A UNIQUE ROLE OF CARBON DIOXIDE IN PHOTOSYSTEM II

Govindjee
Departments of Physiology & Biophysics, and Plant Biology,
University of Illinois at Urbana-Champaign, 505 South
Goodwin Avenue--289 Morrill Hall, Urbana, IL 61801-3793, USA

1. ABSTRACT
An evaluation of the effect of predicted global increases in CO$_2$ on photosynthesis should include not only an examination of the effects on CO$_2$ fixation, but also on the so-called bicarbonate effect in photosystem II. This bicarbonate effect involves a unique stimulatory role of CO$_2$ (or HCO$_3^-$) in the conversion of plastoquinone to plastoquinol at the reaction center of photosystem II. After providing an introduction to the reaction centers of photosynthetic bacteria and photosystem II and to the bicarbonate effect, we will review here recent results that establish the following: (1) the bicarbonate effect is absent from the reaction centers of the green photosynthetic bacterium Chloroflexus aurantiacus and mutants of purple photosynthetic bacterium Rhodobacter sphaeroides; (2) inhibitors, such as formate, indeed release, and, thus, deplete CO$_2$ from thylakoid membranes; and (3) both the reaction center proteins D1 and D2 are involved in the bicarbonate effect since certain D1 and D2 mutants, altered in single amino acids, show differential sensitivity to bicarbonate-reversible formate effects. We will then discuss a current hypothesis, based on an iron-(bi)carbonate containing protein; it envisions CO$_2$/HCO$_3^-$ binding on the Fe and certain specific amino acids, including arginines, in the PSII reaction center proteins D1 and D2. This binding is suggested to provide stability to the reaction center and stimulate electron flow and protonation required for plastoquinol formation. Finally, a possible relation of low affinity HCO$_3^-$ binding sites to the phenomenon of photoinhibition will also be discussed.

2. INTRODUCTION
All life on earth has been divided into three domains: archaea; bacteria; and eucarya [1]. True photosynthesis involving redox components occurs only in the latter two. Photosynthetic bacteria, such as the well-known purple bacteria Rhodobacter sphaeroides and Rhodopseudomonas viridis, the green bacteria Chlorobium thiosulfatophilum and Chloroflexus aurantiacus, and the bacteriochlorophyll-g-containing
bacterium *Heliobacterium chlorum*, are all anoxygenic, i.e., they do not evolve O₂. On the other hand, all cyanobacteria (example, *Synechocystis sp.*), algae (example, *Chlamydomonas reinhardtii*) and other photosynthesizing plants are all oxyogenic, i.e., they evolve O₂.

Cyanobacteria and plants contain two types of reaction centers (I and II), that operate in series, to transfer electrons from H₂O to NADP⁺ [2-4]. Purple photosynthetic bacteria and *Chloroflexus* type green bacteria contain reaction centers that are similar to reaction center II [5] although a major difference is that they do not oxidize H₂O and do not contain Mn (cf. [6]). A cyclic reaction produces high-energy intermediate that is used to reduce NAD⁺ by reversed electron flow using external hydrogen donors. On the other hand, *Chlorobium* type green bacteria and *Heliobacterium chlorum* contain reaction centers that appear to be similar to reaction center I: NAD is reduced by externally added hydrogen donors. A possible scenario for the evolution of photosynthetic reaction centers has been discussed by Olson and Pierson [7].

