POLYPHASIC CHLOROPHYLL a FLUORESCENCE TRANSIENT IN PLANTS AND CYANOBACTERIA*

RETO J. STRASSER†,1, ALAKA SRIVASTAVA1 and GOVINDEE2

1Bioenergetics Laboratory, University of Geneva, 1254-Jussy, Geneva, Switzerland and
2Department of Plant Biology, 265 Morrill Hall, University of Illinois, Urbana, IL 61801, USA

Received 22 July 1994; accepted 12 September 1994

Abstract—The variable chlorophyll (Chl) a fluorescence yield is known to be related to the photochemical activity of photosystem II (PSII) of oxygen-evolving organisms. The kinetics of the fluorescence rise from the minimum yield, F0, to the maximum yield, Fm, is a monitor of the accumulation of net reduced primary bound plastoquinone (Qa) with time in all the PSII centers. Using a shutter-less system (Plant Efficiency Analyzer, Hansatech, UK), which allows data accumulation over several orders of magnitude of time (40 μs to 120 s), we have measured on a logarithmic time scale, for the first time, the complete polyphasic fluorescence rise for a variety of oxygenic plants and cyanobacteria at different light intensities. With increasing light intensity, the fluorescence rise is changed from a typical O–J–I–P characteristic to curves with two intermediate levels J and I, both of which show saturation at high light intensity but different intensity dependence. Under physiological conditions, Chl a fluorescence transients of all the organisms examined follow the sequence of O–J–I–P. The characteristics of the kinetics with respect to light intensity and temperature suggest that the O–J phase is the photochemical phase, leading to the reduction of Qa to Qa−. The intermediate level I is suggested to be related to a heterogeneity in the filling up of the plastoquinone pool. The P is reached when all the plastoquinone (PQ) molecules are reduced to PQH2. The addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea leads to a transformation of the O–J–I–P rise into an O–J rise. The kinetics of O–J–I–P observed here was found to be similar to that of O–I–I′–P, reported by Neubauer and Schreiber (Z. Naturforsch. 42e, 1246–1254, 1987). The biochemical significance of the fluorescence steps O–J–I–P with respect to the filling up of the plastoquinone pool by PSII reactions is discussed.

INTRODUCTION

The time course of the variable chlorophyll (Chl) a fluorescence of plants was related to the time course of photosynthesis by Kautsky and Hirsch.1 In all dark-adapted oxygen-evolving systems, the intensity of Chl a fluorescence emission shows a characteristic variation in time, known as fluorescence transient or induction.2,3 This fluorescence transient can be divided into two segments: (1) a fast rise in fluorescence intensity from an initial low level called F0 to a maximum intensity level called Fp and (2) after this maximum, the fluorescence intensity decreases, within minutes, to a lower level Ff or Fm, which, for samples in good physiological condition, is equal or very close to the values of F0.

During the fast fluorescence rise (up to ~1 s, with saturating light) and the slow decrease to a steady-state fluorescence, the light absorption of the sample can be considered constant; thus, the fluorescence intensity changes are changes in the fluorescence yield. Since its discovery, this variable Chl a fluorescence has been the subject of many reviews and debate in photosynthetic research.5,6 The easier it became to measure this signal due to the availability of small, inexpensive and portable instruments, the more it became important not only in basic research, but in biotechnology, industrial screening and environmental research. From measurements in the laboratory, on intact leaves on the plant in the field, or remote sensing from the satellite, the variable Chl a fluorescence phenomenon has become one of the most important tools in plant physiology research.6 The variable Chl a fluorescence originates in photosystem II (PSII) (see reviews in Govindjee et al.4). However, a full understanding in terms of the biochemistry and biophysics of this noninvasive and highly sensitive fluorescence signal, reflecting various photosynthetic reactions, is still unavailable.

Duysens and Sweers7 proposed the concept that a quencher (Q) is involved in the primary photochemistry of the PSII reaction center (RC) complex. Photosystem II of oxygenic organisms reduces Q to a nonquenching form Q−, whereas photosystem I (PSI) reoxidizes Q− back to Q. With this concept, the fast fluorescence rise from the initial fluorescence F0 to the maximum fluorescence intensity Fp corresponds to the conversion of the quenched to the unquenched state of...
the RC of PSII. The quenched form of the RC of PSII has been called "open" and it is able to perform primary photochemistry with the highest efficiency as soon as it is excited. On the contrary, it has been called "closed" in the unquenched state where it is not able to perform primary photochemistry with any significant efficiency. Further, Warren quenched state where it is not able to perform primary photochemistry with the highest efficiency as soon as it is excited. The oxidized form of the RC of PSII, P680+, also quenches Chl a fluorescence. This explained the Chl a fluorescence yield changes observed, after a nanosecond flash, by Mauzerall.

