Emerson Enhancement Effect in Chloroplast Reactions ¹, ²
Rajni Govindjee³, Govindjee,
Department of Botany, University of Illinois, Urbana
and George Hoch
RIAS, Baltimore, Maryland

The discovery of the Emerson enhancement effect in photosynthesis (3-6, 8) led to the suggestion that there are 2 photochemical reactions necessary for complete photosynthesis. A likely hypothesis is that the 2 reactions are carried on by different forms of chlorophyll a (10, 11). The enhancement effect in photosynthesis has been studied extensively in several laboratories (19) and it has been shown (12, 14, 15) that the effect also occurs in O₂ evolution in the Hill reaction using quinone as the electron acceptor. Govindjee et al. (13) have recently reported the existence of the Emerson enhancement effect in NADP photoreduction by spinach chloroplasts using white (fluorescent) supplementary light. This paper deals with observations on the enhancement of NADP photoreduction and O₂ evolution in chloroplast preparations, using both white and monochromatic lights.

Materials and Methods

Preparation of Chloroplasts. Chloroplasts from spinach leaves were prepared by a method similar to that of Hill and Walker (16). Fresh spinach leaves were first cooled in ice cold water, deribbed, and then chopped into small pieces. The chopped spinach leaves were ground with white sand using a minimum quantity of a solution containing 0.01 M NaCl, 0.4 M sucrose, and 0.05 M Tris, pH 7.5. The resulting suspension was filtered through 4 layers of cheese cloth and then centrifuged for 1 minute at 200 g. The cell debris was discarded and the supernatant fluid centrifuged for 10 minutes at 1000 to 1500 x g. This supernatant material was discarded and the pellet was suspended in buffer and recentrifuged at the same speed for 10 minutes. The supernatant solution was again discarded and the chloroplasts made up in a known volume of the buffer. Chlorophyll concentration was estimated spectrophotically (1).

Reaction Mixture. The reaction mixture used in the experiments had the following constituents in μmoles per 2 ml of total volume: KH₂PO₄, 100 (pH 7.3); MgCl₂, 15; ADP, 2; NADP, 1; chloroplasts containing 100 μg of chlorophyll, and an optimal amount of photosynthetic phosphopyridine nucleotide reductase (PPNR).

PPNR was prepared according to the method of San Pietro and Lang (20) and was partially purified through the Dowex-Bentonite step.

Optical System. One beam of light was obtained from a 750 W tungsten lamp controlled by a variac. The light beam was made parallel, passed through a 30 cm water filter and appropriate interference and colored glass filters and was then focussed on a water-cooled Beckman cuvette that contained the reaction mixture. The maxima of the Bausch and Lomb second order interference filters (35% peak transmission, half-band width 10 μm) and the numbers of their associated colored glasses are: 678 μm (2-61 Corning), 693 μm (RG-5 Schott and Gen.), 700 μm (RG-5 Schott and Gen.), 714 μm (RG-8 Schott and Gen.), 721 μm (RG-8 Schott and Gen.), 730 μm (RG-8 Schott and Gen.), and 740 μm (RG-8 Schott and Gen.).

A second beam of light, the supplementary white light, was obtained from a 40 W white fluorescent tube. This light did not contain any far-red wavelengths. It was chosen so as to get a mixture of wavelengths that would excite both chlorophyll b and the short wave form of chlorophyll a (chlorophyll a 670). Supplementary red light was obtained from a 300 W slide projector by interposing a 650 μm interference filter and OG-2 (Schott and Gen.) colored glass in the light path. A 15 cm water cuvette served as a heat filter. This beam was projected on the Beckman cuvette (containing the reaction mixture) from the side opposite to the one which received the first beam of light (678 μm to 740 μm).

The optical system in the case of the determination of O₂ evolution and that used in the difference spectrometer are described at appropriate places.

Exposures of the Samples to Light. Each of the 6 cuvettes containing the reaction mixture was exposed for 10 minutes to a different wavelength of far red light (693 μm to 740 μm). An identical set was exposed to supplementary light (either white or 650 μm) and a third set to the combined far-red and supplementary lights. In the combined lights experiment, the beams from the opposite sides hit the same suspension at the same time. A dark control was always maintained. The water bath was regulated at 20°C.

