bicarbonate Interactions 329–346
Jack J. S. van Rensen and Vyacheslav V. Klimov

Summary 330
I. Introduction 330
II. Bicarbonate Requirement on the Electron Acceptor Side of Photosystem II 331
III. Bicarbonate Requirement on the Electron Donor Side of Photosystem II 336
IV. Conclusions 341
Acknowledgments 342
References 342
15 Side-Path Electron Donors: Cytochrome b_{559}, Chlorophyll Z and β-Carotene 347–365
Peter Faller, Christian Fuezean and A. William Rutherford

Summary 348
I. Introduction 348
II. Location of Accessory Electron Donors 348
III. Spectroscopic Studies 352
IV. Electron Transfer Pathways 355
V. Function of the Alternative Electron Transfer Pathway 359
VI. Conclusions 362
Acknowledgments 362
References 362

Part IV: Structural Basis for Photosystem II

16 Molecular Analysis by Vibrational Spectroscopy 367–387
Takumi Noguchi and Catherine Berthomieu

Summary 367
I. Introduction 368
II. Light-Induced Fourier Transform Infrared (FTIR) Difference Technique 369
III. Cofactors on the Electron Donor Side 369
IV. Cofactors on the Electron-Acceptor Side 377
V. Cofactors in Secondary Electron-Transfer Pathways 381
Acknowledgments 382
References 382

17 Configuration of Electron Transfer Components Studied by EPR Spectroscopy 389–402
Robert Bittl and Asako Kawamori

Summary 389
I. Introduction 390
II. Spectroscopic Background 390
III. Orientation of Cofactor Molecules 392
IV. Distances between Cofactor Molecules 395
V. Concluding Remarks 399
Acknowledgments 400
References 400

18 Structural Analysis of the Photosystem II Core/Antenna Holocomplex by Electron Microscopy 403–424
Ben Hankamer, James Barber and Jon Nield

Summary 404
I. Introduction 404
II. Electron Cryo-Microscopy Techniques 405
III. Structure of Higher Plant Photosystem II and Its Antenna System 410
19 Photosystem II: Structural Elements, the First 3D Crystal Structure and Functional Implications 425–447
Horst T. Witt

Summary 425
I. Introduction 426
II. Transmembrane Charge Separation Events as Primary Acts of Light Energy Conversion and Spatial Organization of the Electron Donors and Acceptors — Analysis by a Molecular Voltmeter 428
III. The Primary Electron Donor Chlorophyll P680 and Its Stable Electron Acceptor Plastoquinone Q_{A} — The Engine Driving Water Oxidation 428
IV. The Membrane-Spanning Chlorophyll/Quinone Couple as a Reaction Center Model for Different Photosystems 429
V. Two Chlorins between the Chlorophyll/Quinone Couple as a Fast Path for Electrons Crossing the Membrane 429
VI. The Plastoquinone Pool as the Pathway for Transfer of Electrons from Q_{A} to Photosystem I and of Protons from the Outer Aqueous Phase to the Membrane Lumen 429
VII. Primary Electron Donors Organized as Chlorophyll Pairs 430
VIII. Identification of Photosystem II as a Dimer and Photosystem I as a Trimer 430
IX. Homology of the Photosystem II Core Complex with Photosystem I and the Bacterial Reaction Center 432
X. First 3-D Crystals of Photosystem II Capable of Water Oxidation and X-Ray Structure Analysis at 3.8–3.6 and 3.2 Å Resolution 432
XI. Manganese Valences, Proton Releases and Water States of the Quaternary S-State Cycle of the Light Driven Engine 438
XII. Functional Implications 441
Acknowledgments 443
References 443

20 3D Crystal Structure of the Photosystem II Core 449–467
Jian-Ren Shen and Nobuo Kamiya

Summary 449
I. Introduction 450
II. Crystallization 450
III. Crystal Structure of Photosystem II from Thermophilic Cyanobacteria 454
IV. Future Prospects and Concluding Remarks 463
Acknowledgments 464
References 464
Part V: Molecular Dynamics of Photosystem II

22 Energy Trapping and Equilibration: A Balance of Regulation and Efficiency 491–514
Laura M. C. Barter, David R. Klug and Rienk van Grondelle

Summary 492
I. Introduction 492
II. The Context for Solar Energy Conversion in Photosystem II 493
III. Rapid Energy Transfer and Equilibration within Isolated Complexes 494
IV. Conversion of Excited States into Charge Separated States 501
V. Concluding Remarks 508
Acknowledgments 509
References 509

23 The Role of Carotenoids in Energy Quenching 515–537
Barry J. Pogson, Heather M. Rissler and Harry A. Frank

Summary 515
I. Introduction 516
II. Biosynthesis and Photosystem Assembly 516
III. Carotenoids and Photoprotection 523
Acknowledgments 531
References 531