2A. Reaction Centers

A major breakthrough in photosynthesis research has been the crystallization and X-ray structure of reaction centers of photosynthetic bacteria *Rhodopseudomonas viridis* and *Rhodobacter sphaeroides* [8-10]. The reaction center proteins L and M, that are similar in many respects to the reaction center proteins D₁ and D₂ of photosystem II of plants and cyanobacteria, harbor 4 bacteriochlorophyll, a or b, 2 bacteriopheophytin a or b, two bound ubi- or mena-quinones Qₐ and Q₈ and an iron atom. These reaction centers transfer electrons from their primary electron donor special pair bacteriochlorophyll P₆₇₀ (*R. sphaeroides*) or P₉₆₀ (*R. viridis*) to their, respective, electron acceptor bacteriopheophytin a or b within about 3 ps [11]. Recently, Holzapfel et al. [12] have established that a bacteriochlorophyll monomer is an intermediate between the primary electron donor and the bacteriopheophytin. However, the other bacteriochlorophyll monomer and the other bacteriopheophytin molecule, situated on the "M" side of the reaction center, do not participate in this photochemistry. The photosystem II reaction center has been shown to contain 6 chlorophyll a molecules and 2 bacteriopheophytin molecules [13]; the Qₐ and Q₈ are bound plastoquinone molecules. Wasielewski et al. [14] have shown that, like in photosynthetic bacteria, the charge separation, i.e., creation of oxidized reaction center chlorophyll a molecule, P₆₈₀⁺, and the reduced pheophytin molecule, Pheo⁻, occurs in 3 ps. Furthermore, this charge separation, like that in photosynthetic bacteria [15], becomes faster (1.4 ps) at low temperatures (such as 15K) as compared to that at the ambient temperature [16]. As in photosynthetic bacteria, the primary electron donor, P₆₈₀, also appears to be a dimer [17]. Whether chlorophyll a monomer is an intermediate between P₆₈₀ and pheophytin is not yet known. By analogy to photosynthetic bacteria, we speculate that photosystem II primary photochemistry may occur as follows:
The primary reactants return to their original state after Pheo transfers its electron to the primary quinone Q_A within 200 ps [18,19], and $P680^+$ transfers its positive charge (hole) to the electron donor Z within 20-200 ns [20,21] depending upon the flash number that determines the state(s) of the charge accumulator (H) on the water oxidation side. Recently, it has been shown that Z is a tyrosine residue (Tyrosine-161) in the D1 protein [22]. Since chlorophyll a fluorescence yield is extensively used to monitor photosystem II chemistry, we remind the readers that, in addition to the well-known quencher Q_A [23], $P680^+$ and Pheo also act as quenchers of antenna chlorophyll a fluorescence.

The major difference between photosynthetic bacteria and photosystem II lies in the inability of the former to oxidize water to O_2. $P680/P680^+$ has a very high ($E_m,_{q} = +1.1$V) redox potential [24] and is, thus, capable of water oxidation ($E_m,_{ox} = +0.9$V) whereas $P870/P870^+$ has too low a redox potential ($E_m,_{ox} = +0.4$V). In addition, the amino acid sequences of D1 and D2 on the lumen side of photosystem II are such that they can easily bind Mn atoms [6,25,26] needed for O_2 evolution, whereas L and M bind, instead, cytochrome of the c type [10].

In addition to the similarity in the arrangement and the chemistry of the primary reactants of photochemistry, discussed earlier, the reduction of the secondary quinone (Q_b) to quinol (Q_bH_2) also appears quite similar [27,28]. A possible common scheme is:

\[
\begin{align*}
Q_bQ_b^+ + h\nu & \rightarrow Q_bQ_b \\
Q_bQ_b & \rightarrow Q_bQ_b^+ \\
Q_bQ_b^+ + H^+ & \rightarrow Q_bQ_b^+(H^+) \\
Q_bQ_b^+(H^+) + 2h\nu & \rightarrow Q_bQ_b^+(H^+) \\
Q_bQ_b^+(H^+) & \rightarrow Q_bQ_b^+(H^+) \\
Q_bQ_b^+(2H^+) & \rightarrow Q_bQ_bH_2 \\
Q_bQ_bH_2 & \rightarrow Q_b + Q_bH_2 \\
Q_b + Quinone & \rightarrow Q_bQ_b
\end{align*}
\]

The above scheme includes the concept of (a) the "two electron gate" (i.e., Q_b has to be doubly reduced before the quinol, Q_bH_2, will be released from the reaction center) [29,30]; and (b) protonation involves initial binding of H^+ to an amino acid, rather than directly to Q_b [31]. The involvement of aspartic acid-213 on the L-subunit of R. sphaeroides in protonation steps has been elegantly shown by site-directed mutagenesis studies of Takahashi and Waight [32]. In spite of the suggested similarity of photosystem II and photosynthetic bacteria in reducing quinone to quinol, a remarkable difference has been observed. Neither the reaction centers of the purple photosynthetic bacteria [33,34,35], nor that of the green bacterium Chloroflexus aurantiacus [36] show inhibition of electron flow by formate [33-35] or nitric oxide.
[35,36]. In contrast, both formate and nitric oxide cause remarkable bicarbonate-reversible inhibitory effects in plants [37,38] and cyanobacteria [39,40]. We refer the readers to reviews of Govindjee and Wasielewski [41] and of Hansson and Wydrzynski [42] for further details on photosystem II.

