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Abstract

The purpose of this minireview is to highlight the early observations that led to the discovery of the physico-
chemical properties of the phycobiliproteins, their structure and function, and to their architectural organization
in supramolecular complexes, the phycobilisomes. Generally attached on the stromal surface of the thylakoid
membranes in both prokaryotic (cyanobacteria) and eukaryotic cells (cyanelles, red algae and cryptomonads), these
complexes represent the most abundant soluble proteins and the major light-harvesting antennae for photosynthesis.
This review mainly focuses on the years prior to the development of the molecular biology of cyanobacteria that
flourished in the 1980s. We refer the reader to the comprehensive and excellent review by Sidler (1994) for more
recent discoveries and more detailed literature on this topic.

‘It would be difficult to find another series of
colouring matters of greater beauty or with

such remarkable and instructive chemical
and physical peculiarities.’

– H. Sorby, 1877

Introduction

As early as 1836, Nees Esenbeck described a bril-
liantly blue-colored, red-fluorescent, photo-labile and
water-soluble pigment released by the cyanobacterium
Oscillatoria sp., which he designated ‘saprocyanin’.1

A few years later, Kützing (1843) renamed this pig-
ment ‘phykokyan’1 – a name more appropriate to its
beautiful blue color – and he isolated a water-soluble
red pigment, the ‘phykoerythrin,’1 from a number
of red algae (Figure 1). In 1854, Sir G.G. Stokes
performed the first spectroscopic analyses – import-
ant bases for the development of the concept of the
Stokes shift – and noted the intense orange fluor-
escence of this red pigment. This observation was

confirmed by Sorby (1877) who reported on the strong
orange and red fluorescence of phycoerythrin and phy-
cocyanin, respectively, from groups of red algae and
the cyanobacterium Oscillatoria nigra. Sorby (1877)
also provided the first evidence for allophycocyanin
based on thermal denaturation studies of ‘purple and
pink phycocyan’ solutions containing ‘clean white
lump (of) sugar’! In 1888, Schütt (1888) showed
that wavelengths of light between 486 – 600nm had
the power of exciting fluorescence of phycoerythrin
in solution, the maximum emission being situated
between 560 and 590 nm. Hanson (1909) later pro-
posed that blue light caused the orange fluorescence
of phycoerythrin which assisted light assimilation by
‘degrading’ it to yellow and red wavelengths corres-
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Figure 1. Purified phycobiliproteins. allophycocyanin (left), phy-
cocyanin (center) and phycoerythrin (right). Adapted from Tandeau
de Marsac, Biofutur, no. 121, 1993. For a color version of this
figure, see color section in the front of the issue.

ponding to those absorbed by chlorophyll – a kind of
energy transfer from phycoerythrin to chlorophyll was
thus anticipated!

Are phycoerythrin and phycocyanin true proteins?

Two forms of crystals of ‘rhodospermin,’ obtained
by Cramer (1862) from a red alga, were thirty-two
years later recognized by Mölisch (1894) to be phy-
coerythrin. Mölisch (1895) obtained the first crystals
of phycocyanin. According to Hanson (1909), phy-
coerythrin was ‘. . . probably a colloidal nitrogenous
substance, related to protein, but not a true protein
. . . .’ Kylin (1910, 1912) succeeded in separating phy-
coerythrin and phycocyanin in a pure state from a
red alga, analyzed their spectral characteristics and
concluded from the properties of the crystals that
both phycobiliproteins resembled hemoglobin in be-
ing made up of two components, one proteinaceous,
as proposed by Mölisch (1895) and one pigment. The
name ‘phycochromoproteid,’ originally proposed by
Kylin, was replaced by ‘phycobilin’ following the
work of Lemberg (1928, 1930, 1930), who found
that the chromophoric groups of phycoerythrin and
phycocyanin were both related to animal bile pig-
ments. The chromophores being strongly bound to
their protein counterpart, several attempts to isolate
the prosthetic groups of phycocyanin and phycoeryth-
rin generated artifacts due to degradation (for a discus-
sion on that topic, see O’hEocha 1965). Thanks to C.
O’hEocha (1958), and to many other researchers, who
modified the extraction procedures and used various
analytical-chemical methods, the spectral properties
and structure of the chromophores, and their mode

