
Jesse A. Reichler
Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, Illinois, USA
reichler@cs.uiuc.edu

Fred Delcomyn
Neuroscience Program
Department of Entomology
University of Illinois at Urbana-Champaign
Urbana, Illinois, USA
delcomyn@life.uiuc.edu

Dynamics Simulation
and Controller
Interfacing for
Legged Robots

Abstract

Dynamics simulation can play a critical role in the engineering of
robotic control code, and there exist a variety of strategies both for
building physical models and for interacting with these models. This
paper presents an approach to dynamics simulation and controller
interfacing for legged robots, and contrasts it to existing approaches.

We describe dynamics algorithms and contact-resolution strate-
gies for multibody articulated mobile robots based on the decou-
pled tree-structure approach, and present a novel scripting language
that provides a unified framework for control-code interfacing, user-
interface design, and data analysis. Special emphasis is placed on
facilitating the rapid integration of control algorithms written in a
standard object-oriented language (C++), the production of modu-
lar, distributed, reusable controllers, and the use of parameterized
signal-transmission properties such as delay, sampling rate, and
noise.

KEY WORDS—simulation, walking, dynamics, control, in-
terfacing, robotics

1. Introduction

Although the increase in complexity and sophistication of
robot-control algorithms signals the continuing progress be-
ing made in control systems research, the practical impedi-
ments to progress in this field are also growing. These imped-
iments can be severe for researchers interested in the control
of walking robots. This is true not only because the phys-
ical construction of appropriate robots in this case is espe-
cially difficult, time consuming, and expensive, but because

The International Journal of Robotics Research
Vol. 19, No. 1, January 2000, pp. 41-57,
©2000 Sage Publications, Inc.

the evaluation of controllers for such robots often requires
prolonged training and frequent reconfiguration of both the
controllers and the physical device, which requires the in-
tervention of a human operator. A major additional impedi-
ment is the need to have control code operating in real time
throughout the development cycle. This requirement becomes
increasingly difficult and costly to meet as control algorithms
grow more complex and need to process more extensive sensor
information.

Simulation offers a potential solution to these problems
by replacing the mechanical plant with a computer model.
Traditionally cited benefits of simulation include the reduced
cost of design and testing, the ability to conduct controlled
repeatable experiments, and the ability to record precise and
voluminous data. Indeed, simulation currently plays an im-
portant role in many aspects of robotics research, especially
in mechanical design (Davidson 1996; Hollars, Rosenthal,
and Sherman 1994; Marhefka and Orin 1996; Fisette, Pe-
terkenne, and Smain 1998; Zeghloul, Blanchard, and Ayrault
1997; Elmqvist, Mattson, and Otter 1998), the validation of
large-scale robotic devices (Ma et al. 1997), and in computer
animation (Baca 1998; Multon, Cani-Gascuel, and Debunne
1999; Armstrong and Green 1985).

Despite the sophistication of existing simulators, most
are not well suited for researchers interested in locomotor
control of legged robots. Such researchers are currently
forced to choose between “hyper” realistic mechanical sim-
ulators, which are slow, expensive, and not amenable to
control-code experimentation, and mechanically simplistic
simulators designed for high-level robotic task planning. For
these researchers, what is needed is an appropriately realistic
dynamics-simulation system that is specifically designed to
facilitate rapid interfacing and testing of complex, nontradi-
tional control algorithms (Reichler and Delcomyn 1998).

41



42 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / January 2000

In this paper, we explore several issues in the efficient sim-
ulation of walking robots, including contact-resolution strate-
gies and strategies for interfacing with robotic simulators. We
present a freely available simulation system designed to facil-
itate the rapid development and testing of control algorithms.

2. Overview of the Simulation System

Our simulation system consists of two main components: a
dynamics engine, and an interfacing language. The dynamics
engine is responsible for performing all mechanical simula-
tion and contact resolution. The interfacing language com-
ponent comprises modules for describing and supervising all
aspects of a simulation experiment, including the physical
configurations of robots and the environment, the attachment
of sensors and actuators, the graphical user interface, data-
file management, and the incorporation of and communica-
tion with external control algorithms. Figure 1 shows two
different experiments run using the simulation system, one
involving a three-degree-of-freedom robot arm and another
involving a walking hexapod. It demonstrates the flexibility
that the interfacing language brings to the design of custom
experiments.

The entire simulation system consists of about 500 K lines
of C++ source code, and has been compiled on a variety of
Unix platforms. The X windows and OpenGL graphic li-
braries (the public-domain Mesa package for Linux) are used
for visualization. On a 400-MHz Pentium II, simulation speed
ranges from super real time when simulating a simple robot
arm with visualization disabled, to 10−3 real time when simu-
lating a complex mobile robot with sensors and actuators and
solid three-dimensional visualization enabled.

In the following sections, we describe the two main compo-
nents of the simulation system, namely the dynamics engine
and the interfacing language, and explore the design choices
faced when building a simulator for walking robots.

3. The Dynamics Engine

Dynamics simulation involves the modeling of objects with
mass and inertia as they interact with the environment and are
affected by gravity and other forces. While kinematics simu-
lators, which model trajectories and positions but not forces,
are occasionally used to explore basic locomotor movements,
only a three-dimensional dynamics simulation allows a re-
searcher to investigate the ability of a control algorithm to
maintain stability and locomote successfully under realistic
conditions. A dynamics simulator takes as input the current
state of the world and the applied controller forces, and out-
puts the subsequent state of the world.