24 Flash-Induced Oxygen Evolution and Other Oscillatory Processes 539–565
Vladimir Shinkarev

Summary 540
I. Introduction 541
II. The Kok Model of Oxygen Evolution 541
III. Binary Oscillations in the Kok Model 561
IV. Conclusions 562
25 Mechanism of Photosynthetic Oxygen Production 567–608
Warwick Hillier and Johannes Messinger

Summary
I. Introduction 568
II. Photosynthetic O₂ Evolution Patterns and the Kok Model 569
III. Structures and Oxidation States of the Mn₄O₄Ca Complex 571
IV. Substrate Interactions 576
V. Energetic and Kinetic Considerations 582
VI. Mechanistic Overview of O-O Bond Formation Reactions 590
VII. A New Mechanistic Rendition of Photosynthetic Oxidation Production 597
Acknowledgments 600
References 600

Part VI: Assembly and Biodynamics of Photosystem II

26 Photo-Assembly of the Catalytic Manganese Cluster 609–626
G. Charles Dismukes, Gennady M. Ananyev and Richard Watt

Summary
I. Introduction 610
II. Function of Photosystem II Subunits in Water Splitting and Photo-Assembly 610
III. Biogenesis of the Water Oxidizing Complex 613
IV. Roles of the Inorganic Cofactors from Photo-Assembly 616
V. Concluding Remarks 622
Acknowledgments 623
References 623

27 Photoinactivation and Mechanisms of Recovery 627–648
Wah Soon Chow and Eva-Mari Aro

Summary
I. Introduction 628
II. The Inevitability of Photoinactivation of Photosystem II 629
III. Potential Agents of Photosystem II Photoinactivation 630
IV. The Variability of the Extent of Photosystem II Photoinactivation 632
V. Molecular Rearrangements Preceding the Degradation of the D1 Protein 635
VI. Degradation of the Damaged D1 Protein 636
VII. Biogenesis and Assembly of the New D1 Copy into Photosystem II 639
Acknowledgments 643
References 643

28 Transcriptional and Translational Regulation of Photosystem II Gene Expression 649–668
Kenichi Yamaguchi, Stephen P. Mayfield and Mamoru Sugita

Summary
I. Introduction 650

xviii
II. Regulation of Photosystem II Gene Expression in Algae 651
III. Regulation of Photosystem II Gene Expression in Higher Plants 658
Acknowledgments 662
References 662

29 Protein Transport and Post-translational Processing in Photosystem II Biosynthesis and Homeostasis 669–682
Steven M. Theg and Lan-Xin Shi

Summary 669
I. Introduction 670
II. Targeting Pathways Utilized by Different Photosystem II Subunits 670
III. Assembly of Subunits into Photosystem II 674
IV. Post-Translational Modifications 676
V. Concluding Remarks 679
Acknowledgments 679
References 679

Part VII: Comparison of Photosystem II with Other Natural/Artificial Systems

30 The Origin and Evolution of Photosynthetic Oxygen Production 683–695
G. Charles Dismukes and Robert E. Blankenship

Summary 683
I. The Timetable and Biogeochemical Consequences of Oxygenic Photosynthesis 684
II. Minimal Cofactor Diversity in Water Oxidizing Complexes 685
III. Transitional Electron Donors and ‘Missing Links’ 687
IV. Possible Evolution Pathways for the Photosystem II Water Oxidizing Complex 688
V. Concluding Remarks 693
Acknowledgments 693
References 693

31 Mechanistic Comparisons Between Photosystem II and Cytochrome c Oxidase 697–713
Gary W. Brudvig and Mårten Wikström

Summary 697
I. Introduction 698
II. Protein Structure and Cofactors 698
III. Energetics of Water Oxidation and Oxygen Reduction 701
IV. Catalytic Mechanisms 702
V. Analogies between the Oxygen Chemistry of Photosystem II and Cytochrome c Oxidase 708
Acknowledgments 710
References 710
32 Mimicking the Properties of Photosystem II in Bacterial Reaction Centers 715–727

László Kálmán, JoAnn C. Williams and James P. Allen

Summary 715
I. Evolutionary Developments 716
II. Achieving a Highly Oxidizing Electron Donor 717
III. Oxidation of Tyrosine Residues and Metals 719
IV. Designing a Manganese Cluster 725
Acknowledgments 725
References 725

33 De Novo Protein Design in Respiration and Photosynthesis 729–751

Brian R. Gibney and Cecilia Tommos

Summary 729
I. Introduction 730
II. Construction of Proteins Containing Cofactors Involved in Energy Conversion 737
III. Perspective 747
Acknowledgments 748
References 748

34 Understanding Photosystem II Function by Artificial Photosynthesis 753–775

Ann Magnuson, Stenbjörn Styring and Leif Hammarström

Summary 753
I. Introduction 754
II. Mimicking Photosystem II Reactions 758
III. Redox Properties in Natural and Artificial Photosynthetic Systems 769
IV. Future Outlook 772
Acknowledgments 772
References 772

Index 777