It was Butler who first developed a dynamic description of the photosynthetic apparatus using the quenching concept of Duyens and Sweers and the concept of open and closed systems linked to low and high Chl a fluorescence yield. For this purpose, three types of conditions were used to measure fluorescence transients: (1) Measurements at low temperature (77 K) where only the primary reactions of photochemistry occur (e.g. PPh to P'Ph') secondary processes are slowed down (e.g. Q{a} to Q{a, Q{b}}), and diffusion processes are blocked; (2) Measurements at room temperature in the presence of the herbicide diuron (3-[3,4-dichlorophenyl]-1,1-dimethylurea: DCMU) that blocks the electron transport in the RC II complex from the primary bound plastoquinone Q{a} to the secondary band plastoquinone Q{b} and (3) in vivo measurements under physiological conditions. Based on results of these experiments, the energy fluxes and their rates in photosynthesis were formulated by Butler and coworkers employing the first-order rate constants and probabilities of individual reactions, as generally accepted for the kinetic description of first-order reactions. Using this approach, the variable Chl a fluorescence attained a biological meaning and a mathematical description. However, one additional concept was necessary for the biophysical description of variable Chl a fluorescence: the concept of "energy-cycling," which describes the energy transfer back and forth between the RC and the antenna. Joliot and Joliot introduced a probability term for energy transfer from one antenna pool of PSII unit to another antenna pool of a neighboring PSII unit (PSII connectivity).

Formulated without explicit knowledge of the biochemical composition of the RC, the concept of Butler advanced our understanding of the energy distribution events in the photosynthetic apparatus. Among other aspects, Butler considered energy distribution between the antenna and the RC of the PSII, the energy transfer from PSII to PSI, and the energetic connectivity between different photosynthetic units. One feature of the variable Chl a fluorescence is that it is proportional to the fraction of closed PSII RC as long as there is no energy transfer between the independent PSII units. In contrast, the variable Chl a fluorescence is a hyperbolic function of the fraction of closed PSII RC when connectivity (grouping) between the photosynthetic units exists (for references to different formulations of this phenomenon, see Strasser et al.). Recently Lavergne and Trissl have presented a detailed analysis of fluorescence transient in the presence of DCMU. Their results support the model of Paill~tin for the connectivity and energy transfer among few PSII units: excitons visit only 3-4 PSII units.

The advances in the understanding of the biophysics and biochemistry of PSI allows one today to formulate the very early electron transport events in its RC. Chl a of PSII (P680*, P*) donates an electron to a phaeophytin (Ph) molecule within 3 ps, which in turn, reduces the plastoquinone Q{a} to Q{a} within 200 ps. The Q{a} reduces the next electron carrier Q{b} to Q{b} within 100-200 ms (see Fig. 1). The Q{b} acts as a "two-electron gate" and it undergoes two reduction steps to become Q{b}2-. After protonation events, Q{b}2- dissociates from the RC complex as a fully reduced plastoquinone, the plastoquino (PQH2). The reaction mechanism and the dynamics of the early electron transfer events until the reduction of Q{a} to Q{a} may be described by the exciton--radical pair model proposed by Holzwarth and coworkers (see a review by Holzwarth). This description does not contradict the energy distribution concepts of Butler but may be considered as a modification and an extension of that model. Here, the concept of the shallow trap nature of P680 and the recombination probability of the radical pair (P*, Ph-) to produce an exciton are included. A thorough discussion is presented by Dau.

The current explicit knowledge of the reactions of the electron carriers P680, Pheo, Q{a} and Q{b}, and the scheme of the exciton--radical pair model tell us that the earlier concepts of the open and closed RC may have to be modified. All forms of Q{a, Q{b}} complex that contain the reduced form of Q{a} are considered as closed and the others as open. Therefore a photosynthetic system under continuous illumination determines its Chl a fluorescence behavior by the mixture of the different species of open (Q{a}, Q{b}, Q{a, Q{b}}, Q{a}, Q{b}, Q{a}, Q{a}, Q{b}) or closed (Q{a}--Q{b}, Q{a}--Q{a}, Q{a}--Q{b}, Q{a}--Q{b}, Q{a}--Q{a}, Q{b}) RC.