The equations for exact dynamic simulation of rigid single-
body objects and for simple chains of such objects that do
not come into contact with other structures have long been

Fig. 1. Typical graphical displays during a simulation run,
illustrating how the user interface can be customized to suit
the nature of different experiments: (a) hexapod walker in the
form of an insect, displayed during a movie playback; and
(b) three-degree-of-freedom robot arm, with controls for the
target angles and PD constants at each joint. Lower plots
show deviations from target-joint angles over time.



Reichler and Delcomyn / Dynamics Simulation and Controller Interfacing 43

known, and can be performed efficiently. However, for com-
plicated multibody objects that come into contact with one an-
other, exact simulation becomes difficult and time consuming.
Dynamics simulation, like most other simulation paradigms,
demands trade-offs of accuracy for speed and computational
simplicity. In fact, much work in robotic simulation is devoted
to elaborating and justifying efficient approximate algorithms
for multibody simulation (Mirtich 1996; Manko 1992). The
nature of the approximations and heuristics that are appropri-
ate for a specific dynamics simulator depend heavily on the
domain under study.

3.1. Handling Constraints

The critical factor affecting computational complexity in dy-
namics simulation is the accurate simulation of constraints.
Constraints exist both as internal properties of a robot, where
multiple rigid segments connect through joints, and as con-
tact events between structures; these are constraints because
they limit the motion of the structures. Different dynamics
algorithms tackle the simulation of constraints differently. At
one extreme are the purely analytical methods, which involve
solving the equations of motion explicitly and exactly. For
chains of rigid bodies connected through stereotyped joints
and attached to a fixed base, these analytical methods can be
performed efficiently (Lilly 1993), typically involving the so-
lution of a small system of equations. An analytical solution
becomes more difficult when more generic constraints and
a mobile base are included. For a specific robotic structure
within a specific, restricted environment, and in cases where
simulation accuracy is critical and computation speed is not,
such as in the validation of existing robotic mechanisms, ana-
lytical solutions may be appropriate. At the other extreme of
realism lie purely heuristic methods. Heuristic methods are
meant to capture the qualitative aspects of the physical world
but trade accuracy for computational simplicity and speed.
For some applications, such as animation, heuristic methods
are commonplace and can produce believable visual simula-
tions with the use of the simplest of simple constraint models
(McKenna and Zeltzer 1990).

3.2. The Decoupled Tree-Structure (DTS) Approach

The dynamics algorithms we use for our simulator are based
on the decoupled tree-structure approach (DTS) described by
Freeman and colleagues (Freeman and Orin 1991; Freeman
1989; McMillan, Orin, and McGhee 1996), which is itself
based on a number of well-established methods (Featherstone
1987; Walker and Orin 1982; Lilly 1993; Shih, Frank, and
Ravani 1987; Brandl, Johanni, and Otter 1986). The DTS
approach supports robots consisting of a series of branch-
ing chains (like legs or arms) connected to a single “reference
member” that can be fixed or mobile. Chains themselves con-
sist of a series of segments (limbs) connected via joints. Joints

are described using modified Denavit-Hartenberg (MDH) pa-
rameters (Lilly 1993). The MDH parameters represent a
compact and computationally friendly formalism (McMillan,
Orin, and McGhee 1995) for describing how successive seg-
ments relate kinematically to one another (see Fig. 2). Al-
though the DTS approach is amenable to arbitrarily branch-
ing chains and generalized joints (see, for example, the work
of McMillan, Orin, and McGhee (1996)), additional param-
eters are needed to specify appropriate degrees of freedom,
and our simulator is currently limited to serial (nonbranching)
chains and revolute joints, which are completely specified by
the MDH parameters.

The main steps of the DTS computations are shown in Fig-
ure 3, based on Freeman and Orin (1991). The first step is
a forward-leg kinematics recursion that propagates kinematic
information from the body to the end segments. A backward-

Fig. 2. Modified Dennavit Hartenberg parameters. Links are
numbered starting at zero for the hip or body, and increasing
outward. The modified scheme differs from the standard DH
scheme mainly in that the parameters relate to the position and
orientation of the frame preceding the link segment, rather
than the frame following the link segment. Coordinate axes
are aligned withZi along the axis of motion of jointi andXi

along the common normal between the extensions ofZi and
Zi+1. The angleθi represents the angle aboutZi+1 between
Xi andXi+1; lengthai is the perpendicular distance alongXi

betweenZi andZi+1; offsetdi represents the perpendicular
distance alongZi+1 betweenXi andXi+1; and twistαi is the
angle aboutXi betweenZi andZi+1. (Adapted from Lilly
(1993).)



44 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / January 2000

Fig. 3. The steps of the DTS method. The first step is a
forward-leg kinematics recursion that propagates kinematic
information from the body to the end segments. A backward-
dynamics recursion then propagates forces from the chains
(including contact forces and driven torques) back up to the
hips of the body. The hip forces from the separate chains
are then combined and used to update the acceleration of the
reference body. The computed body acceleration is then used
in a forward-dynamics recursion to determine the joint accel-
erations of the chains. Lastly, body and joint accelerations
are integrated to yield the next state. (Adapted from Freeman
(1989).)

dynamics recursion then propagates forces from the chains
(including contact forces and driven torques) back up to the
hips of the body. The hip forces from the separate chains are
combined and used to update the acceleration of the refer-
ence body. The computed body acceleration is then used in
a forward-dynamics recursion to determine the joint acceler-
ations of the chains. Lastly, body and joint accelerations are
integrated to yield the next state. The time complexity for
these computations isO(mN) in the total number of legs,m,
and segments,N (Freeman and Orin 1991; McMillan, Orin,
and McGhee 1995).