28. The Bicarbonate Effect

Warburg and Krippahl [43] discovered that removal of CO₂ from photosynthetic samples inhibits Hill reaction. Readdition of CO₂/HCO₃⁻ restores the Hill reaction. This is called the bicarbonate effect. Warburg [44] argued that CO₂ must be the source of O₂ in photosynthesis contrary to the generally accepted idea that H₂O is the source of O₂ (see review [37]). Heavy oxygen-18 studies of Guy et al. [45] (J. Berry, personal communication, 1990) clearly show that H₂O is the source of O₂. Although a bicarbonate effect can be observed by removing CO₂ without the use of molecules that replace/displace CO₂ [46-49], a large reproducible effect is observed when formate [50,51] or nitric oxide [35,52] is used to replace/displace CO₂ or HCO₃⁻. Addition of formate to thylakoids at pH 6.5 indeed releases CO₂ [53] although Stemler [54] did not observe any CO₂ release upon formate addition to osmotically shocked maize thylakoids at pH 6.0.

The bicarbonate effect has been monitored, over the years, by measuring saturating rates of electron flow (O₂ evolution or reduction of electron acceptors); O₂ evolution, proton release or thermoluminescence per flash in a sequence of bright, brief light flashes; chlorophyll a fluorescence transients; decays of chlorophyll a fluorescence yield, delayed light emission, and absorbance changes due to the formation of QA or Qb after light flashes; Mossbauer and ESR signals due to the non-haem iron; changes in photosystem II herbicide binding characteristics, etc. The phenomenon of the bicarbonate effect has been reviewed at regular intervals since 1978 [37,38,55-60].

No bicarbonate effect is observed in photosystem I [51,61]. No significant effect has been observed in O₂ evolution kinetics per se after a flash [58,62], electron flow between the intermediate "M" and "Z" [63] and between "Z" and P680 [63,64] on the electron donor side of PSII. A major site of the bicarbonate effect has been located between QA and the plastoquinone pool through measurements on partial electron flow segments of the Hill reaction [51,61,65,66] and through kinetic measurements of QA decay in repetitive [63,67] and after single flashes of light [35,68-73]. A much larger slowing down of electron flow occurs after second (or third) and subsequent flashes than after the first flash upon depletion of CO₂; this effect is fully restored upon the readdition of bicarbonate. A thorough depletion of CO₂ can easily lead to a 10-20-fold inhibition of electron flow that can be fully restored to control values upon bicarbonate addition. In control membranes, the bottleneck reaction is the (transport and) reoxidation of plastoquinol: approximately 4 ms/e⁻ at room temperature. In CO₂-depleted thylakoids,
the decay of \(Q_A \) after the 3rd and subsequent flashes is of the order of 150 ms [68]; a similar value was observed when the re-reduction kinetics of P700' was measured [67]. In the first approximation, these slowed reactions, interpreted to be either in the production of quinol (\(QH_2 \)) and/or its release, seem sufficient to explain the inhibition of the Hill reaction. However, quantitation and precise explanation requires parallel measurements on the decay of various intermediates and the overall electron flow in a sequence of flashes with appropriate dark times between flashes in identically treated samples.

The location of the major effect between \(Q_A \) and the plastoquinone pool is supported by the following observations:

1. Photosystem II herbicides, that are known to inhibit electron flow by displacing \(Q_A \) [74, 75], affect the binding of herbicides [65, 76] and vice versa [66, 77].