Independent of the state of Q{a}, each electron that is transferred from the PSII RC to Q{a} transforms the state of the RC from an open into a closed state. However, we do not exclude the influence of the charge on Q{b} on this transfer step. The Chl a fluorescence yield of a single PSII unit rises from a low to a high value as Q{a} is reduced to Q{a}. On the macroscopic level, the mixture of all species of open and closed RC determines the Chl a fluorescence behavior of the sample. The quenching nature of P680 must be taken into consideration because its concentration may vary depending upon the equilibration on the donor side (S-state) of PSII (see e.g. Shinkarev and Govindjee).

The polyphasic rise of Chl a fluorescence in continuous light and under physiological conditions has been reviewed by several authors. In addition to the effects related to Q{a}, the Chl a fluorescence rise also includes the influence of the S-states, the differential influence of the so called "inactive" PSII and of the electron acceptor side of PSI. The general trend of the fast fluorescence rise had been designated as the O--I--P rise, where I is the intermediate step in the fluorescence curve marked by an inflection. In some cases the fluorescence intensity even decreases after the step I, creating a so-called dip D. Neubauer and Schreiber reported two intermediate steps between O and P, called I and I. The I, of Neubauer and Schreiber develops in high light intensities and it is equivalent to the inflection "J" in this paper, or the peak that had been observed earlier by Delosme and later by Genty et al. after exposure to high light intensities and with fast (microsecond) time resolution. In this paper we show that there are several different dynamic steps in the fast Chl a fluorescence rise curve, appearing and disappearing depending upon the experimental conditions.
conditions. We not only confirm the data reported by Neubauer and Schreiber but show, for the first time, the polyphasic fluorescence rise over a wide time range (40 μs to 120 s) for a variety of oxygenic plants and cyanobacteria. Our ability to show this transient rise as O-J-I-P is primarily due to the use of log scale for time in our presentation and the use of light-emitting diodes (LED). Sometimes in the past, the same events have been labeled with different labels, or the same labeling has been used for different events. We have chosen O-J-I-P as the symbols for the sequence of events, used in earlier papers at two conference proceedings. We show in this paper that all fluorescence transients of plants under physiological conditions follow the sequence of dynamic events we have called O-J-I-P. Depending on the experimental condition, a fluorescence decrease (or a dip) can be observed after each step. The description of this overall phenomenon provides the experimentalist with several independent phenomenological parameters that are of importance for the screening of cultivars and mutants in biotechnology or functional analysis of plants under stress. We will also discuss in this paper the biochemical significance of each step observed in the O-J-I-P fluorescence transient.

MATERIALS AND METHODS

Plant materials. The experiments were done with fully mature intact leaves of 3-4 week old pea (Pisum sativum) and several year old camellia (Camellia japonica) plants. Plants were grown in the greenhouse, at 22°C/18°C (day/night) under natural sunlight, in small pots in a soil mixture Optima (Optima-Werke H. Gilgen, Münch-enstein, Switzerland) with alternate day watering.

Different strains of cyanobacteria (Anabaena P9, Planktothrix rubescens and Limnothrix redekei) were cultivated in 300 mL culture tubes in a defined nutrient medium at 27°C, bubbled with 0.27% (vol/vol) CO₂/air mixture from the bottom of the flask and illuminated with one fluorescence tube (1000 lux), as described earlier. The nutrient medium contained 0.6 mM CaCl₂, 8 mM NaNO₃, 0.4 mM K₂HPO₄, 0.4 mM MgSO₄, 10 mM NaFeEDTA, 10 μM H₂BO₃, 2 μM MnCl₂, 2 μM Na₂MoO₄, 0.2 μM ZnSO₄, 0.2 μM CoSO₄ and 0.2 μM CuSO₄ in distilled water.