The DTS approach represents a balance between heuristic
and analytical methods. Segments are considered tightly cou-
pled to one another through joints, and chains are considered
tightly coupled to the reference member body, meaning that
these constraints are not at any time violated by the dynam-
ics algorithms. The exact propagation of forces through the
constraints between the segments and body of an articulated
robot is possible because the equations of motion for these
constraints are well understood and efficient implementations
are known.

Contact with external objects, on the other hand, is mod-
eled as a “decoupled” or compliant interaction, such that con-
tact forces are calculated heuristically to approximate the ex-
pected forces. The motivation for employing this scheme,
which is illustrated in Figure 4, is discussed in the next
section.

Fig. 4. Conceptualization of the DTS approach to simulation
of a multilegged robot. Each leg is tightly coupled to the base,
and each joint is considered to be powered. Ground contact is
modeled using a penalty-based spring-and-damper method. It
is the approximation of contact forces using compliant penalty
methods that makes the DTS approach computationally effi-
cient. (Adapted from Freeman (1989).)



Reichler and Delcomyn / Dynamics Simulation and Controller Interfacing 45

3.3. Penalty-Based Contact Resolution

Precise detection of contacts and modeling of contact forces
is complex, time consuming, and in the general case, an open
area of research. There is no single best approach to simu-
lating contact dynamics in arbitrary environments; the key is
finding an approach that is appropriate for the domain under
study. To reduce computational complexity, DTS uses a sim-
ple, penalty-based method of approximating contact forces
between segments and the environment. Penalty-based meth-
ods treat contact between objects as compliant, so that the con-
straint of nonpenetration is “softened” and objects are allowed
to interpenetrate. As objects interpenetrate, they generate per-
pendicular repellant forces that increase with the penetration
distance (and possibly with velocity and acceleration) as if
being pulled by a spring attaching the two objects.

Detecting arbitrary collisions within a system of polygo-
nal volumes can be quite time consuming, and a substantial
amount of effort, both in robotics and animation, has gone into
developing sophisticated algorithms for the detection of col-
lisions. Most methods involve building a dynamic database
that keeps track of the small number of object pairs that could
possibly collide in the near future, and checking only those
pairs for actual contact. Fortunately, we can take advantage
of the limited contact that normally occurs during locomo-
tion to build a simple and efficient contact-detection system.
We ignore the possibility of interlimb contact, and repre-
sent the ground using a simple fixed-spacing triangular tiling,
where vertex heights define the topography of the substrate.
Robots are assembled from simple geometric primitives, such
as blocks, cones, and spheres, and each primitive component
of a robot has a number of “boundary points” on its surface,
which are checked for penetration of the substrate. Detect-
ing penetration is remarkably simple, because for any given
boundary point there is only one triangle tile it could possibly
be in contact with, and that tile can be indexed directly given
the point coordinates. By adjusting the number of points used
on each geometric primitive, we can further tune the trade-off
between accuracy and speed.

When a boundary point first breaks the ground surface, the
initial point of interpenetration is recorded. This recorded
“hookpoint” then acts like the anchor of a virtual spring, ex-
erting a force that pulls the object out of the ground. Force in-
creases as a function of interpenetration distance and velocity.
(The velocity component plays the role of a damper, which
is why this method is sometimes called the spring-damper
method.) The ratio of normal to tangential forces determines
whether the tangential force is sufficient to overcome the ef-
fects of friction that oppose movement. If the tangential force
escapes some threshold, slipping is simulated by allowing the
recorded hookpoint to slide along the ground surface, chang-
ing the position of the virtual spring for the next contact com-
putation. By adjusting the spring and damper constants of a
particular tile, the stiffness of that surface patch is adjusted.

By adjusting the static friction threshold, the friction of the
surface is adjusted.

Penalty-based methods are commonly used and commonly
criticized (Mirtich 1996; Baraff 1992). The key difficulty with
the penalty method is finding penalty constants (representing
the stiffness of the virtual springs) that are consistently ef-
fective for different objects in different environments. These
penalty terms are typically set using trial and error. If they
are set too high, objects may rebound off one another inap-
propriately; if they are set too low, objects may sink into one
another unacceptably. A complicating factor is that the choice
of penalty terms interacts with the choice of the integration
time step; to keep penetration to a minimum, penalty terms
need to be set as high as possible, but high penalty terms im-
ply large contact forces and these large contact forces demand
small integration time steps.

Interestingly, while the common rule of thumb in setting
penalty constants is to make them as high as possible, we
have observed a phenomenon in our locomotor simulations
that contradicts this intuition. Recall that hookpoints persist
during prolonged contact, and are destroyed once an object
ceases to interpenetrate the ground. In locomotion, it is the
tangential springlike forces generated at the hookpoints that
prevent feet from slipping. Therefore, contrary to the con-
ventional notion that penalty terms should be set as high as
possible to approximate a perfect nonpenetration constraint, it
appears critical in locomotion that the penalty terms be set low
enough to maintain interpenetration throughout normal step-
ping. This observation suggests a possible extension to the
spring-damper penalty method that would explicitly take into
account some nominal interpenetration distance, while main-
taining high penalty-term constants beyond that distance.

Despite their limitations, penalty methods carry substan-
tial advantages, chiefly their computational simplicity and
efficiency, the ease of incorporating static friction models,
and the ability to simulate qualitatively a variety of surface
characteristics.