of linkage to the proteins began to be elucidated in
the 1960s (for reviews, see O’hEocha 1962, 1965;
Siegelman et al. 1968; Rüdiger 1970,1975; O’Carra
1970; Scheer 1981). At present, four main types
of chromophores-phycoerythrobilin, phycocyanobilin,
phycourobilin and phycobiliviolin-covalently bound
by thioether linkages to their cognate proteins, have
been characterized from red algae and cyanobacteria,
and five additional ones from cryptomonads (for a
review, see Sidler 1994). Three major phycobilipro-
tein families – the phycoerythrins, phycocyanins and
allophycocyanins – are present in red algae and cy-
anobacteria, but only the first two are present in cryp-
tomonads. Prefixes to phycobiliprotein classes were
initially proposed by Svedberg and Katsurai (1929)
to be used for distinguishing their taxonomic origin
(R- for red algae, C- for cyanobacteria). However,
after the discovery of two spectrally slightly differ-
ent phycoerythrins in primitive red algae of the order
Bangiales, B-phycoerythrin (Airth and Blinks 1956)
and b-phycoerythrin (Gantt and Lipschultz 1974), the
nomenclature of ‘R’ for red algae was no longer valid.
Consequently, these prefixes no more refer to the type
of source organisms but denote their specific spectral
characteristics.

Structural units of the phycobiliproteins

Although generally obtained as high molecular mass
complexes ranging from approximately 100,000 to
208,000 daltons, T. Svedberg and co-workers (Sved-
berg and Lewis 1928; Svedberg and Katsurai 1929;
Svedberg and Eriksson 1932) found the minimum as-
sembly unit of phycocyanins and phycoerythrins to
be about 34,700 daltons at alkaline pH. In the 1970s,
smaller and more precise values emerged from fur-
ther studies of the physico-chemical properties of
these phycobiliproteins. In their native forms, they
were shown to consist of two dissimilar subunits, α

(Mr 10 000–19 000) and β (Mr 14 000–21 000), in a
1:1 molar ratio (Bennett and Bogorad 1971; Glazer
and Cohen-Bazire 1971; O’Carra and Killilea 1971;
Gysi and Zuber 1974). An additional subunit of a
larger molecular mass (Mr 30 000) was found in B-
phycoerythrin, but not in b-phycoerythrin in the red
alga Porphyridium cruentum (Gantt and Lipschultz
1974).

The aggregation states for red algal and cyanobac-
terial phycobiliproteins in solution depend on the puri-
fication protocol and the source (i.e., the organism).
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However, with the exception of the subunit structure
of B-phycoerythrin determined to be (αβ)6γ (Glazer
and Hixson 1977), the most frequently found aggrega-
tion states were hexamers (αβ)6or trimers(αβ)3(Berns
and Edwards 1965; Craig and Carr 1968; Neufeld and
Riggs 1969; MacColl et al. 1971; Cohen-Bazire et
al. 1977). The structure of the phycocyanin hexamers
examined by electron microscopy revealed a round,
disc-like structure of 120–130 Å in diameter and 60
Å in height. Moreover, with fresh extracts of cy-
anobacterial cells, short rods of stacks of disc-shaped
hexamers were also observed (Berns and Edwards
1965; Kessel et al. 1973)). X-ray diffraction studies
by Dobler and co-workers (1972) indicated the crystal
units of phycocyanin from Mastigocladus laminosus
to consist of two trimers and served as a basis for
the determination of the crystal structure of this phy-
cobiliprotein at high resolution by T. Schirmer and
co-workers in the mid 1980s (for a review, see Sidler
1994).

From fluorescence polarization analyses of pur-
ified phycobiliproteins, Dale and Teale (1970) and
Teale and Dale (1970) concluded that phycoerythrin
and phycocyanin contain two types of chromophores,
a sensitizing (‘s’) and a fluorescing (‘f’) ones. Accord-
ing to Alexander Glazer and co-workers (Glazer and
Fang 1973a; Glazer et al. 1973), the β and α phy-
cocyanin subunits carried two s-type and one f-type
chromophores, respectively, with the energy absorbed
by the β subunit being transferred, via the α sub-
unit, to the next acceptor. Such a process could indeed
provide an efficient directional flow of energy to the
chlorophyll (Chl) a located in the thylakoid mem-
brane (for reviews, see Glazer 1976, 1989). Figure
2 shows Alexander Glazer and several other scient-
ists involved in phycobilisome research. [See Brody
(2002) and Mimuro (2002) for early energy trans-
fer measurements.] Glazer and co-workers (Glazer et
al. 1973; Glazer and Fang 1973b) were the first to
perform in vitro reconstitution of a phycocyanin in-
distinguishable from the native protein. Importantly,
these experiments demonstrated that the formation of
the phycocyanin monomer αβ was not accompanied
by major changes in the spectra of the chromophores
(Glazer 1976).