Chl a fluorescence measurements. Chlorophyll a fluorescence transients were measured at room temperature by a Plant Efficiency Analyzer (PEA, built by Hansatech Ltd., King's Lynn, Norfolk, PE30 4NE, England) with different excitation light intensities. One hundred percent light intensity corresponds to about 600 W m⁻². Illumination was provided by an array of six LED (peak at 650 nm) focused onto the sample surface to provide homogenous illumination over the exposed area of the sample (4 mm diameter). The fluorescence signals were detected using a PIN-photodiode after passing through a long-pass filter (50% transmission at 720 nm). All the fluorescence transients were recorded in a time span from 40 μs to 120 s with a data acquisition rate of 10 μs for the first 2 ms and 12 bit resolution. After 2 ms and after 1 s, the instrument switches automatically to slower digitization rates. The fluorescence signal at 40 μs was considered as F₀. The instrument uses a built-in routine to extrapolate the value of F₀. Because we did not find any significant difference (within 10%) between the F₀ at 40 μs and F₀ value given by the instrument under the light intensities used, we prefer to use the fluorescence yield detected at 40 μs after the onset of light as F₀.

In this paper, we show fluorescence transients both on logarithmic and on linear time scales (40 μs to 120 s). This allows a visualization of the complete transient.

RESULTS

Chl a fluorescence transients in pea and camellia leaves

For a clear understanding of the results, we describe briefly PSI1 reactions, as all of the variable Chl a fluorescence at room temperature arises from the PSI1 antenna system (Fig. 1). In addition to the major use of the absorbed energy for photochemistry, the de-excitation pathways include loss of energy as heat, and fluorescence. In primary photochemistry, charge separation occurs: P680⁺ (P⁺) and Pheo⁻ (Ph⁻) are created. The re-reduction of the P⁺ is achieved by electron donation via an intermediate Z from the S-cycle, which splits water into molecular O₂, electrons and protons. P⁺ donates an electron to pheophytin, Ph, which in turn reduces the plastoquinone Qₛ to Qₛ⁻. The Qₛ⁻ reduces the next electron carrier Qₒ to Qₒ⁻. Then Qₒ⁻ undergoes a second reduction step to become Qₒ⁻⁻. After protonation events, Qₒ⁻⁻ dissociates from the RC as plastoquinol (PQH₂).

![Figure 1. Diagrammatic sketch of PSI1.](image)
Table 1. Nomenclature used by different authors for the different steps in the Chl a fluorescence rise curve from the initial fluorescence 0 to the maximum fluorescence P*.

<table>
<thead>
<tr>
<th>Authors</th>
<th>First step</th>
<th>Second step</th>
<th>Third step</th>
<th>Initial fluorescence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Max</td>
<td>first max</td>
<td>second max</td>
<td>(below 1 s)</td>
</tr>
<tr>
<td></td>
<td>fluorescence</td>
<td>maximum</td>
<td>maximum</td>
<td>(below 100 ms)</td>
</tr>
<tr>
<td></td>
<td>(below 2 ms)</td>
<td>(below 300 μs)</td>
<td>(below 50 μs)</td>
<td></td>
</tr>
<tr>
<td>Lavorel</td>
<td>P</td>
<td>–</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>Delosme</td>
<td>–</td>
<td>I</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>Forbush and Kok</td>
<td>Max</td>
<td>P</td>
<td>I</td>
<td>0</td>
</tr>
<tr>
<td>Munday and Govindjee</td>
<td>P I</td>
<td>I J</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>Neubauer and Schreiber</td>
<td>P I J</td>
<td>(K)</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>Strasser and Govindjee</td>
<td>P I J</td>
<td>(K)</td>
<td>–</td>
<td>0</td>
</tr>
</tbody>
</table>

*Steps shown below are arranged (left to right) from P to 0. After each step (e.g., after J or after L), a dip can be observed in some samples. The label D for dip was first used by Munday and Govindjee.

Recently, B. Guissé, in our laboratory, found that after heat (≥42°C) treatment (K) becomes the dominant step in the Chl a fluorescence transient.

addition, the 0-J phase includes contributions due to the donor side of PSI,28–29 and the entire transient is affected by the electron transfer going through PSI.32,43