Determination of the Amount of NADP Reduced. After exposure, the chloroplasts were centrifuged out of the reaction mixture. The optical density of

¹ Received April 29, 1963.
² This work was supported by the National Science Foundation (G 19437), Air Force Office of Scientific Research (Contract AF 49 (638)-947) and the National Institutes of Health (RG-6692).
³ Postdoctoral Biophysics trainee of the United States Public Health Service.
the clear supernatant solution was measured at 340
mλ in a Cary recording spectrophotometer, model 14.

Measurement of O2 Evolution. O2 evolution was
measured polarographically by the use of a Clark
electrode. The light from a 500 w tungsten lamp
was made parallel and passed through a 15 cm water
bath. The light was divided into 2 beams which
were passed through 2 different filters and then re-
converged on the same surface of the reaction ves-
sel, which was submerged in a water bath main-
tained at 10°. The signal from the electrode was am-
plified and recorded.

Measurement of Absorption and Energy. The
per cent absorption by the chloroplast suspension (50
µg chlorophyll/ml) at different wavelengths was de-
termined in an integrating sphere. The energy of
the 2 incident beams was measured by a photocell.
The galvanometer readings were converted into ab-
solute units by previously determined calibration
values.

Results

The initial experiments were to determine (1)
whether the rate of reduction of NADP was linear
with time, (2) that the rate of reoxidation of re-
duced NADP was not significant, and (3) that we
were working in the linear portion of the light curve
(rate of NADP reduction versus intensity of light).
Rate of NADP Photoreduction as a Function
of Time and Rate of Reoxidation of Reduced NADP
in the Dark. In order to obtain a continuous plot of
the NADP concentration as a function of time, we
used a difference spectrophotometer. The 650 mλ
light was isolated from a 500 w tungsten lamp by
means of an interference filter-colored glass com-
bination. The measuring monochromator of the dif-
fereence spectrophotometer was set at 340 mλ and a
Corning glass 7-60 was used to eliminate the second
order overlap. The rate of NADP reduction was
found to be linear up to 10 minutes at the intensity
(5 µeinsteinls/10 minutes) and with the chlorophyll
concentration (50 µg/ml) used. 5 µg/ml and 10 µg/ml
concentrations of chlorophyll also gave linear curves.
This ensured that neither NADP nor the enzyme
was a limiting factor in our experiments.

The rate of dark reoxidation of NADP (after the
exposure to light) was determined both in the dif-
fereence spectrophotometer and in the Cary spectro-
photometer. This rate did not exceed 0.01 OD/100
seconds.

Rate of Photoreduction of NADP versus Inten-
sity of Light. The rate of photoreduction of NADP
as a function of light intensity was measured at
714 mλ and 650 mλ. The results are present-
ed in figure 1. The rate of NADP reduction in-
ceases linearly with increase in incident light of
714 mλ. The rate versus light intensity curve of 650
mλ is linear up to the incident intensity of 0.2 µein-
steins/minute. The slope of this curve gets progres-
sively smaller with further increase in incident in-
tensity. This will tend to mask the enhancement
effect even when it is really present at these intens-
ities.

Red Drop in NADP Photoreduction. Emerson
and Lewis (7) had discovered the existence of a
decline in the quantum yield of photosynthesis in the
far-red end of the spectrum. We undertook the
measurement of the quantum yield of the photoreduc-
tion of NADP in the 678 mλ to 740 mλ region. The
quantum yield was calculated as the number of µmoles of NADP reduced per minute divided by the
number of µeinsteinls of light absorbed per minute.

Figure 2 shows the quantum yield of NADP
versus the wavelength of light. The decline in the
yield begins at 690 mλ and the yield is half at 707
mλ. This is the region where the longwave form of
chlorophyll a becomes the prime absorber of light
energy.

Emerson Enhancement Effect with White Flu-
orescent Light. The middle curve of figure 2 shows
the quantum yield of NADP reduction as a function of
wavelength in the presence of supplementary white
light. The Emerson enhancement represented by the
equation below:

\[
\frac{R_{(\text{far red + supplementary lights})} - R_{(\text{supplementary light})}}{R_{(\text{far red light})}}
\]

where R represents the rate of the photochemical re-
action is shown by the upper curve.