2. Nitric oxide, that binds to non-haem Fe[52] between \(Q_A \) and \(Q_B \), shows bicarbonate-reversible effect in electron flow from \(Q_A \) to the plastoquinone pool [35]. Disulphiram, an iron chelator, is shown to cause effects similar to that of CO\(_2\)-depletion [78] although this effect cannot be reversed by bicarbonate addition. Furthermore, formate, used to deplete CO\(_2\), was shown to affect \(Q_A \) Fe ESR signal [40, 79] and the Fe signal, as measured by Mössbauer spectroscopy [80, 81].

3. Herbicide-resistant D1 mutants, altered in single amino acids in the \(Q_A \)-binding region [82], show differential sensitivity to bicarbonate-reversible formate effects, both in \textit{Synechocystis} sp. PCC 6803 [83] and in \textit{Chlamydomonas reinhardtii} [84]. Furthermore, D2 mutants, that had been constructed in which arginine 233 was changed to glutamine (R233Q) or arginine 251 was changed to serine (R251S), were found to be ten times more sensitive to formate than the wild type \textit{Synechocystis} sp. PCC 6803 [85].

Consistent with the effect on D1 and D2, but on a reaction prior to \(Q_A \), Mende and Wiessler [87] have observed a parallel decrease in variable chlorophyll a fluorescence and O\(_2\) evolution when CO\(_2\) was removed from \textit{Chlamydomonys} stellata cells. This phenomenon was confirmed in our laboratory in spinach leaf discs [49] and in \textit{Chlamydomonas reinhardtii} cells [88]. We have however established that the same phenomenon persists in mildly heated (that lose water oxidation activity) and hydroxylamine treated samples. Thus, this effect appears to be located somewhere between Z and \(Q_A \). C. Xu (personal communication, 1990) has observed that in spinach thylakoids, at pH 6.7, an effect prior to \(Q_A \) is observed at short times after mixing of thylakoids with formate; at later mixing times the effect beyond \(Q_A \) predominates. It is necessary to test if this effect is between Z and P680, and/or between phyhepetin and \(Q_A \).

We shall now summarize our recent results on the absence of formate and NO effects on the reaction centers of the green bacterium \textit{Chloroflexus aurantius} [36]; CO\(_2\) release from thylakoid membranes upon formate addition [53]; differential sensitivity of formate in D1 mutants
of Chlamydomonas reinhardtii [84], and D1 [83] and D2 [85] mutants of
Synechocystis PCC 6803. Finally, we will discuss a current hypothesis
for the function of bicarbonate in Photosystem II.

3. ABSENCE OF FORMATE AND NITRIC OXIDE EFFECTS IN THE REACTION CENTERS
FROM THE GREEN BACTERIUM CHLOROFLEXUS AURANTIACUS (COLLABORATION WITH
J. TROST AND R. BLANKENSHIP) [36]

In spite of the known similarity of the D1 and D2 proteins of
photosystem II and the L and M subunits of the purple photosynthetic
bacteria [5], the latter do not show the (bicarbonate-reversible) formate
effect (see e.g. [34]), as mentioned earlier. Nitric oxide, which binds
to Fe [52] between QA and QB, produces effects similar to formate in
photosystem II, but not in purple photosynthetic bacteria [35]. These
differences must be due to differences in the amino acid sequence and
subsequently the architecture of the D1/D2 proteins versus L/M subunits.
The photosynthetic reaction center from the green bacterium Chloroflexus
aurantiacus has several differences with the purple photosynthetic
bacteria: one of the monomer bacteriochlorophyll molecule is replaced
by bacteriopheophytin; Fe between QA and QB is replaced by Mn (see e.g.
[89]); and there are several significant differences in their amino acid
sequences [90,91]. Chloroflexus reaction centers also appear to lack an
H-subunit [89,92]. Thus, we used formate and NO to test if these
differences are of any importance in producing the "bicarbonate effect".
We concluded, from our observations presented below, that Chloroflexus
aurantiacus reaction centers do not possess formate and NO binding sites
that are responsible for the bicarbonate effect.