Figure 2A shows a typical Chl a fluorescence transient (40 μs to 120 s) of a 1 h dark-adapted pea leaf exposed to 600, 60 and 6 W m⁻² 650 nm light, plotted on a linear time scale. All the curves start from the same F₀ intensity and increase to a maximum peak (P₁, Fₚ). This is followed by a decay to a quasi-steady-state T, which is very close to F₀. With 6 W m⁻² light, the fluorescence decay proceeds via a transient labeled as SMT where S is for a quasi-steady-state and M for another maximum.7 As has been shown earlier in a preliminary report,19,40 the fluorescence induction kinetics plotted on logarithmic time scale reveals two intermediate steps between F₀ and Fₚ, labeled as J (Fₚ) and I (Fₛ) (see Fig. 2B, 100% curve). There is a rapid initial rise from the F₀-level to a first intermediate level J, which is followed by a dip; then, it further rises to a second intermediate level I, and after passing through a dip, the fluorescence intensity reaches the peak level P. Upon excitation of a healthy leaf with just saturating light, the first rise from 0 to J occurs within 2 ms. The second intermediate point I levels in about 20 ms and the final peak P in about 200 ms. The time for reaching each intermediate steps varies depending on the light intensity used. For example, with 600, 60 and 6 W m⁻² of exposure, the P levels off in about 100 ms, 500 ms and more than 1 s, respectively.

The detailed behavior of the intermediate steps J, I and P as a function of light intensity in camellia leaves either dark or light adapted (1 h to 180 W m⁻² light followed by a dark period of 30 s) is shown in Figs. 3 and 4, respectively. From top to bottom, the transients were obtained by using 96%, 48%, 24%, 12%, 6% and 3% of the maximum light intensity (600 W m⁻²). Due to state 1 to state 2 transition44 and photoinhibition,45 the Chl a fluorescence yield of light-adapted leaves was lower than that of dark-adapted leaves (cf. Fig. 3 with Fig. 4). Although the O, I, P transients are visible on a linear time scale (Fig. 3A), the complete O, I, P steps were clearly seen only on the log time scale (Fig. 3B). The time of appearance of J and I steps was clearly intensity dependent. The I occurred at shorter times at higher light intensities, and the J was barely visible at the lower light intensities.

In dark-adapted leaves, the J level was visible at all the intensities used (Fig. 3). In contrast, light-adapted leaves did not show any distinction between the I and the P levels (Fig. 4). Thus we speculate that the PQ pool heterogeneity was abolished during the light adaptation. In light-adapted leaves, these J, and I = P levels shift to shorter times with increasing light intensity, as expected.

The inserts in Figs. 3A and 4A show the Chl a fluorescence induction curves during the first 2 ms of exposure to different light intensities. They demonstrate the intensity-dependent phenomenon. To quantify this result, the rate of the fluorescence increase between 50 to 300 μs is presented in Fig.
Figure 3. (A): Chlorophyll a fluorescence transient of a dark-adapted camellia leaf exposed to different light intensities. From top to bottom, the transients were obtained by using 576, 288, 144, 72, 36 or 18 W m$^{-2}$ light intensity. All the measurements were done on one spot of the same leaf with a dark adaptation time of 10 min between each exposure with a different light intensity. The insert shows the fast rise kinetics during the first 2 ms exposed to 576, 288, 144, 72 or 36 W m$^{-2}$ light intensity. (B): The same Chl a fluorescence transients as in (A) but plotted on a logarithmic time scale.

Figure 4. (A): Chlorophyll a fluorescence induction curves of a light-adapted camellia leaf exposed to different light intensities. The leaves were illuminated continuously for 1 h with 180 W m$^{-2}$ light intensity and dark adapted for 30 s, followed by a 1 s pulse of 576 W m$^{-2}$ light. The leaf was readapted to the same light intensity (180 W m$^{-2}$) for 10 min and exposed for 1 s to 288 W m$^{-2}$ light after a dark adaptation for 30 s. The same procedure was repeated for other light intensities. From top to bottom, the transients were obtained by exposing the leaves to 576, 288, 144, 72 or 36 W m$^{-2}$ of 650 nm light. The insert in Fig. 4A shows the fast Chl a fluorescence rise kinetics during the first 2 ms of a light-adapted leaf exposed to 576, 288, 144 or 72 W m$^{-2}$ light intensity. (B): The same Chl a fluorescence transients as in (A) but plotted on a logarithmic time scale.

5. The slope of this phase in the dark- and light-adapted leaf is shown to be proportional to the light intensity. Further, this slope is highly insensitive to temperature up to 40°C (data not shown). The kinetics of the fluorescence induction of this fast phase were already studied by Delosmej with different light intensities; he had labeled this phase as I phase. The characteristics of this phase with respect to light and temperature suggest that the O-J phase is controlled by photochemical charge separation (the photochemical phase).