Since some enhancement was also observed with
678 mλ, the following questions can be raised: if
Emerson's assumption that the yield in the short-
wave light is maximum, is correct; and if the en-
hancement is also possible on the short-wave light
by the long-wave light. We have not attempted to
answer these questions here.

Emerson Enhancement Effect with Monochro-
matic Light. The rate of NADP reduction as a
function of light intensity (quantum yield) was de-
termined at 714 mλ singly and in combination with
a background of 650 mλ light. Figure 3 shows the
results. The yield at 714 mλ is greater when deter-
mined on a background of 650 mλ than it is in 714
mλ light alone. An enhancement effect is clearly
seen. The Emerson enhancement decreases with the
increase in the intensity of 714 mλ light. In other
words, it increases with an increase in the ratio of
far red to supplementary lights. The point at the
highest intensity of 714 mλ apparently shows no en-
hancement. The light intensity of the combined
beams is in the non-linear (sloping) part of the light-
curve. A spurious enhancement can be obtained by
sigmoid light curves at far red wavelength, addition
of any light would then give an apparent enhance-
ment. This point was checked by determining the
light curve for NADP reduction at 714 mλ on a
background of 710 mλ. No enhancement is seen
with these 2 wavelengths as no change in the 714
mλ light curve is observed upon adding the 710 mλ
background except for a falloff of rate at the highest
intensity, doubtless due to saturation.
Fig. 1 (upper left). The rate of photoreduction of NADP versus the incident intensity of 650 μm (dashed curve with solid dots) and 714 μm (solid line with open circles) lights. Temperature is 20° and the chlorophyll content is 50 μg/ml reaction mixture; per cent absorption at 650 μm is 86 and at 710 μm is 18; 100% for the incident intensity of 650 μm is 2.12 μeinstein/minute and it is 4.06 μeinstein/minute for 710 μm.

Fig. 2 (upper right). The quantum yield of NADP photoreduction at different wavelengths of light (dashed curve with solid dots). The yield is half at 707 μm. Temperature, 22° and time, 10 minutes; chlorophyll content, 20 μg/2 ml reaction mixture; absorbed intensity, 0.06 μeinstein/minute (energy adjusted so as to get equal number of absorbed quanta at all the wavelengths). Solid line with solid points, the quantum yield of NADP reduction in the presence of constant intensity of white (fluorescent) light. Solid lines with open circles, Emerson enhancement.

Fig. 3 (lower left). μmoles of NADP reduced as a function of the intensity of 714 μm light with and without background of 650 μm and 710 μm lights. The amount of NADP reduced by different intensities of 714 μm is shown by solid points, that by combined (710 μm + 714 μm) minus 710 μm light by open squares and that by the combined (650 μm + 714 μm) minus 650 μm by open triangles. NADP reduced/mg/hr chlorophyll by 650 μm alone equals 5.4 μmoles and that by 710 μm equals 4.3 μmoles. 65 on the intensity scale is equivalent to 2.9 μeinstein/minute incident 714 μm light; temperature is 22° and the chlorophyll content is 50 μg/ml reaction mixture. The dashed curve with solid points shows the Emerson enhancement obtained at various far red wavelengths with 650 μm supplementary light.

Fig. 4 (lower right). Emerson enhancement versus intensity of 650 μm light. Temperature, 20°; Time, 10 minutes; chlorophyll content is 50 μg/ml reaction mixture. Incident intensity of 714 μm is 0.98 μeinstein/minute; 100% of 650 μm intensity is 5.15 μeinstein incident/minute.
An experiment was made in which 714 m\(\mu\) light intensity was kept constant and that of 650 m\(\mu\) was varied. The Emerson enhancement calculated from this experiment increases with increasing intensity of 650 m\(\mu\) light up to a point and then saturates. However, the highest intensity used showed a lesser enhancement since the intensity of the combined beams reached the sloping part of the light curve. Figure 4 is a plot of the Emerson enhancement as a function of the intensity of the 650 m\(\mu\) light. The intensity relationship shown here is the same as that described in literature on enhancement phenomenon (3, 19).