Acclimation to the light intensity or to the spectral
light quality?

At the end of the 19th century, Engelmann (1883,
1884) attributed the vertical distribution of seaweeds
to their ability to synthesize pigments complementary
to the spectral quality of the incident light. This ob-
servation was in disagreement with Oltmanns (1892)
who proposed vertical distribution to be determined by
the light intensity rather that the light quality. How-
ever, the acclimation process, called by Engelmann
(1902) ‘complementary chromatic adaptation’ (CCA),
was confirmed by further detailed studies. Gaidukov
(1902, 1903a,b, 1923) showed that the cyanobac-
terium Oscillaria sancta became red when grown
under green light and blue green after growth under or-
ange light. Moreover, Boresch (1919, 1921) described
that the change in color corresponded to a change in
the proportion of phycoerythrin and phycocyanin, and
that CCA occurred only in some cyanobacterial strains
that contained phycoerythrin.

The divergent views of Engelmann and Oltmans
were reconciled by Harder (1923), who proposed that
pigment adaptation of seaweeds depended on both
the color and intensity of the light available at dif-
ferent water depths, a proposal later confirmed by
several groups on various algae (Brody and Emerson
1959; Jones and Myers 1965; Ghosh and Govindjee
1966; Ramus et al. 1976a,b). In these cases, however,
the acclimation to the light spectral quality led to a
change in the ratio of the accessory pigments to Chl
a, a phenomenon called inverse chromatic adaptation
that occurs in all photosynthetic organisms and dif-
fers from CCA in which Hattori and Fujita (1959a)
and Fujita and Hattori (1960) showed that Tolypothrix
tenuis cells specifically synthesize pigments with the
highest absorbance for the incident wavelengths, i.e.,
phycocyanin under red light and phycoerythrin under
green light. Thanks to a collection of pure cyanobac-
terial strains, established on R. Y. Stanier’s initiative
in the 1960s, a large survey by Tandeau de Marsac
and Cohen-Bazire (1977) demonstrated that among
chromatic adapters two groups could be distinguished.
In the first group, cells modulated the synthesis of
phycocyanin under red light and phycoerythrin under
green light, while in the second one only the synthesis
of the latter pigment was regulated.

The pioneering work of Y. Fujita and A. Hattori
(Hattori and Fujita 1959a, 1959b; Fujita and Hattori
1962, 1963) revealed that CCA was controlled by a
photoreversible pigment responding to green and red
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Figure 2. Alexander N. Glazer and Marcel Lefort-Tran (top left), Nicole Tandeau de Marsac (top right) Donald Bryant (middle left) and
Germaine Cohen-Bazire (middle center) at the IVth International Symposium on Photosynthetic Prokaryotes in Bombannes, France, in 1982.
Elisabeth Gantt (middle right) and Herbert Zuber (bottom right) at the Japan-US symposium on Phycobiliproteins in Okazaki, Japan, in 1982.
Lawrence Bogorad (bottom left) in his office in 1975. Yoshihiko Fujita (bottom center) when he visited Elisabeth Gantt’s laboratory in 1995.
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Figure 3. Electron micrograph of a section of the red alga Por-
phyridium cruentum. N – nucleus; C – chloroplast with phycobili-
somes visible on the outside of the lamellae; S – starch. Reproduced
from Gantt and Conti (1966).

irradiations (with maxima around 541 nm and 641 nm,
respectively) in Tolypothrix tenuis. These results were
later confirmed by radioisotopic experiments on ex-
ponentially grown cultures of Fremyella diplosiphon
(Bennett and Bogorad 1973) and by the action spectra
for phycobiliprotein synthesis performed by different
groups on three cyanobacterial strains (Diakoff and
Scheibe 1973; Haury and Bogorad 1977; Vogelmann
and Scheibe 1978; Tandeau de Marsac et al. 1980).
Although the action maxima for the cyanobacterial
photoreversible pigment were different (541/641 nm)
from those of the plant phytochromes (660/730 nm),
both photoreceptors were suspected for a long time
to belong to the same protein family. It is only very
recently, however, that cyanobacterial phytochromes
were found in chromatic adapters (Kehoe and Gross-
man 1996; Herdman et al. 2000; see Grossman, this
issue) and there still remain uncertainties, since, in no
case, there exists a definite proof that such molecules
carry a chromophore in vivo, leaving open the pos-
sibility that they may act downstream in the signaling
cascade rather than in the perception of the spectral
light quality.

