Meta-analysis
Combining Data

IB/NRES 509 Statistical Modeling
What is a Meta-analysis?

- A quantitative synthesis of previous research
- Studies as individual observations, weighted by \(n, \sigma^2 \), quality, etc.
- Can combine heterogeneous data from heterogeneous studies
- Evaluate means, responses, sources of heterogeneity
What is a meta-analysis?

How is a meta-analysis conducted?

Model Selection

Approaches to Inference

When is Meta-analysis used?

- To synthesize results once a large body of work has been conducted
- To investigate large-scale patterns beyond the scope of individual experiments
- Today we will look at two examples:
 - evaluating the hypotheses that N limits NPP
 - synthesizing trait data to parameterize a DGVM
Meta-analysis is increasing in Ecology and Evolution

Figure: Number of meta-analyses articles published in ISI journals in Ecology and Evolution through 2008. Stewart G Biol. Lett. 2010;6:78-81
Meta-analysis Overview

- Develop a research question
- Study Literature
- Define Predictor and Response Variables
- Define Model
- Collect Data
- Calculate Response Metric and Weights
- Assess the effect of unpublished data
- Interpret, present at conference, publish...
Literature Search

▶ Search methodology:
 ▷ search terms / phrases
 ▷ follow references
 ▷ contact researchers

▶ Study Selection
 ▷ apriori criteria for inclusion:
 ▷ study design
 ▷ years of publication
 ▷ language
 ▷ sample size
 ▷ availability of relevant information
 ▷ block results by quality, conduct analyses in groups
 ▷ quality based weights
Chosing Predictor Variables

- Depends on Question, available data
- Experimental vs. Observational Data
- Continuous vs. Categorical Data
Chosing Response Variables

1. Mean
 \[\bar{X} \]

2. Differences in means
 \[d = \bar{X}_{trt} - \bar{X}_{Ctl} \]

3. Cohen’s g
 \[g = \frac{\bar{X}_{trt} - \bar{X}_{Ctl}}{s_p} \]
 where \(s_p \) is the pooled sample standard deviation, small \(n \) can bias estimate of \(\sigma \) and thus \(g \)

4. Response Ratio proportionate change
 \[\ln R = \log(\bar{X}_T/\bar{X}_C) \]
 can be used in competition intensity, relative yield, relative crowding
Fixed Effects Model

- Fixed Effects Model:
 \[T_i \sim N(\Theta_i, \sigma_i^2) \]
 \[\Theta_i = \mu \]

- where \(\Theta_i \) is the study mean and \(\sigma_i^2 \) is the within study variance
- assumes no between-study variability; all studies have same \(\mu \)
 - can be used if RE model shows negligible among-study variance
 \((\tau^2 \rightarrow 0) \)
 - otherwise, inference limited to studies in meta-analysis and studies with identical characteristics
- Difficult to justify in ecological context.
Random Effects Model

- Random Effects Model:

\[T_i \sim N(\Theta_i, \sigma_i^2) \]
\[\Theta_i \sim N(\mu, \tau^2) \]

- Where \(\Theta_i \) is the study mean, \(\mu \) is the grand mean, \(\sigma_i^2 \) is the within study variance and \(\tau^2 \) is the among-study variance.
 - acknowledges study-specific effects due to location, experimental conditions, etc.
 - models both within and among study variance

- As a regression model:

\[\mu = \mu_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \ldots + \beta_n X_{ni} \]

- \(X \)'s can be continuous (linear regression), categorical (e.g. ANOVA) or a combination (mixed effects)
Study Weights

- Give greater weight to experiments with smaller standard error:
 - fixed effects model
 \[w_i = 1/(\hat{\sigma}_i^2) \]
 - random effects model
 \[w_i = 1/(\hat{\sigma}_i^2 + \hat{\tau}^2) \]
- Weighted Mean Effect
 \[\bar{T} = \frac{\sum w_i T_i}{\sum w_i} \]
Sources of Bias

- Publication Bias
 - studies that show no effect are less likely to be published
 - “file drawer problem”
 - Create a funnel plot with effect size versus sample size

- Unconducted Studies
 - researchers are less likely to ask a question if they think that the answer is known
 - e.g. few N fertilization studies have been conducted in the tropics

- Study Heterogeneity
 - need to ensure that effect sizes are standardized and comparable across studies
 - e.g. a large variety of methods may be used, sites and organisms studied may vary
Assessing Study Bias

Figure: Use of a funnel plot to evaluate the file-drawer problem; x axis is deviance from mean effect size \((T_i - \hat{\mu} = \epsilon; \epsilon \sim N(0, \tau^2)\) as sample size increases, the variance around the mean effect size (here set to 0 by subtracting) in effect size should decrease. left: no evidence for missing studies, right: missing studies
Approaches to Inference in Meta-analysis

- Moment Matching
- Maximum Likelihood
- Bayesian
What is a meta-analysis? How is a meta-analysis conducted?