Using reaction centers containing QA, prepared as described
elsewhere [89], we monitored [93,94] the decay of the oxidized reaction
center (P865'), either after the first flash or after the fifth flash
dark time between flashes, 3 s), by back reactions with QA' (t 1/2 = 60
ms) and with QB' (t 1/2 = 0.5 - 3 s; 2 components). If formate and NO
were to inhibit electron flow between QA and QB', as observed in plants
[35,71,72] and cyanobacteria [35, 39], the amplitude of the fast
component would increase and that of the slow component(s) would
decrease. This is similar to what occurs [89] when the inhibitor O-
phenanthroline is added; this inhibitor blocks electron flow between QA
and QB by displacing QA. In contrast to PSII, but as observed in other
photosynthetic bacteria [34], our results (see abstract [36]) showed no
significant change between the control reaction centers and those treated
with 100 mM formate. In addition, no difference was observed between the
300 μM NO treated (anaerobic) reaction centers and those treated with
both NO and 10 mM bicarbonate. At pH 6.5, the lifetimes and (amplitudes)
were 60 ms (50 ± 5%) and 0.5 - 2 s (2 components; sum = 50 ± 5%) for P'QA'
and P'QB' recombinations, respectively. It thus appears that the
differences in the amino acid sequence [90,91] in the L and M subunits
of Chloroflexus aurantiacus from those of purple photosynthetic bacteria
are not a sufficient condition to bring about the binding of formate or NO.

4. ABSENCE OF FORMATE EFFECTS IN GLUM234 MUTANTS OF RHODOBACTER SPHAEROIDES (COLLABORATION WITH X. WANG, J. CAO, P. MAROTI, H.V. STILZ, D. OESTERHELT AND C. WRAIGHT) [95]

Michel and Deisenhofer [5] suggested a possible reason for differences in the "bicarbonate effect" in photosystem II and photosynthetic bacteria: the iron atom in photosystem II lacks the fifth and sixth ligands provided by glutamate (M234) in reaction centers of Rhodobacter sphaeroides. Wang et al. [95] have, by site-directed mutagenesis, altered GLUM234 with valine (M234EV), glutamine (M234EQ), and glycine (M234EG). These mutants grew well under photoautotrophic conditions and showed no detectable effects of bicarbonate depletion (formate addition) on: (1) cytochrome b\textsubscript{591} or cytochrome C\textsubscript{2} reduction; (2) the recombination of P680\textsuperscript{Q\textsubscript{a}} or P680\textsuperscript{Q\textsubscript{b}}; (3) kinetics of electron transfer from Q\textsubscript{a} to Q\textsubscript{b}; and (4) flash dependent oscillation of semiquinone formation in the presence of exogenous donor to P680 (Q\textsubscript{b} turnover). Furthermore, addition of nitric oxide, instead of formate, also showed no effect on the electron acceptor complex of M234EV mutant (X. Wang and J. Cao, unpublished observations, 1990). The absence of a formate-bicarbonate effect in M234 mutants suggests that this amino acid may not be responsible for the absence of the phenomenon. These results are, however, interesting as they suggest that M234 may not be important for electron flow in the electron acceptor complex of Rhodobacter sphaeroides.

In conclusion, the existence of formate and NO effects in photosystem II lies strictly in the unique amino acid sequence of D1 and D2 proteins (see later sections). Now, I present data that show that formate indeed releases CO\textsubscript{2} from thylakoid membranes, and thus, depletes them of CO\textsubscript{2} when bound.

There are two hypothesis for the action of formate: (1) Formate is an inhibitor of electron flow: it binds to empty sites, and bicarbonate displaces it and removes the inhibition. (2) Formate displaces the native bound bicarbonate and, thus, causes inhibition by the removal of the ion required for electron flow; readdition of bicarbonate displaces formate and restores electron flow. A third hypothesis may, however, invoke bicarbonate to be necessary for the most efficient electron flow, but in its absence a marginal or less efficient electron flow may proceed. Supportive evidence for hypothesis #2 was discussed earlier [37, 50]. However, absence of CO\textsubscript{2} release by formate addition to maize thylakoids at pH 6.0 [54] supported hypothesis #1. Using a sensitive membrane inlet
mass spectrometer and a differential infra-red gas analyzer, we showed [53] that 100mM formate treatment released about 1 CO₂ per reaction center II at pH 6.5 from spinach and pea thylakoids within minutes of formate treatment; at pH 6.0, CO₂ release was reduced to a value of 0.4 CO₂ per reaction center (Fig. 1). Since pH of the stroma matrix is alkaline, it is reasonable to assume that bicarbonate is bound in native thylakoid membranes and functions to provide efficient electron flow [37]. However, it is possible that some inefficient electron flow may take place in the absence of bicarbonate in thylakoid membranes.

