Inhibition of Photosynthesis in Some Algae by Extreme-Red Light
Author(s): Eugene Rabinowitch, Govindjee, Jan B. Thomas
Published by: American Association for the Advancement of Science
Stable URL: http://www.jstor.org/stable/1705877
Accessed: 21/06/2010 15:31
Inhibition of Photosynthesis in Some Algae by Extreme-Red Light

Abstract. Photosynthesis produced by far-red light (700 m,u) is reversibly inhibited in some algae by extreme-red light (750 m,u).

In earlier communications from this laboratory (1) it was reported that illumination of a suspension of the red alga Porphyridium cruentum with far-red light, obtained by filtering light from an incandescent lamp through a very dense aqueous solution of the phycobilins, produces little or no photosynthesis. Yet this light contains wavelengths above 660 m,u, a marked fraction of which are absorbed by chlorophyll a. (The absorption band of this pigment extends in vivo to about 720 m,u.) If bands 10 m,u wide obtained with a monochromator are used for illumination, measurable rates of photosynthesis are obtained at all wavelengths up to 700 m,u. Furthermore, an “Emerson effect” can be observed in phycobilin-filtered light: if orange light is added to it, the resulting rate of photosynthesis is higher than in the orange light alone. This confirms the observation that chlorophyll a is markedly excited by the phycobilin-filtered light.

These seemingly conflicting results can be explained by the assumption that the band obtained by the use of the phycobilins contains extreme-red (or near-infrared) light (> 700 m,u), which inhibits photosynthesis caused by far-red light.

In order to check this hypothesis, algal suspensions were illuminated with a far-red band isolated from the light of an incandescent lamp by a Farrand interference filter No. 1322, which has a transmission peak at 700 m,u but transmits some light down to 680 m,u. We made sure that the intensity of this light was far below that which causes saturation of photosynthesis. After photosynthesis in this far-red light had been measured, extreme-red light, with a band width of about 10 m,u centering at 750 m,u, was added and photosynthesis was measured again. The results of these experiments are shown in Table 1.

The scattering of the results in column 4 of Table 1 may be due to small unintentional variations in the culturing of the cells. Despite this scattering, it is evident that the rate of photosynthesis in far-red light is consistently and significantly reduced by the addition of light of 750 m,u wavelength. This effect is completely reversible.

Porphyridium cruentum must thus contain a pigment which absorbs in the extreme-red at about 750 m,u and which, when excited, inhibits the photosynthesis caused by far-red light. This pigment must be present in small amounts, since no band is recognizable in the absorption spectrum of Porphyridium in the region of 750 m,u.

Preliminary results indicate that a similar effect occurs in the green alga Chlorella but apparently not in the blue-green alga Anacystis. It remains to be seen whether it occurs also in higher plants (2).

EUGENE RABINOWITCH
GOVINDJEE

PHOTOSYNTHESIS RESEARCH LABORATORY
DEPARTMENT OF BOTANY
UNIVERSITY OF ILLINOIS, URBANA

References and Notes
2. This work was carried out under a grant (G4969) from the National Science Foundation.
26 May 1960

An Interphylum Luciferin-Luciferase Reaction

Abstract. The light-emitting enzyme-substance systems, heretofore separated from different types of luminescent organisms, exhibit a marked biological specificity and comprise chemically different components. Extracts from a luminescent fish are now found to cross react with a crustacean system; some properties of the new system and implications of the phenomenon are discussed.

Separate extracts, containing a relatively heat-stable (luciferin) and a heat-labile (luciferase) component, which react with the emission of visible light in vitro (the luciferin-luciferase reaction), have been obtained from not quite a dozen types of the multitude of luminescent organisms known. They have been obtained thus far from certain bivalves [Pholas (1), Roccellaria (2)], elaterid [Pyrophorus (3)] and lampryid [Photinus, Photuris, Luciola (4, 5)] fireflies, ostracod crustacea [Cypridina (6), Pyrocypis (7)], a marine polychaete worm [Dendrosetis (7)], decapod shrimps [Syllastus (8), Heterocarpus (9)], a fresh water limpet [Littia (10)], luminous bacteria [Archaeobacteria, Photobacterium (11)], a prototozan [Gonyaulax (12)], fish [Paraprionanthus (13), Apogon (14)], luminous fungi [Collybia, Armillaria (15)], and a pennatulid [Renilla (16)]. Numerous tests, over the past several decades, for light emission in cross reactions between comparable luminous organisms have indicated that the luciferins and luciferases are specific for a given type, definite cross reactions being rarely found (17), and then only with extracts of organisms rather closely related, such as two genera of ostracods (7) or two families of fireflies (4, 18). Moreover, among the three biochemically best known systems, namely, those of Cypridina, the firefly, and luminous bacteria, the dif fusible factors are all chemically different and noninterchangeable, except for oxygen, which is required by all (19).

These facts have led to the view that, in general, the luciferin and luciferase of one type of luminescent organism are quite different from those of another type (17, 19), a view that accords not only with profound differences in emission spectra (17, 20) but also with the nearly random occurrence of bioluminescence on the phylogenetic scale of animals from protozoa to fishes as well as among bacteria and higher fungi. Experiments reported in this paper (21), however, favor a modification of this view, according to the following evidence.

Qualitative observations in regard to the recently discovered example of a luciferin-luciferase reaction in crude extracts of the photogenic organs of a fish, Paraprionanthus (13), indicated a reciprocal cross reaction with the luciferin and luciferase in crude extracts from a second luminescent fish, Apogon (14), representing a different family. The Apogon system was then found to exhibit an astonishing cross reaction with that of the crustacean, Cypridina. No visible evidence, however, was found of a cross reaction between the Paraprionanthus and Cypridina systems, nor between Apogon and the Japanese firefly Luciola, or the clam Pholas. Since purely visual observations with crude extracts have occasionally proved misleading, quantitative studies and experiments with some highly purified extracts, which is required by purified extracts, have been carried out, with convincing results.

Quantitative data of cross reactions in the Apogon and Cypridina systems are illustrated in Fig. 1. Apogon has one anterior and two posterior photogenic organs whose luciferin and lucifer-