Unpublished results of L. Yang and Govindjee show clearly a peak at 650 m\(\mu\) (due to chlorophyll b) and another one around 675 m\(\mu\) (due to chlorophyll a) in the action spectrum of the Emerson effect in the Hill reaction using NADP as the electron acceptor. These results also find their parallel in the experiments on photosynthesis (10, 11).

Emerson Enhancement Effect in the \(O_2\) Evolution of Chloroplasts. The amount of \(O_2\) evolved by chloroplasts was also measured in both separate and the combined beams by a polarographic method, using a Clark electrode. The reaction mixture was the same as that for the measurement of NADP reduction. Several combinations of far red light (730 m\(\mu\), 721 m\(\mu\) and 713 m\(\mu\)) with red light (653 m\(\mu\), 663 m\(\mu\) and 668 m\(\mu\)) were tried and the data are presented in table I. The last column clearly shows the existence of an Emerson enhancement effect in the \(O_2\) evolution by chloroplasts. When the intensity of the far red beam is the same (as in lines 2 and 3), the Emerson effect increases with the increase in the intensity of the 653 m\(\mu\) supplementary beam. It is also shown that for about the same ratio (1:7-1:8) of far red to supplementary light intensities, the enhancement is seen with 653 m\(\mu\), and 668 m\(\mu\) (14). Lines 1, 4, and 7 show that for approximately the same intensity of 653 m\(\mu\), the Emerson enhancement is present on all the 3 wavelengths of the far red light.

Discussion

The results presented here on the red drop and the Emerson effect find close parallelism to the data obtained with studies on photosynthesis (3, 6, 8, 11, 19). This emphasizes that a common or similar mechanism exists both for the Hill reaction (using NADP as electron acceptor) and complete photosynthesis.

It was earlier reported (14, 15) that there exists a red drop and the Emerson effect in the Hill reaction in whole Chlorella cells using quinone as the electron acceptor. Mayne and Brown (18) could not confirm this at the intensities they used. However, the enhancement in the Hill reaction using quinone as the electron acceptor, has further been demonstrated in pokeweed chloroplasts (12). In this paper we have clearly demonstrated the existence of the red drop and the Emerson effect in the Hill reaction (with NADP as electron acceptor). An enhancement in \(O_2\) evolution is shown to occur in the same system. Bishop and Whittingham (3) have recently observed Emerson enhancement in a chloroplast reaction using ferricyanide as the electron acceptor. We interpret these to mean that there are at least 2 photochemical reactions necessary for the complete Hill reaction to take place (17).

Gordon (9) has reported the existence of enhancement in the yield of NADP reduction by far red light, when the algae were preilluminated with 660 m\(\mu\). Our experiments reported here have not been done under those conditions and we have not attempted to study the effect of preillumination. However, preliminary experiments of Yang and Govindjee (unpublished) have failed to demonstrate the enhancement effect caused by preillumination in spinach chloroplasts. If the results of Gordon represent enhancement in the same manner as in photo-

<table>
<thead>
<tr>
<th>Wavelengths*</th>
<th>Rate of (O_2) evolution in arbitrary units</th>
<th>Emerson enhancement</th>
<th>(\Delta C-(B+A))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Far-red m(\mu)</td>
<td>Supplementary m(\mu)</td>
<td>A Far-red light</td>
<td>B Supplementary light</td>
</tr>
<tr>
<td>1. 713 (100%)</td>
<td>663 (57%)</td>
<td>+15.5</td>
<td>+49.5</td>
</tr>
<tr>
<td>2. 721 (57%)</td>
<td>653 (15%)</td>
<td>+5.0</td>
<td>+14.0</td>
</tr>
<tr>
<td>3. 721 (57%)</td>
<td>653 (15%)</td>
<td>+3.0</td>
<td>+36.0</td>
</tr>
<tr>
<td>4. 721 (100%)</td>
<td>653 (57%)</td>
<td>+6.4</td>
<td>+42.6</td>
</tr>
<tr>
<td>5. 721 (100%)</td>
<td>663 (57%)</td>
<td>+8.0</td>
<td>+55.8</td>
</tr>
<tr>
<td>6. 721 (100%)</td>
<td>668 (57%)</td>
<td>+6.5</td>
<td>+53.8</td>
</tr>
<tr>
<td>7. 730 (100%)</td>
<td>653 (57%)</td>
<td>+2.8</td>
<td>+45.2</td>
</tr>
</tbody>
</table>