Figure 1: Formate-induced release of CO₂ from pea thylakoids as measured by a differential infra-red gas analyzer. Trace A is an illustration of CO₂ release at pH 6.0 upon addition of 100 mM formate to a thylakoid suspension containing 4 mg Chl/ml, recorded as the difference with the simultaneous addition of the same amount of formate to the second vessel containing the same medium without thylakoids. Trace B: Same as A, but pH 6.5. Trace C: recording of the difference of CO₂ in the gas phase upon addition of 10mM HCO₃⁻ to one of the vessels and water to the other, while both vessels contained 4 ml reaction medium without thylakoids at pH 6.5. At pH 6.5, 100 mM formate injection led to an estimated release of 1.2 HCO₃⁻/CO₂ per PS II reaction center and about 0.4 HCO₃⁻ at pH 6.0 (After ref. [53]).

6. DIFFERENTIAL SENSITIVITY OF FORMATE IN D1 MUTANTS OF CHLAMYDOMONAS
The secondary plastoquinone, Q_a, is in a pocket between the helices IV and V of the D1 protein; this pocket is also lined by the amino acids that are found to be altered in the herbicide-resistant mutants [96-98]. If bicarbonate is bound to Fe and/or any of the amino acids in the Q_a region, we expect to see differential sensitivity of the bicarbonate-reversible formate effects in the different mutants. The nature of the differences may ultimately provide clues as to the nature of the bicarbonate binding. Chlorophyll a fluorescence transients indeed revealed differential sensitivity to 25 mM formate treatment; these effects were fully reversed by 10 mM bicarbonate [84]. The most sensitive mutant was S264A (DCMU-4) and the most resistant mutant was L275F (Br-202). The order of resistance (highest to lowest) was L275F (Br-202) > A251V (Mz-2) >> wild type = F255Y (Ar-207) = V219I (Dr-18) >> S264A (DCMU-4) (Figure 2). These results clearly show the involvement of D1 protein in bicarbonate-reversible formate effects in vivo.

Figure 2: Chlorophyll a fluorescence transients of some *Chlamydomonas reinhardtii* cells grown photoautotrophically and suspended in tris-phosphate medium at pH 6.5. C: control, +F for 25M formate treated cells, and +F+B for 25mM formate followed by 10mM bicarbonate treated cells. Dark adaptation was 4 minutes. The ratio of variable fluorescence (F_v) to F_o after illumination with and without formate was 2.0 (for S264A [DCMU-4]), 1.48 (V291I [Dr-18]), 1.47 (for F255Y [Ar-207]), 1.4 (WT), 1.10 (A251V [Mz-2]) and 1.00 (L275F[Br-202]). Formate had no effect on PSII' (Fud-7) cells (data not shown) (After ref. [84]).
7. DIFFERENTIAL SENSITIVITY OF FORMATE IN D1 MUTANTS OF SYNECHOCYSTIS PCC 6714 (COLLABORATION WITH A.-L. ETIENNE, C. VERNOTTE, B. PETERI AND C. ASTIER) [83]

The concept that bicarbonate binding may involve the region of helices IV and V and the loop connecting the two was supported further by measurements of formate sensitivity in D1 mutants of Synechocystis PCC 6714. Measurements, not only on chlorophyll a fluorescence transients, but on oxygen yield in a sequence of flashes and chlorophyll a fluorescence yield decay after a flash revealed differential sensitivity of herbicide resistant mutant cells to formate treatment [83]. The order of resistance (highest to lowest) was: A251V/F211S (Az-V) > F211S (Az-I) = wild type > S264A (DCMU-IIIA) (Figure 3). The extreme sensitivity of S264A mutant was confirmed. Bicarbonate addition restored all formate effects.