3.4. Alternatives to Penalty-Based Methods

There are alternatives to penalty-based models of contact res-
olution. For simple systems of perfectly rigid bodies con-
tacting without friction, it may be possible to solve the equa-
tions of motion analytically. In practice, however, analytical
methods are rarely employed in three-dimensional dynam-
ics simulations. The computations are too complicated, and
the assumptions of perfectly rigid bodies interacting with-
out friction are too restrictive. A relatively recent approach
to contact resolution that is gaining in popularity is the so-
called “impulse-based” model (Mirtich 1996). In the impulse-
based model, nonpenetration is strictly enforced. As in the
penalty-based approach, state variables are integrated over
discrete time steps. However, in impulse-based modeling,
the basic strategy is to calculate estimated collision times for



46 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / January 2000

(otherwise) ballistic objects, integrate in between these pre-
dicted collision events, and calculate, at the moment of each
collision, a pair of equal and opposite impulsive forces that
when applied to the objects will preserve the nonpenetration
constraint. For systems of rigid, passive objects undergo-
ing momentary collisions, the performance of impulse-based
simulations is extremely impressive. Most importantly, such
simulations do not require the hand tuning of stiffness param-
eters the way that penalty methods do.

Despite the obvious success of impulse-based contact res-
olution, it should be remembered that this method is not an
exact model of the underlying reality in the way that analytical
methods are; the method possesses a number of shortcomings
that are particularly troubling when used for the simulation
of locomotion. The problems stem from the nature of the
contacts that dominate locomotion. First, walking robots are
multibody, nonpassive systems. Formulations of impulse-
based algorithms for handling multibody, tree-shaped systems
exist (Mirtich 1996), but are significantly more complex than
the basic impulse-based calculations, which are already quite
complex. The computations for multibody systems are also
time consuming, a fact that takes on greater significance in
light of the locomotor domain. To see why this is true, recall
that impulse-based methods depend on being able to calcu-
late the occurrence times of sporadic collision events. When
no two objects are in contact over some integration period,
computations are simple and fast, but the moment that con-
tact occurs, the system must truncate the integration step and
perform extensive calculations of the impulsive forces. In a
system where collisions are momentary and rare, this scheme
works well. But in locomotion, it is likely that some part of
the robot will be in contact with the ground at every instant in
time, bringing the impulse computations to a virtual standstill.

An equally troubling fact concerns the nature of the con-
tacts that dominate locomotion. The foundation of impulse-
based methods of contact resolution is the treatment of con-
tacts as momentary collisions, where two bodies are made
to separate by the employment of a brief impulsive force.
Locomotion, however, is characterized by a marked lack
of discrete, momentary collisions, and is instead dominated
by a preponderance of prolonged, static contact events with
substantial tangential forces that are dependent on frictional
modeling.

Heuristic extensions to the impulse-based approach have
been advanced to support static contact (Mirtich 1996). The
basic idea behind these extensions is straightforward: two
objects, which in the real world would be in prolonged static
contact, are simulated as if they were constantly separating
and recolliding. Unfortunately, these heuristic methods suffer
from some of the same drawbacks that penalty-based meth-
ods do (such as requiring manual parameter tuning). And
while they work well when simulating a passive object on
a flat surface, a phenomenon known as “creeping” can occur
when an object in static contact experiences tangential forces.

Mirtich (1996) illustrates this with the example of simulating
a block resting on a sloped platform (see Fig. 5). The fric-
tion of the slope should keep the block from moving, but in
the simulation, the block gradually creeps down the incline.
This happens because constant microcollisions are, in effect,
bouncing the block off the surface at a high frequency. This
means that the frictional forces that would normally prevent
the block from sliding are only acting intermittently (during
collisions but not while the block is airborne); thus, the block
slides, regardless of the frictional properties of the surface.
The phenomenon of creeping is particularly troublesome for
the simulation of locomotion, because in locomotion the feet
are constantly exerting tangential forces while in static contact
with the ground.

In many ways, the impulse-based approach and the penalty
method are complementary. The impulse-based approach ex-
cels at simulating occasional, brief rigid-body collisions, but
has difficulty adequately simulating frequent, prolonged con-
tact. The penalty method, in contrast, is a poor choice for sim-
ulating brief rigid-body collisions, which demand high spring
constants that produce unstable accelerations, but provides
an efficient and flexible qualitative model of compliant, pro-
longed contact. Although recent developments in impulse-
based contact resolution represent a tremendous advance to-
ward efficient general-purpose contact resolution, we doubt
the appropriateness of impulse-based simulation (at least in
its current form) for the simulation of locomotor dynamics.
In contrast, we argue that the penalty method has a number of
characteristics that make it a good candidate for contact reso-
lution when performing locomotor simulations: it is trivial to

Fig. 5. Illustration of “creeping.” The friction of the slope
should keep the block from sliding downward, but the use of
micro-impulses to prevent interpenetration can end up bounc-
ing the block off the surface at a high frequency. This means
that the frictional forces that would normally prevent the block
from sliding are only acting intermittently (during collisions
but not while the block is airborne), and the block gradually
falls down the slope due to the force of gravity, regardless of
the frictional properties of the surface. (Adapted from Mirtich
(1996).)



Reichler and Delcomyn / Dynamics Simulation and Controller Interfacing 47

implement, is amenable to parallelization, supports multiple
simultaneous constraints with no modification, and is easily
parameterized to suit a variety of surface properties such as
friction and stiffness.