The phycobilisome: a supramolecular complex

With the introduction of electron microscopy stud-
ies in the late 1950s, new insights were put into the

structure and organization of the phycobiliproteins in
vivo. The work of William Arnold and Oppenheimer
(1950) indicated that phycocyanin should be separ-
ated by no more than 40 Å from the membrane-bound
Chl a to account for the high efficiency of the en-
ergy transfer. Jack Myers and collaborators (Myers
and Kratz 1955; Myers et al. 1956) noticed that phy-
cobiliproteins were a major constituent of red algal
and cyanobacterial cells, representing up to 24% of
the cell dry weight in the cyanobacterium Anacystis
nidulans and proposed that the 22 nm granules vis-
ible between thylakoids were aggregates of these pig-
ments. In agreement with these earlier observations,
excellent ultrastructural studies by Elisabeth Gantt and
coworkers (Gantt and Conti 1965, 1966a, b) on the red
alga Porphyridium cruentum and some cyanobacteria
demonstrated that phycobiliproteins were organized in
alternating macromolecular structures arranged in reg-
ular rows on the stromal surfaces of the thylakoids
(Figure 3). These granules of about 400 Å in dia-
meter, twice larger than ribosomes, were given the
name ‘phycobilisomes’ (Gantt and Conti 1966a,b).
Subsequent work by Gantt and other research groups
(for a review, see Gantt 1980) found a similar location
and organization of the phycobiliproteins in diverse
red algae and cyanobacteria.

The original method developed by Gantt and
coworkers (Gantt and Conti 1966b; Gantt and
Lipschultz 1972) to isolate phycobilisomes from Por-
phyridium cruentum was later adapted by the same
group and many others to isolate these structures from
diverse cyanobacteria and red algae (for a review,
see Sidler 1994). Based on the examination of isol-
ated phycobilisomes by electron microscopy, different
morphological types were described: hemi-ellipsoidal,
hemi-discoidal, block shaped and bundle shaped (for a
review, see Sidler 1994). The latter type, which forms
a cortical layer on the inner surface of the cytoplasmic
membrane, was only found in an unusual cyanobac-
terium Gloeobacter violaceus that does not possess
thylakoids (Rippka et al. 1974; Guglielmi et al. 1981).

Gantt and Lipschultz (1974) initially reported that
phycobilisomes isolated from Porphyridium cruentum
only consisted of phycobiliproteins with 84% B- and
b-phycoerythrin, 11% R-phycocyanin and 5% allo-
phycocyanin. However, in 1977, Tandeau de Marsac
and Cohen-Bazire (1977) found that cyanobacterial
phycobilisomes consisted of 85% of phycobiliproteins
and 15% of polypeptides which, in contrast to the pig-
mented phycobiliproteins, were uncolored. Although
accepted with doubt by some researchers, three mo-
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Figure 4. Electron micrographs of thin sections of cells and isol-
ated phycobilisomes from the cyanobacterium Pseudanabaena sp.
PCC 7409. (A) Dividing cell (18 000 ×). (B) Enlargement of a
portion of a cell section perpendicular to the thylakoid surface.
Rows of phycobilisomes (arrows) in longitudinal section (80 000
×). (C) Enlargement showing rows of phycobilisomes in cross sec-
tion (100 000×). (D) Isolated phycobilisomes from cells grown in
red light (110 000 ×). (E) and (F). Electron micrographs of a phy-
cobilisome isolated from cells grown in white light, in face view
and base ‘up,’ respectively (350 000 ×). Adapted from Bryant et al.
(1979).

lecular mass categories of linker polypeptides were
confirmed to be unambiguously present in cyanobac-
terial and red algal phycobilisomes (for reviews, see
Glazer 1984, 1989; Sidler 1994). Only the largest
linker polypeptide, the core-membrane linker (LCM),
was later found by Glazer’s group to carry one phy-
cocyanobilin chromophore (Lundell et al. 1981). The
discovery of the linker polypeptides was rapidly fol-
lowed by the description of a three-dimensional struc-
ture of phycobilisomes from cyanobacteria by Don
Bryant and co-workers who coupled biochemical and
electron microscopy studies (Bryant et al. 1979) (Fig-
ure 4). This first model for cyanobacterial phycobili-

somes was the basis for more detailed investigations
of their structure and function by Glazer’s group and
other laboratories (for reviews, see Glazer 1984, 1989;
Sidler 1994).