An interesting observation is that Az-V mutant, that was most resistant to formate, is the one most sensitive to exposure to excessive light [99]. Excess light, like formate treatment, not only produces photosystem II centers in which electron transfer is inhibited between Q\textsubscript{a} and Q\textsubscript{b}, but also centers in which Q\textsubscript{a} formation is also inhibited [99]. We consider it a likely hypothesis that this mutant is resistant to formate because bicarbonate is poorly bound in it, and the decreased bicarbonate binding makes it more susceptible to inactivation by excess light. Sundby et al. [100] and Sundby [101] have recently shown that bicarbonate protects against photoinhibition.

Figure 3. Chlorophyll a fluorescence as a function of formate concentration in cells of Synechocystis 6714 (wild type and mutants S264A (DCMU-II-A) & F211S (Az-I) and a double mutant F211S/A251V (Az-V). Fifteen minutes darkness was given after the addition of formate, but before the measurements began. 100 indicates the value obtained with the
herbicide 10 μM diuron or 200 μM ioxynil (for DCMU II-A). (After ref. [83].)

8. DIFFERENTIAL SENSITIVITY OF FORMATE IN D2 MUTANTS OF SYNECHOCYSTIS PCC 6803 (COLLABORATION WITH J. CAO AND W. F. J. VERMAAS) [85]

Blubaugh and Govindjee [37] had discussed a role of specific arginine residues in the binding of bicarbonate on the D1 protein. Recently crystal structure of human serum lactoferrin at 2.8 Å resolution has revealed that in this protein (bi)carbonate is bound to FeII as a bidentate ligand and the oxygens of (bi)carbonate form H-bonds with several amino acids including arginine. Thus, we considered it likely that one or more arginine residues in D2 may form H-bonds with (bi)carbonate. Cao et al. [102] constructed two arginine mutants in the D2 polypeptide of Synechocystis PCC 6803: R233Q and R251S. Measurements of steady-state rate of oxygen Hill reaction (H₂O to parabenzquinone), as a function of increasing formate concentration showed that half maximal inhibition was at 50mM for the wild type, 4mM for R233Q and 3.5mM for R251S [85, 103] (Figure 4). Thus, the arginine mutants were several fold more sensitive to formate than the wild type.

Measurements of chlorophyll a fluorescence yield decay kinetics indicated that formate inhibited Q₅ to Q₈ reaction (flash 2) more than Q₅ to Q₈ reaction in the mutants as well as in the wild type as had been observed earlier in higher plant thylakoids [71, 72]. These results support the interpretation that CO₂ removal may interfere with the protonation at the reaction center II, that may not necessarily occur on D2. However, the haltime of the Q₅ oxidation was increased by a factor of 2, 4 and 6 in the wild type, R251S and R233Q, respectively, confirming that the mutants were more sensitive to formate. Cao et al. [85] have suggested that arginine 233 and arginine 251 in the D2 polypeptide function to stabilize HCO₃⁻ binding in photosystem II of Synechocystis PCC 6803.

![Figure 4. Steady-state oxygen evolution rate of Synechocystis 6803 cells of the wild type, and R233Q and R251S mutants. A combination of DMQ](image)

359
(0.5 mM) and K₃Fe(CN)₆ (1 mM) was used as electron acceptor; measurements at pH 6.8. The samples were preincubated for one hour in the treatment medium (at pH 5.8) to which the indicated amount of sodium formate was added (open symbols). To restore the Hill reaction, 10 mM bicarbonate was added (solid symbols). (After [85]).

9. HYPOTHESIS

A working hypothesis for unique role(s) of HCO₃⁻/CO₂ in photosystem II of plants and cyanobacteria is now emerging. It appears that, at physiological pH, HCO₃⁻/CO₂ may H-bond to several amino acids on both D1 and D2, the reaction center proteins of photosystem II, and may form a ligand to iron that lies between Qₐ (bound to D2) and Q₉ (bound to D1). For a possible model, see binding of (bi)carbonate to Fe⁴⁺ and to 4 amino acids including arginine in human serum lactoferrin [86] (Fig.5). HCO₃⁻/CO₂ plays discrete and unique role(s) in photosystem II: its function may involve stabilization, by conformational means, of the reaction center protein that allows efficient electron flow and protonation of certain amino acids near Qₗ [37]. Data on differential sensitivity of formate on the D1 mutants of Chlamydomonas reinhardii (see section 6) and of Synechocystis 6714 (see section 7) clearly support binding domains of bicarbonate between helices IV and V and in the connecting loop of D1. Data on the extremely high sensitivity of R233Q and R251S mutants to formate suggest that arginines may stabilize bicarbonate on the reaction center II. Absence of the "bicarbonate effect" in purple photosynthetic bacteria [34, 95] (see section 4) and in the green bacteria (see section 3) shows that we should concentrate on the unique differences between the D1 and D2 and the L and M proteins to unravel the binding niche of bicarbonate and, thus, its function.