3.5. Integration Methods

The job of the dynamics algorithms is to compute the current
linear and rotational accelerations of all structures. To be use-
ful for simulation, these accelerations must be used to produce
ongoing estimates of the velocities and positions of objects.
There are several ways this can be done. The simplest way,
known as Euler’s method, simply integrates accelerations over
discrete time steps to yield velocity estimates, and integrates
velocity to yield position. Because the accelerations are in-
tegrated over discrete time steps, the dynamic simulation is
necessarily an approximation of the physical world, and one
is again faced with having to balance speed and simplicity
of computation against accuracy of simulation. The less fre-
quently it is necessary to recalculate accelerations (i.e., the
larger the time step), the faster the simulation will run. But
since conditions that might have changed within a single time
period are essentially ignored, the larger the time step, the less
accurate the calculations. Euler’s method is computationally
trivial, and in the limit (as time step size is reduced) will con-
verge to the true solution (Garcia de Jalon and Bayo 1994).
In practice, however, choice of step size is difficult.

The problem of integrating differential equations is not by
any means unique to dynamics simulation—it arises in a wide
variety of engineering applications and many sophisticated
schemes have been proposed to perform it efficiently (see, for
example, the work of Garcia de Jalon and Bayo (1994)). Per-
haps the most commonly employed schemes are the Runge-
Kutta methods, which, like Euler’s method, involve recalcu-
lating estimates of velocity and position in discrete time steps.
In Runge-Kutta, however, the dynamics algorithms are used
to produce multiple estimates of accelerations within some
fixed time step, and these estimates are combined (averaged)
to yield an estimate of velocity and positional change over the
fixed time step. The more intermediate acceleration calcula-
tions that are performed within a time step, the more accurate
(and the more time consuming) are the final estimates of ve-
locity and position. A different approach to the integration
problem is taken by the predictor-corrector methods (Garcia
de Jalon and Bayo 1994). These methods work by perform-
ing iterative cycles of prediction and refinement, given some
tolerance threshold. An important property of the predictor-
corrector methods is that the error estimates can be used to
adjust the size of the time step dynamically to minimize excess
calculations.

Which method is most appropriate for the dynamics simu-
lation of legged robots? In the general case of dynamics simu-
lation, the predictor-corrector methods are extremely appeal-
ing. In particular, the ability to tune the time step dynamically

can yield substantial speedups when simulating systems that
enter into periods of differing “stiffness.” Differential equa-
tions are called stiff if they change rapidly within small time
windows (Burden and Faires 1993). In the case of dynam-
ics simulation, differential equations become stiff at points
of contact and external force exertion, where accelerations
would be expected to change rapidly within a small period of
time. In the case of locomotion with soft constraints, how-
ever, it is not clear that there would be the opportunity for
meaningful adjustment of the time step within a simulation
run. This is because such a system would not be expected
to undergo dramatic changes in overall stiffness, since it is
in a state of constant contact with the environment and actu-
ated joints provide a constant stream of external perturbations
(Shih 1986).

There is another important reason why a predictor-
corrector method might not be appropriate for locomotor-
control testing, even if it were expected to yield more efficient
state estimates. Predictor-corrector integration methods work
by performing iterative refinement until estimates fall within
some tolerance threshold, requiring different numbers of it-
erations (and therefore calculation times) from step to step.
If the simulation is to support online interaction with a user,
this shifting of speed is likely to be unacceptable. Even if the
simulation does not depend on user interaction, any modifi-
cation of the dynamics-calculation time steps would have to
be synchronized with all other components in the simulation.
Both of these considerations are relevant if the simulation is to
be used as a controller test bed for legged robots. In addition
to being able to support online user interaction, the simula-
tion system would need to coordinate the integration step size
with sensor-, actuator-, and controller-model updating. In
other words, the dynamics engine cannot simply choose arbi-
trary integration steps, since sensor, actuator, and controller
models can be expected to have competing and less flexible
needs regarding the regularity of their updating. Although
Runge-Kutta methods would be expected to yield more accu-
rate results, we currently use Euler’s method in our simulation
system to take advantage of its simplicity and speed.

4. Interfacing with the Simulator

A critical element of any simulator is the ease with which
users can interact with it. How easy it is to set up and reuse
parts of an experiment and what mechanisms exist for manip-
ulating the simulation online and for analyzing data produced
by the simulation are important issues. If the objective is to
test control algorithms, there must be a convenient way to
incorporate and evaluate such algorithms. If nontraditional
robotic mechanisms are to be studied, there must be an easy
way to incorporate third-party sensor and actuator models.
These are all issues related to interfacing with the simulation
system. We believe that interfacing facilities are critical to the



48 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / January 2000

design of a useful tool for developing and evaluating robotic
control systems, and that existing robotic simulators do not
provide convenient interfacing. In this section, we briefly re-
view some common approaches to interfacing, paying special
attention to the issue of interfacing control code, and describe
the interfacing scheme we have implemented.

4.1. Common Approaches to Interfacing

There are four traditional approaches to interfacing with a
simulation. We discuss each in turn.

4.1.1. Graphical Drag-and-Drop

In the graphical drag-and-drop approach, the simulator in-
cludes a substantial user-interface component that functions
like a computer-aided drafting (CAD) tool, allowing a user
to configure physical robots simply by connecting parts on
the screen. This enables users to assemble robots and con-
duct simulations without having to understand anything about
the internal simulator code. Commercial software develop-
ers sometimes devote considerable resources to the design of
friendly and intuitive user interfaces. The commercial prod-
uct Working Model (Davidson 1996) is a good example of this
approach. However, a common problem with this approach
is that to make the simulator easy to use by novices, flexibil-
ity is sacrificed. It may be difficult or impossible to extend
such simulators, and little attention is paid to the interfacing
of control code, since these are primarily physical modeling
systems for use by nonprogrammers.