The relative variable fluorescence at any time t is defined at $V_t = (F_t - F_0)/(F_m - F_0)$. This experimental expression V_t can be taken as a measure of the fraction of the electron acceptor QA being in its reduced state. The variation of V_t with time at the beginning of the transient (theoretically at time zero) is labeled as dV/dt_0, a measure of the relative rate of photochemistry. This expression was calculated from the experimental values as:

$$dV/dt_0 = (F_{300 ms} - F_{50 ms})/(F_m - F_0).$$

The insert in Fig. 5 shows that the light dependency of the expression dV/dt_0 nearly coincides for both light and dark-adapted leaves. Thus, there is no fundamental difference in the primary photochemistry of PSII in the two cases. In spite of this, the maximum Chl a fluorescence yield of antenna is about five times higher in dark-adapted than in light-adapted leaves.

The amplitudes of the fluorescence steps J, I, and P at fixed times, such as 2 ms, 30 ms, 500 ms, as a function of the light intensity are shown in Fig. 6. Both the intermediate levels J (2 ms) and I (30 ms) show a tendency toward saturation at high light intensities (600 W m$^{-2}$). The differences in the light intensity-dependent fluorescence yields at J and I levels are the same as that of I1 and I2 levels, as reported earlier by Neubauer and Schreiber. The I saturates at lower intensities than J. Thus the equivalence of J with I1, and I with I2 is established. In spite of this equivalence, we prefer and recommend the use of I and J (as the next letter in the alphabet after I) for the following reasons: (1) In the literature the label I was mostly used for the same event as for I in this paper;
Figure 5. The effect of different light intensities on the rate of the fast fluorescence rise \((\Delta F_{300})/\Delta t\) of light- (○) and dark-adapted (●) camellia leaf. Data were obtained from Figs. 3 and 4. The insert shows the effect of the light intensity on the slope at the origin (F, fast fluorescence rise \((\Delta F_{300})/\Delta t\)) of light- (○) or dark- (●) adapted samples.

Figure 6. Chlorophyll a fluorescence intensities at 2 ms, 30 ms, 500 ms and \(F_{\text{max}}\) of the transient at different excitation light intensities. Dark- (A) and light-adapted (B) camellia leaf. Data were obtained from Figs. 2 and 3. For a better understanding of the shape of the curves obtained from a light-adapted leaf, the dotted curves have been normalized, so that their values at 576 W m\(^{-2}\) are the same as of dark-adapted samples. The factors used for normalization are: \(F_{\text{7ms}} = 1.66, F_{\text{30ms}} = 1.99, F_{\text{500ms}} = 1.95\) and \(F_{\text{max}} = 1.95\).

Figure 7. Changes in the fluorescence kinetics of a dark-adapted pea leaf exposed to 600 W m\(^{-2}\) light intensity after different times of dark adaptation. The leaf was exposed for 1 s to 600 W m\(^{-2}\) light intensity, dark adapted for 5 s and further exposed to the same light intensity (600 W m\(^{-2}\)) for 1 s. The same measurement was repeated after the dark adaptation of 10, 20, 40 or 160 s in between each exposure. From top to bottom, the transients were obtained after the dark adaptation of 5, 10, 20, 40, 80, 160 s or 1 h. The \(F_{0}\) level of a 1 h dark-adapted leaf was adjusted to 1 and the same factor was used for the normalization of the other curves. The insert shows the relative values of the Chl a fluorescence at \(F_{0}, F_{\text{max}}\) and \(F_{\text{max}}\) after different times of dark adaptation.

For different times (5, 10, 20, 40, 80, 160 s) and exposed again to the same light intensity for 1 s (Fig. 7). All the curves were normalized at the P level. From these curves it is clear that once the sample was excited, it reached the closed state (\(F_{\text{m}}\)), but during dark adaptation, it started to reopen. If we expose the same sample again, the level of \(F_{0}\) gives an idea of the closed state of the RC. If the measured \(F_{0}\) is now higher than the first illumination, we conclude that \(Q_{a}\) has not been fully oxidized to \(Q_{b}\) during the dark period between the illuminations. It is also obvious from this experiment that the J level is very high after the second illumination in contrast to very small changes in the I level (Fig. 7).

