Indian Journal of Experimental Biology Vol 22, May 1984, pp. 267-269

Characterization of Glow Peaks of Chloroplast Membranes: Part III— Effect of Bicarbonate Depletion on Peaks I and II Associated with Photosystem II

P V SANE*, GOVINDJEE†, T S DESAI & V G TATAKE

Biology & Agriculture Division, Bhabha Atomic Research Centre, Bombay 400 085, India

Received 19 January 1984

Depletion of thylakoid membranes of bicarbonate (HCO_3^-) in the presence of 100 mM sodium formate changes the relative intensity of glow peak I (appearing at 237K) and peak II (appearing at 261K): peak I decreases and peak II increases. This effect is similar to the one observed upon the addition of DCMU (3- (3',4'-dichlorophenyl)-1, 1-dimethylurea) to thylakoid membranes. Considering the relationship of peaks I and II with the "S" states of the water oxidizing complex and with the primary and secondary quinone acceptors Q_A and Q_B (which provide reducing equivalents for the production of these peaks), it is concluded that HCO_3^- depletion does not affect the formation of S_2 state from S_1 but decreases electron flow from Q_A^- to Q_B^- .

The delayed light emission (sec. to min components) has recently been correlated with the glow peaks from photosynthetic membranes¹⁻³. The relationship of glow peaks with the "S" states⁴⁻⁶ and with electron transport components on the acceptor side 7-10 of photosystem II (PS II) has been established. Of the different glow peaks, peak I appearing at 237K has been shown to be unrelated to the "S" states; it has been suggested to arise from a recombination of Z⁺ with Q_B where Q_B is a secondary quinone acceptor of PS II^{9,10}. On the other hand peak II (appearing at 261K) appears from a recombination of the S₂ state with Q_A , where Q_A is the primary quinone acceptor of PS II $^{8-10}$. In view of the above and the reported site(s) of action of HCO₃^{-11,12}, we studied the effect of depletion of bicarbonate and its readdition on peak I and II in order to check, by the independent technique of thermoluminescence, if the effect of HCO₃ is (a) on the electron acceptor side of PS II (before or after the site of diuron (DCMU) action) or (b) on the functioning of oxygen evolving complex, i.e. the "S" states.

The data presented in this communication show that HCO_3^- addition to HCO_3^- deplected membranes, at least in the presence of sodium formate (present in all our samples), enhances peak I production; however, peak II is slightly depressed. The addition of diuron (DCMU) that blocks electron flow from Q_A^- to Q_B gives results qualitatively similar to that of HCO_3^- depletion. Thus, these results suggest that the

conversion of S_1 to S_2 , that occurs in the presence of diuron, also takes place in the absence of HCO_3^- , but the electron flow from Q_A^- to Q_B is suppressed under similar conditions.

Materials and Methods

Chloroplasts were isolated according to Sane et al. ¹³ CO₂*-depletion was done as described by Vermaas and Govindjee ¹⁴. Low pH and formate were used to drive off CO₂ and to prevent the binding of CO₂ to thylakoids. The CO₂-depleted thylakoids were finally suspended in CO₂-free buffer (pH 6.5) containing 50 mM sodium phosphate, 100 mM sodium formate, 100 mM sodium chloride, and 5 mM MgCl₂.

Thermoluminescence was measured as described earlier¹⁵. Bicarbonate-depleted thylakoids were either frozen as such to 77K under illumination (saturating white light) or they were incubated with 10 mM HCO₃ in the dark for 1 min prior to freezing to 77K in light. Diuron, when used, was added to a final concentration of 10 μ M. For Hill reaction studies, CO₂-depleted samples with and without 10 mM HCO₃ - were taken in a 3 ml cuvette containing HCO₃ --free 2,6 dichlorophenol-indophenol (DCPIP) to give a final concentration of 0.1 mM. The change in optical density (absorbance) at 600 nm was monitored after illumination for 30 sec. The rates of electron transport from water to DCPIP were stimulated 3-4fold in most experiments by the addition of HCO₃ - to HCO, --free samples.

Results and Discussion

The glow curve pattern of HCO₃⁻ depleted thylakoids (Fig.1, labelled as CO₂⁻) is characterized

^{*}Present address: National Botanical Research Institute, Lucknow 226 001. India.

[†]Present address: Department of Plant Biology, University of Illinois at Urbana-Champaign, 289 Morill Hall, 505 South Goodwin Avenue, Urbana, Illinois 61801 (USA).

^{*}CO₂ and HCO₃ are interchangably used in this paper without any implication(s) of the active species involved.

Fig. 1—Effect of bicarbonate addition on the glow peak pattern of bicarbonate-depleted thylakoids from spinach. Chloroplasts were isolated and thylakoids from them were depleted of CO₂ as described by Vermaas and Govindjee¹⁴. In CO₂⁺, the CO₂-depleted thylakoids were first treated with 10 mM HCO₃⁻, incubated in dark for 1 min, and then frozen to 77 K in light. In CO₂⁻, the CO₂-depleted thylakoids were frozen to 77 K without the addition of HCO₃⁻. In DCMU+CO₂⁺, DCMU (=diuron) to a final concentration of 10 "M was added to thylakoids treated with 10 mM HCO₃⁻ and then frozen to 77 K in light

by a relatively high peak II (261 K) in contrast to a low peak I (237 K). The glow curve pattern of a sample to which 10 mM HCO₃ was added shows (Fig. 1, labelled as CO₂⁺) that HCO₃⁻ enhances peak I and decreases, to some extent, peak II. The pattern obtained in the presence of 10 mM HCO₃ $^-+10~\mu M$ diuron (Fig.1, labelled as DCMU+CO₂⁺) is similar to the one obtained for a sample depleted of CO₂. Diuron has been shown to compete with the quinones¹⁶; it has been suggested to block electron flow from the bound primary quinone QA to the bound secondary quinone Q_B by physically displacing the latter¹⁷. Since the effect of diuron and the HCO₃ -depletion is similar as regards its effect of peak I is concerned, we conclude that the absence of HCO₃ - blocks electron flow from Q_A to Q_B supporting the earlier conclusions of Jursinic et al. 18 which were based on Chlorophyll a fluorescence decay measurements.