4.1.2. Proprietary Language

Although simulation systems that are designed for complex
physical modeling often ignore the issue of control code en-
tirely, many simulation systems designed for simple, stereo-
typed, fixed-configuration robots take the opposite tack by
providing a proprietary (sometimes pictorial) control lan-
guage. This language is typically structured so that certain
common functions and actions are easy to express. If one ad-
heres to the control methodology embodied by the proprietary
language, such as a behavior-based approach (Konolige 1997;
Brooks 1991a), powerful controllers can be developed rapidly.
The main disadvantage associated with these proprietary lan-
guages is that they often cannot provide the resources and
computational power of an established high-level program-
ming language, and it may be impossible to reuse existing
control code without first rewriting it (if indeed this is at all
possible). If extensive and novel control research is involved,
a proprietary language can rapidly become an impediment to
doing efficient work.

4.1.3. Code Looping

In the code-looping approach, a basic simulation engine (for
example, one performing dynamics modeling) passes control
periodically to a user function written in the language of the
simulator. Alternatively, a user-written program passes con-
trol periodically to the simulation engine. The commercial
product SD/FAST (Hollars, Rosenthal, and Sherman 1994)
employs this approach. SD/FAST reads a file describing the
mechanical configuration of a robotic plant, and produces C
code that, after it is compiled, simulates the robot dynamics.
In SD/FAST, the user can add control code by writing ad-
ditional procedures in C, appending these procedures to the
code produced by SD/FAST, and then recompiling.

The code-looping approach has the advantage that the
control-code programmer is able to utilize the full resources of
the parent language, a feature that facilitates the use of existing
or third-party control algorithms. However, significant disad-
vantages are associated with this approach. First, the burden
placed on the programmer with regard to understanding the
internal structure of the simulator can be prohibitive. Detailed
knowledge of internal simulator variables and procedures may
be required to send outputs to a specific actuator on a robot
or to query a specific state variable. Second, this approach
encourages the programmer to design code that is inherently
nonreusable. That is, accessing sensors and actuators may
require reference to specific variables in the simulator code,
tying a specific control algorithm to a specifically configured
robot, and vice versa. Third, the code-looping approach puts
the burden of managing distributed controllers and simulating
sensor and actuator transmission properties squarely on the
shoulders of the control-code programmer. As with the code-
library approach described below, user-interface components
for visualization, on-line manipulation, and data analysis are
often missing from these robotic simulators. Hence, third-
party programs may be necessary, and routines for online in-
teraction with the simulator may have to be custom written
by the user.

4.1.4. Code Library

In the code-library approach, the simulation system itself ex-
ists as a set of functions and objects that must be assembled
by a programmer to construct a given simulation experiment.
Robotica for Mathematica (Nethery 1993) and the Matlab
Robotics Toolkit (Corke 1996) are good examples of this ap-
proach. A code library may be ideal for building a one-shot
custom simulation, but a substantial programming investment
will be necessary before development of control code can
begin. While some libraries do provide functions for read-
ing symbolic robot assembly files, others do not, and require
robots to be built using a series of cumbersome procedure
calls. Even when routines are provided for reading robot
assembly files, these files are helpful only for the physical



Reichler and Delcomyn / Dynamics Simulation and Controller Interfacing 49

configuration of robots and do not address the interfacing
of control code or the attachment of sensors and actuators.
Like the code-looping approach, the burden of managing dis-
tributed controllers and simulating signal-transmission prop-
erties falls on the control-code programmer. User-interface
components are again left to the programmer assembling the
simulation, although in some cases the code library is pro-
vided in a language environment such as Matlab or Mathemat-
ica that provides significant built-in facilities for visualization
and data analysis.

4.2. A New Interfacing Scheme

The interfacing approaches described in the previous section
are either designed to be easy to use by nonprogrammers but
are not suited for advanced control systems design, or they
are designed for hard-core programmers, require a substantial
programming investment before control-code development
can begin, and encourage the design of nonreusable com-
ponents. Ideally, one would like some combination of these
two approaches, whereby it would be easy for nonprogram-
mers to assemble reusable components and design custom
control experiments, but also easy for control programmers
to write and interface sophisticated control algorithms, and
would likewise be easy for simulation designers to extend the
simulation with new sensor and actuator models.

In the remainder of the paper, we describe one approach
to providing such a framework. The key element of this ap-
proach is the use of a custom object-oriented configuration
language that mediates all interactions between the different
components of the simulation system (see Fig. 6). The con-
figuration language facilitates the description of hierarchical
structures and provides a uniform mechanism for describ-
ing the assembly of, and communication among, simulated
robots, graphical user-interface components, sensors and ac-
tuators, and control algorithms.

The underlying principles embodied by the configuration
language and our interfacing scheme are well-established in
the object-oriented programming (OOP) literature, but are not
widely employed within the robotic simulation or control-
engineering community. This is unfortunate, because these
domains are uniquely situated to benefit from an OOP inter-
facing framework. In the sections that follow, we describe the
specific interfacing scheme that we have implemented for our
simulation system, and discuss the underlying design princi-
ples. It is especially important to note that these design prin-
ciples are applicable to a wide range of simulation systems,
not just our own.