The higher level of J during the second illumination shows that a higher proportion of closed RC are formed already within 2 ms. During the first illumination all RC are closed. In the dark, the closed RC reopen as a function of time. At the onset of the second illumination, the measured \(F_{0}\) is higher than at the first illumination, indicating that all RC have been opened in the dark between the two illuminations. Further, the shape of the variable fluorescence of the dark-adapted and the preilluminated sample are different. The open RC appear to close much faster in the second than in the first illumination. This difference must be related to the differences in the redox states and heterogeneity of the filling up of the PSII acceptor side (\(Q_{a}, Q_{b}, PQ\)).

Figure 8 shows experimental results on a leaf that has been
light adapted for 5 min with light of 600 W m\(^{-2}\) and illuminated again after different times of dark adaptation. The regeneration of different intermediate steps (J, I, and P) has a different time dependence. Here, the J level recovers within seconds (t\(_J\) about 20 s), whereas P and I levels require several minutes. This experiment establishes that this method of measuring changes in the yield of different levels can be used to evaluate the regeneration behavior of the electron acceptor side of PSII in plants under different environmental conditions. Interestingly, different behavior was observed in different plants. For example, the fluorescence transient in camellia regenerated nearly completely after the first exposure (Fig. 9A), while the regeneration kinetics in a pea leaf was relatively slow (Fig. 9B; also see Fig. 7). The shape of the induction curve after the second illumination depends basically on the given light intensity, plant material and the time of dark adaptation between the two exposures.

Chl a fluorescence transients in the presence of DCMU

The quantum yield of Chl a fluorescence at the F\(_0\) level is independent of the light intensity, whereas at F\(_P\) it is first low, and then increases with the light intensity and finally it reaches a high and constant value. This increase in the yield of Chl a fluorescence is related to the accumulation of QA\(^-\). Thus, the addition of DCMU, which blocks electron flow beyond QA\(^-\), must lead to a quick rise in Chl a fluorescence yield from F\(_0\) to J (J = I = P). Experiments indeed show this result (see uppermost curve in Fig. 10). To test the penetration time of DCMU in a leaf, a drop of 100 \(\mu\)M DCMU was added on the abaxial side of the leaf and fluorescence transients were measured after different times on the same area. Different curves (from bottom to the top) correspond to the time after application of DCMU: 0, 0.25, 0.5, 1, 1.5 and 2 h. The insert shows the same results as in the main graph but plotted on a linear time scale up to 50 ms.

Chl a fluorescence transients in cyanobacteria

Chlorophyll a fluorescence transients of cyanobacteria have always been difficult to measure because of a very large F\(_0\) due to a five times larger ratio of PSI to PSII fluorescence and a contribution of phycobilin fluorescence (see Note add-
A 2 A 1 + (F,)

on the right side are on logarithmic time scales. Here again, fluorescence F,, passes through two intermediate steps FJ and F,, before it reaches a maximum F,. If the ratio of F,/F, does not increase any more with increasing light intensity, the considered Fp has reached its maximal relative intensity and Fp is then called Fm (or Fmax). According to Butler,13,15 the initial fluorescence F0 originates in antenna chlorophylls connected to open RC with all QA in the oxidized state (see Fig. 1). In intact cells and thylakoids this Fp contains a component of PSI Chl a fluorescence but is usually small except in cyanobacteria. In contrast, the maximum fluorescence Fm originates in the same antenna chlorophylls connected to the closed RC with all QA in the reduced state. Therefore, the fluorescence intensity at any given time between F0 and Fm includes two fluorescence components in the Butler model: (1) due to the fluorescence of the sum of all PSII with an open RC, F open and (2) due to the fluorescence of the sum of all PSI with a closed RC, F closed. Therefore the experimentally measured variable Chl a fluorescence Fv = (Fp - Fo) does not belong to a specific biochemical species of the RC. Fv is a useful technical expression, which is linked to the two biochemical states of the RC II in terms of being open or closed. The fluorescence intensity F at any time of the transient can be expressed technically as the sum of the two components F0 and Fv, or biologically as the sum of the two components F0open and Fvclosed.

Therefore

\[F = F_0 + F_v = F_0^{\text{open}} + F_v^{\text{closed}} \]

(see Strasser50)

where,

\[F_0^{\text{open}} = F_0(1 - V_i) \]

and

\[F_v^{\text{closed}} = F_m V_i. \]

The relative variable fluorescence \(V_i \), where \(V_i = (F_i - F_0)/(F_m - F_0) \), is a measure of the fraction of closed RC, Bc. Therefore

\[V_i = B_i = [Q_A^-]/[Q_A^{(\text{total})}]. \]

When no energy transfer from one photosynthetic unit (PSU) to a neighboring unit occurs then \(V_i \) is equal to the fraction of closed RC. Otherwise the correlation of \(V_i \) versus \(B_i \) is hyperbolic (for a comparison of different interpretations, see Strasser et al.17).