Example 1: Does Nitrogen Limit NPP?

Moment Matching

- Moment Matching
 - given data, calculate moments ($\hat{\mu} = T_i = n \sum x_i$, $\hat{\sigma}^2 = S_i^2$)
 - estimate global group means
 - partition among vs. within study variance
 - adequate for simple models, but not, e.g. multiple regression
Example 1: Does Nitrogen Limit NPP?

Analysis of N-fertilization Studies

- Question: Does Nitrogen limit Terrestrial Net Primary Productivity?
 - Widely accepted to be true, except for tropical forests
 - Many previous studies, no global synthesis

- Approach
 - Meta-analysis of N-fertilization studies
 - Regression of N on lnR
Example 1: Does Nitrogen Limit NPP?

Analysis of N-fertilization Studies

- **Response Metric**

 \[\ln R = \frac{ANPP+N}{ANPP_C} \]

- **Measures of ANPP**
 - Grasslands & Wetlands: Peak Biomass, Repeated Harvests
 - Forests: \(\Delta \)Volume, \(\Delta \)Diameter, \(\Delta \)Basal Area, Litterfall
Example 1: Does Nitrogen Limit NPP?

Analysis of N-fertilization Studies

Biome Level Responses to N

- Overall (n=126) R=1.29
- Tropical Forest (8,8)
 - R=1.20
- Temperate Grassland (32)
 - R=1.53
- Tundra (10)
 - R=1.35
- Tropical Grassland (6)
 - R=1.26
- Temperate Forest (22)
 - R=1.19
- Wetland (36)
 - R=1.16
- Desert (3) R=1.11 (ns)

Response Ratio $\frac{\text{ANPP}_{+\text{Nitrogen}}}{\text{ANPP}_{\text{Control}}}$

0.8 1.0 1.5 2.0
What is a meta-analysis? How is a meta-analysis conducted?

Example 2: briefly

Maximum Likelihood

- Maximum Likelihood
 - choose parameters that maximize \(p(\text{data}|\text{model}) \)
 - allows more complex models, non-normal distributions, parameter uncertainty
 - simultaneous estimation of all parameters, more inference options
Maximum Likelihood Example

- Given data, what is the pdf of different parameter values?
- equivalent to MM for simple models, but more parameters can be estimated, e.g. each Θ_i
- Random Effects Model:

\[T_i \sim N(\Theta_i, \sigma_i^2) \]
\[\Theta_i \sim N(\mu, \tau^2) \]
What is a meta-analysis? How is a meta-analysis conducted?

Example 2: briefly

Maximum Likelihood Example

Figure: Likelihood of observing the data \(T_i \) and \(S_i^2(\hat{\sigma}^2) \) from each of 25 studies, given different values of \(\Theta \)
Bayesian Meta-analysis

- posterior is the Likelihood of observing parameters given the data
- like MLE, can estimate all parameters simultaneously
- Much more flexible
What Values Might A Plant Trait Hold?

A Bayesian Approach to DGVM Model Parameterization

- Overview
 - Plant traits are used to parameterize models of vegetation, ie: ED2
 - Std. Practice - select single values from the literature
 - Our goal - parameterize model with meta-analysis posterior distributions

- Response Metric:
 - Trait Means of 24 (and counting) traits
What is a meta-analysis? How is a meta-analysis conducted?

Example 3: Synthesis of Plant Traits

Plant Trait Meta-analysis Model

\[T_i \sim N(\Theta_i, \sigma_i^2) \]
\[\Theta_i \sim N(\mu, \tau^2) \]

Informed Priors

\[\mu \sim distn(a, b) \]
\[s_i^2 \sim IG\left(\frac{n_i}{2}, \frac{n_i}{2} \sigma_i^2\right) \]

Priors

\[\tau^2 \sim IG(0.1, 0.1) \]
\[\sigma^2 \sim IG(0.1, 0.1) \]
What is a meta-analysis? How is a meta-analysis conducted?

Example 3: Synthesis of Plant Traits

Within vs. Among Study Variance

Figure: Distribution of among (τ^2) and within (σ^2) study variance of three plant traits.
Distribution of Priors and Posterior Means

Figure: Distribution of prior (dashed line) and posterior (solid line) means of three plant traits.
Example 3: Synthesis of Plant Traits

Meta-analysis
Model Forecast With Uncertainty

A Bayesian Approach to Model Parameterization

Figure: Model prediction with uncertainty estimate.