4.2.1. Beyond Object-Oriented Encapsulation

A core principle underlying object-oriented design is encap-
sulation. Encapsulation dictates that objects be manipulable
and observable via a well-defined interface, without regard

Fig. 6. The relationship between the configuration language
and the other components of the simulation system. The de-
composition of components makes it easy to extend the sim-
ulation system or to replace specific modules. The configu-
ration language makes it easy for the individual modules to
have access to arbitrary state information and to communicate
with one another.

to their internal implementation. Encapsulation is important
because it supports the composition and reuse of indepen-
dent components. The general principle of encapsulation and
object-oriented design can be found in existing robotic li-
braries. These libraries provide a set of classes written in an
object-oriented language (for example, in C++), which can
be used by a programmer to build a larger program. How-
ever, we have observed that writing programs using robotic
library classes is a complicated and delicate process involving
substantial programming. Although the basic classes are pro-
vided, actually instantiating hierarchical structures and wiring
together large numbers of sensors, actuators, controllers, and
user-interface components is messy and error prone. Much of
the difficulty lies with the underlying language used to imple-
ment the components. In looking at the ways in which these
components are assembled and manipulated in robotic sim-
ulations, it has become clear to us that a domain-specific in-
termediary language, dedicated to supporting the assembly of
and communication between hierarchical components, would
solve these difficulties and provide a more robust framework
for doing control-systems research. Such an intermediary
language would allow programmers to design components
(sensors, actuators, controllers, GUI displays, dynamics al-
gorithms) in an established language, in our case C++, while
allowing nonprogrammers to assemble and reassemble such



50 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / January 2000

components as desired in constructing specific experiments.
In the jargon of programming languages, such intermediate
languages are sometimes called scripting, macro, or gluing
languages.

4.2.2. An Interfacing/Configuration Language for Robotic
Simulation

Figure 7 shows the description of a complete simulation us-
ing the configuration language we have developed. As can be
seen, the configuration language provides a uniform way of
describing all aspects of an experiment. Configuration files
describe the physical parameters of the robots to be simulated;
the size, construction, and placement of their limbs; and the
number, location, and properties of sensors, actuators, and
controllers. Configuration files also describe the physical en-
vironment (the ground model and other objects), the arrange-
ment of graphical displays and plots, the data files to read or
write, and the kinds of interactions allowed online during the
simulation. Typically, a simulation is begun by specifying a
configuration file that describes an experiment. This initial
configuration file may invoke other configuration files that in
turn define specific robots, controllers, and environments.

The configuration language is chiefly used to assemble
and wire together different component building blocks. The
building blocks used by the configuration language are C++
classes that support an elaborate protocol specialized for the
configuration language. It is this protocol that lets the con-
figuration language know how different components can be
parameterized, assembled, observed, and controlled by non-
programmers.

In the configuration language, all objects are described in
a similar hierarchical format and all object parameters (such
as the length of a segment or the mass of an object) are clearly
labeled. Variables may be declared and passed as arguments
between configuration files, allowing for the modular reuse of
component structures. This allows individual robots or robot
components, as well as custom interactive panels and displays,
to be stored in their own configuration files and selectively
assembled in the design of individual experiments. A benefit
of implementing an intermediary-interpreted language on top
of the underlying C++ components is that configuration files
are interpreted at run time, and do not have to be recompiled
after they are modified.

4.2.3. Connecting Components

User-interface toolkits frequently employ sophisticated
object-oriented design patterns for supporting interobject
communication. This is because they are designed to work
with a wide variety of applications, and must support flex-
ible means of interfacing with arbitrary objects. Typically,
a user-interface toolkit provides special functions for one
object to register with another object so that it receives

// Simple two-joint arm with PD controllers at each joint
World SimpleWorld

{
gravity=9.81;
deltat=.001;

Robot simplebot
{
Base.fixed
{
location=0,0,0;
Shape.Cube
dimensions=1,1,.3;

}
Chain leg1
{
hip_distance=0,0,0;
Link link1
{
dhlength=0; dhtwist=1.57; dhoffset=.15;
mass=1;
Shape.Legcone
{
length=1;
proximal_radius=.15;
distal_radius=.1;
}

}
Link link2
{
dhlength=.1; dhtwist=-1.57; dhoffset=.4;
mass=1;
Shape.Legcone
{
length=.65;
proximal_radius=.1;
distal_radius=.05;
}

}
}

}
}

// A camera showing the arm and controls to manipulate
it

Window
{
Window.grob videocam
{
size=330,330;
drawer=SimpleWorld;
}

Fig. 7. (continued on next page)



Reichler and Delcomyn / Dynamics Simulation and Controller Interfacing 51

Window
{
width=316; height=330;
Valuator.Slider zoom_factor
Wire TO videocam.zoom;

Valuator.Slider distance
Wire TO videocam.distance;

Valuator.Slider Euler1_angle
Wire TO videocam.euler1;

Valuator.Slider Euler2_angle
Wire TO videocam.euler2;

Button.Light pause
Wire TO SimpleWorld.running;

Button quit
Wire TO Simulator.quit;

}
}

// Proportional-Derivative controllers attached to arm
joints

Controller.PD pd1
{
Wire FROM SimpleWorld.simplebot.leg1.link1.angle

TO current;
Wire TO SimpleWorld.simplebot.leg1.link1.torque

FROM output;
}

Controller.PD pd2
{
Wire FROM SimpleWorld.simplebot.leg1.link2.angle

TO current;
Wire TO SimpleWorld.simplebot.leg1.link2.torque

FROM output;
}

// Sliders to manipulate arm (wired to the PD controllers)

Window controllers
{
width=300;
Window
{
label="PD Controller for Joint 1";
Valuator.Slider goal_angle
{
range=-3.2,3.2;
Wire TO pd1.goal;
}

Valuator.Slider pconstant
{
range=100,60000;
Wire TO pd1.pconstant;
}

Valuator.Slider dconstant
{
range=0,30000;
Wire TO pd1.dconstant;
}

}
Window
{
label="PD Controller for Joint 2";
Valuator.Slider goal_angle
{
range=-3.2,3.2;
Wire TO pd2.goal;
}

Valuator.Slider pconstant
{
range=50,30000;
Wire TO pd2.pconstant;
}

Valuator.Slider dconstant
{
range=0,5000;
Wire TO pd2.dconstant;
}

}
}

Fig. 7. (continued from previous page)

notification when the target object is modified. In our con-
figuration language, we have taken this idea a step further by
implementing a generalized referencing scheme that allows
any variable or parameter of an object to be specified as the
target or source of a subsequent operation. Most objects in a
simulation are named, and state variables are referenced via
the standard C++ convention of listing a hierarchical trail of
parent objects followed by the name of the parameter to ac-
cess. For example, to refer to the angle of a specific joint
on a multileg robot, we might write something like “simple
bot.leftfrontleg.knee.Joint_Angle.”