Phycobilisomes transfer light energy for
photosynthesis

The pioneering work of Engelmann (1881, 1882,
1883, 1884) on the participation of chlorophyll,
carotenoids and phycobiliproteins in photosynthesis
led to the demonstration that phycocyanin and phyco-
erythrin, but not Chl a and carotenoids, were used to
drive photosynthetic oxygen production in these par-
ticular systems. To quantify the oxygen produced by
the algae exposed to light, Engelmann had the wonder-
ful idea of using the property of aerotactic bacteria to
accumulate in the area with the highest concentration
of oxygen – the first ‘Mikrospectrum’ for photosyn-
thesis was realized! Although perfectly correct in his
conclusions, Engelmann’s work was vigorously criti-
cized by several opponents to his theories and long
neglected. About 60 years later, however, the ma-
jor role of the different phycobiliproteins from red
algae and cyanobacteria in light-harvesting for pho-
tosynthesis was largely confirmed and quantitatively
established by several groups (Emerson and Lewis
1942; Haxo and Blinks 1950; Blinks 1954; Brody and
Emerson 1959; Lemasson et al. 1973). By performing
high-precision action spectra, C. Lemasson and col-
laborators (1973) demonstrated that allophycocyanin
was more efficient than phycoerythrin or phycocyanin
in cyanobacteria and that Chl a could become the ma-
jor light-harvesting pigment under nitrogen starvation.
Volk and Bishop (1968) reached similar conclusions
from studies of a phycocyanin-deficient mutant of a
red alga.

As noted earlier, Arnold and Oppenheimer (1950)
established that the migration of light energy pro-
ceeds from phycocyanin to Chl a by resonance energy
transfer, a mechanism described by Förster two years
earlier (Förster 1948). Subsequent studies by other
investigators suggested that phycocyanin was an in-
termediate in the light energy transfer from phycoery-
thrin to Chl a (Duysens 1951,1952; French and Young
1952). This energy transfer was shown to occur down
to liquid helium temperature (4 K) and the temperat-
ure dependence was consistent with the Förster theory
(Cho and Govindjee 1970). In the 1970s, it became
clear that light energy collected by the phycobili-
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proteins within the phycobilisomes was transferred
mainly to photosystem II, with allophycocyanin acting
as a link between phycocyanin and the membrane-
bound Chl a (Halldal 1970; Gantt and Lipschultz
1973; Lemasson et al. 1973). However, the detailed
description of the energy transfer process within phy-
cobilisomes awaited the work of Glazer and collab-
orators about 10 years later (for reviews, see Glazer
1989; Sidler 1994).

In 1925, Kitasato determined the first amino acid
composition of phycoerythrin followed by others from
different phycobiliprotein classes. At the dawn of the
molecular biology era, a number of N-terminal se-
quences and the complete sequence of both subunits
of phycocyanin from Mastigocladus laminosus were
available (Frank et al. 1978). Their comparison, as
well as physico-chemical and immunological evid-
ence, led Glazer (for a review, see Glazer 1976) to
postulate that allophycocyanin was the evolutionary
ancestor of phycocyanin, which in turn preceded phy-
coerythrin. More recently, in the light of the com-
parison of complete amino acid sequences of a great
number of phycobiliproteins from different spectral
classes, these conclusions were revisited. A divergent
phylogenetic development of the α- and β-subunit
families from a single-subunit ancestor molecule, that
gave rise to these subunit families by a gene duplic-
ation event, was assumed to reflect the evolutionary
changes of the phycobiliproteins over years (for a
review, see Sidler 1994).

Conclusion

For more than 150 years, phycobiliproteins and phy-
cobilisomes were extensively studied and revealed a
lot of their mystery hidden behind their glowing col-
ors. Their remarkable physico-chemical properties,
and their wonderful structure, so precisely fitted to
harvest and transfer light energy to the photosynthetic
reaction centers, still fascinate researchers and will
certainly continue for a long time to hold captivating
interest for mankind.
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Note

1From the Greek: ‘sapros,’ rotten; ‘kyanos,’ blue; ‘phykos,’ sea-
weed; ‘erythros,’ red. Phykokyan is nowadays called phycocyanin
and phykoerythrin spelt phycoerythrin.
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