* These wavelengths were obtained by the use of second order Bausch and Lomb interference filters combined with sharp cut-off colored glasses. The figures within brackets indicate the different intensities of light used as per cent of the total available.
synthesis, present schemes for the mechanism of the
2 light reactions (based on cytochrome coupling)
must be modified. However, the 2 effects may arise
from the same cause. We do not, however, suggest
that the mechanism of all the different Hill reactions
is one and the same.

Summary

The Emerson enhancement effect has been shown
to occur in the photoreduction of nicotinamide ade-
tine dinucleotidephosphate by spinach chloroplasts.
Greater than additive rates were obtained where far-
red light beams were mixed with supplementary
white (fluorescent) or monochromatic 650 μm light
in nicotinamide adenine dinucleotidephosphate re-
duction, and O₂ evolution. In magnitude, wave-
length, and intensity dependence the enhancement ef-
fect as measured in the Hill reaction appears ana-
logous to that occurring in complete photosynthesis.

Acknowledgments

We are grateful to Dr. Bessel Kok for his interest in
this work and to Miss Iris Martin for her occasional
help.

Literature Cited

1. **Arnon, D. I.** 1949. Copper enzymes in isolated
chloroplast. Polyphenoloxidase in *Beta vulgaris.*

2. **Bishop, P. M. and C. P. Whittingham.** 1963.
The Emerson effect in isolated chloroplasts in
Studies on microalgae and photosynthetic bacteria.
Japanese Society of Plant Physiologists, ed. Uni-
versity of Tokyo Press, pp 291-96.

3. **Emerson, R.** 1957. Dependence of yield of pho-
synthesis in long wave red on wavelength and
intensity of supplementary light. Science 125:
746.

4. **Emerson, R.** 1958. The quantum yield of pho-

5. **Emerson, R. and R. Chalmers.** 1958. Specula-
tions concerning the function and phylogenetic
significance of the accessory pigments of algae.

6. **Emerson, R., R. Chalmers, and C. Cederstrand.**
1957. Some factors influencing the long wave
43: 133-43.

7. **Emerson, R. and C. M. Lewis.** 1943. The de-
pendence of the quantum yield of Chlorella photo-
synthesis on wavelength of light. Am. J. Botany
30: 165-178.

drop and role of auxiliary pigments in photosyn-

and inhibition by light of triphosphopyridine nu-
cleotide photoreduction in preparations of *Lauren-
cia obtusa* (Hudson) lam. Plant Physiol 38: 153-
56.

10. **Smith, J. H. C. and C. S. French.** 1963. The
major and accessory pigments in photosynthesis.

spectrum of the second Emerson effect. Biophys.
J. 1: 73-89.

12. **Govindjee, R.** 1961. The action spectrum of the
Hill reaction in whole algal cells and chloroplast
suspensions (red drop, second Emerson effect and
University of Illinois.

13. **Govindjee, Rajni, Govindjee, and G. Hoch.**
1962. The Emerson enhancement effect in TPN
photoreduction by spinach chloroplasts. Biochem.

ies on the second Emerson effect in Hill reaction

15. **Govindjee, Rajni, J. B. Thomas and E. Rabino-
witch.** 1960. Second Emerson effect in the Hill
reaction of Chlorella cells with quinone as oxidant.
Science. 132: 421.

and phosphorylation with chloroplasts. Plant
Physiol. 34: 240-45.

17. **Losada, M., F. R. Whately, and D. I. Arnon.**
1961. Separation of 2 light reactions in noncyclic

18. **Mayne, B. C. and A. H. Brown.** 1963. A com-
parison of the Emerson 2-light effect in photo-
synthesis and the Hill reaction in Studies on
Microalgae and photosynthetic bacteria. Japanese
Society of Plant Physiologists, ed. University of

19. **Myers, J. and J. R. Graham.** 1953. Characteris-
38: 105-16.

synthetic pyridine nucleotide reductase. I. Partial
purification and properties of the enzyme from