Unpublished results of C. Xu (personal communication, 1990) suggest that the inhibitory species in formate solutions added to remove CO₂ may be the formic acid, not formate ions. If this is confirmed, we can begin to look for domains that would bind formic acid, not formate ions. Diner et al. [38] suggest the importance of Lysine-264 on D2 in the bicarbonate effect. It appears that we have to explore several possibilities before a final picture will emerge.
Figure 5. Schematic representation of the iron and anion-binding sites in lactoferrin. Numbering is for the N-lobe, but the same arrangement is found in the C-lobe. (After Anderson et al. [86].)

10. CONCLUDING REMARKS

It seems that binding of bicarbonate to both D1 and D2 affects the stability of the reaction center II and, thus, electron flow and protonation of the electron acceptor in a somewhat complicated manner, the nature of which still needs to be discovered. However, I suspect that specific roles of CO$_2$/HCO$_3^-$ will emerge that may even include protection against photoinhibition. Further site-directed mutagenesis of the electron acceptor side of both D1 and D2 proteins is expected to unravel the molecular bases of the "bicarbonate effect".

No evidence has been found to support Warburg’s concept that the CO$_2$ effect is related to O$_2$ evolution per se. We have, however, been able to explore, over the years, the original conclusion of Wydrzynski and Govindjee [104] that the CO$_2$ effect is on the electron acceptor side of photosystem II. Although tremendous amount of research is still needed, we feel that the end of the tunnel is in sight.

11. REFERENCES

60. van Rensen, J.J.S. and Snel, J.F.H. (1985). Regulation of
photosynthetic electron transport by bicarbonate, formate and herbicides

bicarbonate effect in Hill reaction: evidence from the use of artificial

in leaf discs and thylakoids of peas and photosystem II membrane

bicarbonate effect in system II reaction: evidence from ESR signal II \(v_f\),
fast fluorescence yield changes and delayed light emission. Biochim.

64. Govindjee, Robinson, H., Crofts, A.R. and van Rensen, J.J.S.
(1989). Bicarbonate does not influence electron transfer to the reaction
center chlorophyll \(a\) fluorescence rise in microsecond.
Naturwissenschaften 76: 719-721.

65. Khanna, R., Pfister, K., Keresztes, A., van Rensen, J.J.S. and
Govindjee (1981). Evidence for a close spatial location for the binding
sites for \(CO_2\) and for photosystem II inhibitors. Biochim. Biophys. Acta
634: 105-116.

bicarbonate and photosystem II inhibiting herbicides on electron
transport in pea grana and in thylakoids of blue-green algae. Physiol.
Plant. 51: 106-110.

Investigation of the absorption change of the plastoquinone system in
broken chloroplasts: the effect of bicarbonate depletion. Biochim.

68. Govindjee, Pulles, M.P.J., Govindjee, R., van Gorkom, H.J. and
Duyssens, L.N.M. (1976). Inhibition of the reoxidation of the secondary
acceptor of photosystem II by bicarbonate depletion. Biochim. Biophys.

electron transfer between plastoquinones in photosystem II. In: The
Oxygen Evolving System of Photosynthesis, Inoue, Y., Crofts, A.R.,
Tokyo, pp. 317-325.

(1984). The effects of bicarbonate depletion and formate incubation on
the kinetics of oxidation-reduction reactons of the photosystem II

the quinone acceptor complex of photosystem II in bicarbonate-depleted
spinach thylakoid membranes as a function of actinic flash number and

366

368