It is assumed that only the PSII component of F0 is being used.50 The above expression is a straightforward consequence of the basic concepts of Butler,17 as to how the variable fluorescence may be described.15 The introduction of two biochemical states (open and closed RC), which differ in their fluorescence yield, allowed a quantitative description of the measured variable Chl a fluorescence. Although Butler (personal communication to R.J.S.) was aware of the simplifications in this concept, it was then the best available concept that could be experimentally tested.

We believe, as postulated earlier,5,34,40 that the fluorescence induction transient, measured in continuous light, reflects the filling up of the electron acceptor side of PSII (QA, QB and PQ pool) with electrons from the donor side of PSII. The O to J phase is the photochemical phase, leading to the reduction of the quencher QA to QA-; however, it includes
the influence of the S-state through the equilibration on the donor side of PSII, as P680+ is also a quencher of Chl a fluorescence. We speculate that the intermediate steps I and the final P reflect a certain heterogeneity, which is due to the existence of fast and slow reducing PQ centers as well as due to different redox states (e.g. QA Qb2- or QA': QA2-) of the RC complex, which reduce the PQ pool.

Chlorophyll a fluorescence transients, measured over many orders of magnitude in time, provide an experimental approach to visualize and to analyze PSII reactions leading to the filling up of the PQ pool. All the individual segments of the induction curve Fo→F1→P presented in this paper have been reported separately under specific conditions by other authors in the past: Delosme and Genty reported a very fast fluorescence rise (in the microsecond range) using very high light intensities. Our intensity dependence data (Fig. 6) suggest that our “J” is “I” of Delosme. Table 1 shows the equivalence of our terminology to those used earlier. Sometimes we have observed an additional fast step in the fluorescence transient around 200 μs that we had labeled with the next letter of the alphabet (K). Such transients would be labeled as F0→K→J→P. However, we do not further discuss it here.

The F0→J→I→P fluorescence transient has been observed in all oxygen-evolving plants and cyanobacteria examined in this paper. The transient reflects the kinetics and heterogeneity involved in the filling up of the PQ pool with the electrons. Transients can be used as a sensitive tool to investigate the photosynthetic apparatus in vivo under physiological conditions. Watching fluorescence signals is like listening to the stethoscope by medical doctors. In both cases dissipation signals provide us with information on what could be happening inside a living system. The proof of the conclusions made by Chl a fluorescence measurements must always involve other measurements and additional biochemical and biophysical analysis. Obviously, to find precise answers, other parallel tests and measurements (e.g. individual partial reactions, O2 evolution, absorption spectroscopy and EPR spectroscopy) must be made to diagnose the problem.

Depending on the experimental conditions, the O→J→I→P transients can also provide information about the donor side of PSII. Under other conditions, these signals can be used to analyze the heterogeneity of different types of PSU such as inactive and active centers.

The experiments reported here became extremely easy to perform due to the development of a small, portable and affordable PEA instrument. Since PSII in many situations is highly sensitive to environmental stress, the O→J→I→P fluorescence induction curve is expected to be highly useful in the screening, in a short time, of many cultivars. This procedure has already been used in our laboratory to describe urban trees under stress, the reaction of plants in the field to high light intensities, as P680+ is also a quencher of Chl a fluorescence (see evolution of these concepts by Govindjee), with a high time resolution over several orders of magnitude is on the way to becoming a heavily used and sensitive probe in plant biology, agronomy, forestry and horticulture. A lot of what we are able to do today technically, and what we already are able to understand, is due to the creative work of several pioneers in this field. W. L. Butler was for sure one of them. We dedicate this paper to him.

Acknowledgements—We thank Dr. F. Jätter for providing cyanobacteria cells. Govindjee thanks the UIUC Campus Research Board for financial support. This work was supported by a Swiss National Fund grant (no. 31.33878.92).

REFERENCES

Note added in proof We cite papers by Tel-or and Malkin (58) and Mimuro and Fujita (59) showing that the high F₀ in cyanobacteria (Fig. 11) is due to preponderantly high PSI Chl a fluorescence in these organisms.