Of the two peaks seen in Fig. 1 (CO₂⁺), the peak II (261 K) is dependent on the formation of "S" states of the oxygen evolving complex (see Inoue and Shibata, 1982)⁶. This conclusion is supported by the observations⁹ that peak II is lost on alkaline Tris-Treatment 19 or upon treatment with tetranitromethane²⁰: both these treatments prevent electron flow from water to PS II reaction centre chlorophyll a and, thus, the formation of the higher "S" states. These treatments, however, do not interfere with the appearance of peak I (237 K) suggesting that this peak does not involve "S" states⁹. The observation that HCO₃ depletion increases the intensity of peak II (associated with the "S" states) suggests that HCO₃ depletion could not be interfering with the formation of "S" states or the oxygen evolving complex. On the other hand, peak I has been suggested 10,15 to involve the reducing entities located beyond the site of diuron action. Thus the loss of peak I by HCO₃ depletion as well as by the addition of diuron leads us to suggest that the plastoquinone pool cannot be reduced in the CO₂-depleted thylakoids. This conclusion is in agreement with that obtained from chlorophyll a fluorescence transients measurements of Vermaas and Govindjee¹⁴.

Chloroplasts, isolated in phosphate buffer, normally show dominant peaks I and IV. However, chloroplasts that have been treated with 100 mM formate to drive off CO₂ show much decreased peak IV even after the addition of HCO₃. In addition to the reversible effects discussed in this paper, the depletion procedure apparently also changes irreversibly the luminescence characteristics of the membrane. Even after HCO₃ - addition the peak II does not completely disappear. This also indicates that our reconstituted thylakoids are different from the untreated chloroplasts. Some of the irreversible changes introduced by the procedures, used here, for driving off CO₂ have not allowed us to study the effects of HCO₃ depletion on peaks III and IV; furthermore, it was not possible to show an equivalent loss of peak II with a concomitant appearance of peak I with equal yield. The quantitative studies must await development of milder procedures to deplete membranes of HCO₃. The qualitative changes, however, are clearcut and show, by independent thermoluminescence methods that (a) the site of HCO₃ action is similar to that of DCMU and (b) HCO₃ depletion does not interfere with the formation of "S₂"

After the completion of this work Govindjee et al. using milder depletion procedure than used here, have

SANE et àl.: CHARACTERIZATION OF GLOW PEAKS OF CHLOROP! AST MEMBRANES

extended these studies which will be reported elsewhere (Govindjee, H Y Nakatani, A W Rutherford and Y Inoue, submitted for publication).

Acknowledgement

The authors thank Mr B G Kamath for the preparation of CO₂-depleted chloroplasts. Govindjee was supported by NSF PCM grant 83-06061 and by UNDP's TOKTEN Project.

References

- 1 Desai T S, Tatake V G & Sane P V, Biochim biophys Acta, 681 (1982) 383.
- 2 Desai T S, Rane S S, Tatake V G & Sane P V, Biochim biophys Acta, 724 (1983) 485.
- 3 Rutherford A W & Inoue Y, FEBS Lett (1984) (in press).
- 4 Inoue Y & Shibata K, in Proc Intl Congr Photosynth (1978) 211.
- 5 Inoue Y, Biochim biophys Acta, 634 (1981) 309.
- 6 Inoue Y & Shibata K, in *Photosynthesis*, Vol I, edited by Govindjee (Academic Press Inc., New York) 1982, 507.

- 7 Demeter S, Dropa M, Vass I & Horvath G, FEBS Lett, 144 (1982) 97.
- 8 Rutherford A W, Crofts A R & Inoue Y, Biochim biophys Acta, 682 (1982) 457.
- 9 Sane P V Desai T S & Tatake V G, *Indian J exp Biol*, **21** (1983)
- 10 Sane P V, Desai T S, Rane S S & Tatake V G, Indian J exp Biol, 21 (1983b) 401.
- 11 Vermaas W F J & Govindjee, Proc Ind Natl Sci Acad, **B47** (1981) 581.
- 12 Vermaas W F J & Govindjee, in *Photosynthesis* II, edited by Govindjee (Academic Press, New York) 1982, 541.
- 13 Sane PV, Goodchild DJ & Pank RB, Biochim biophys Acta, 216 (1970) 162.
- 14 Vermaas W F J & Govindjee, Biochim biophys Acta, 680 (1982) 202.
- 15 Sane P V, Desai T S, Tatake V G & Govindjee, Photochem Photobiol, 26 (1977) 33.
- 16 Oettmeier W & Soll H J, Biochim biophys Acta, 724 (1983) 287.
- 17 Velthuys B R, FEBS Lett, 126 (1981) 277.
- 18 Jursinic P, Warden J & Govindjee, Biochim biophys Acta, 440 (1976) 322.
- 19 Yamashita T & Butler W L, Pl Physiol, 43 (1968) 1978.
- 20 Sane P V & Johanningmeier U, Z Naturforsch, 35 C (1980) 293.