Objects in the simulation exist as black boxes with input
and output ports. Objects are connected by routing informa-
tion between an output port on one object and an input port
on another. This provides a single uniform interface to all in-
ternal simulation parameters. In addition to the control-code
classes, all displays and interactive panels use this scheme
to specify their inputs and outputs. For example, a configu-
ration file might specify that the current angle of a specific
revolute joint on a specific leg of a specific robot should be



52 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / January 2000

saved periodically to a data file, be made available for online
manipulation by the user, be plotted graphically on-screen,
or be provided as an input variable to a specific controller.
The configuration language therefore provides a uniform in-
terfacing mechanism not just between the simulation and the
user-written control code, but between the internal simulation
state variables and the “outside world” of user interaction and
data analysis.

4.2.4. Design of the Graphical User Interface

Unlike most programs, ours does not use a fixed graphical
user interface for our simulation system. Instead, the user
interface is completely specified by experiment configuration
files, with custom displays and interactive panels set up to suit
the nature of each experiment. Display windows are used to
view simulation state information on-line, and like all other
structures in the simulation, are specified using the configu-
ration language. A plotting facility is provided for producing
two- and three-dimensional plots of arbitrary state variables.
Plots can be set to resize and rescale automatically in a vari-
ety of ways so that relevant information is always visible, and
multiple plots can be overlaid with one another and other dis-
play windows for easy comparisons. Displays for arbitrary
text information and raw data are also available. Because
the generalized referencing scheme allows access to all state
information, the displays can also be used for debugging or
for visualizing information about the internal state of a con-
troller. Interaction panels allow the user to manipulate the
simulation and exert forces online. Like displays, interaction
panels use the generalized referencing scheme to allow any
state variable, including internal controller parameters, to be
manipulated if desired.

The OpenGL library is used for online solid three-
dimensional rendering. OpenGL (Woo, Neider, and Davis
1997) is supported on a variety of computer architectures,
and many implementations are freely available. While some
existing robotic simulators are capable of producing more re-
alistic and detailed images of robots, there is often a high
price to be paid for such images. First, because the images
are so detailed, they take substantial time to generate. Fre-
quently, an independent commercial package may be required
to perform the graphic rendering, and the results of a sim-
ulation can only be visualized after an experiment has been
completed, eliminating the possibility of online manipulation.
Second, the production of detailed graphical images necessi-
tates the specification of detailed graphical models of robot
components (geometries, reflectance properties, etc.). This
is precisely the work we are trying to save the control-code
programmer from having to do. Hence, we use extremely
simple primitives to assemble robots (boxes, cones, spheres,
etc.) and do not require the separate specification of graphical
models.

In addition to providing on-line visualization, we have also
implemented procedures that allow movies to be recorded and

played back using a custom format that preserves all internal
simulation data rather than simply saving graphic images of
the simulation. This allows the user to change camera views
during playback and to examine at any instant arbitrary state
information such as disturbance forces. State information
can also be saved in numerical form at designated intervals
in Matlab or Mathematica formats, in files that are automat-
ically annotated to include information about variable types,
ranges, and units. Data may also be read from a file to pro-
vide a predetermined sequence of perturbations; for example,
to provide a repeatable application of forces.

4.2.5. Control-Code Interfacing

To provide a testbed for researchers interested in complex,
adaptive, nontraditional controllers, and to provide the great-
est flexibility for control programmers, a simulation system
should allow control code to be written in an established
object-oriented programming language. Although the inter-
facing of control code shares much in common with the inter-
facing of graphical user interface and sensor/actuator models,
in the following sections we describe in more detail the pro-
cess by which control algorithms (written in C++) interface
with the configuration language and are employed in the de-
sign of control experiments. We also introduce a mechanism
for varying performance characteristics and simulated trans-
mission properties to study the sensitivity of controllers to
real-world constraints. The basic scheme can be seen as con-
sisting of two tiers (see Fig. 8).

4.2.6. Controller Stubs

The first tier consists of controller stubs. Controller stubs are
attached to robots from within configuration files, and specify
how external C++ control-code classes interface with robot
sensors and actuators. They are part of the configuration-
language syntax, and provide the bridge between the simula-
tion system and the external control-code algorithms.

A controller stub calls for the instantiation and attachment
of a controller object. It specifies the name of an external,
user-written C++ controller class, the inputs and outputs (sen-
sors and actuators) the controller has access to, and the trans-
mission properties to be simulated as information passes back
and forth between the simulator and the controller. Sensor and
actuator transmission delays, sampling rates, and noise can all
be specified within controller stubs.

In keeping with the black-box formalism, the controller
stub does not require any information about how the actual
controller code functions—it simply specifies the input and
output variables. It is the separation of external controller
code and controller stubs that makes possible the modular
reuse and parameterization of control algorithms. As con-
figuration files are parsed and controller stubs encountered,



Reichler and Delcomyn / Dynamics Simulation and Controller Interfacing 53

Fig. 8. The two-tier framework for interfacing user-written
controllers. In the first tier, controller stubs, written in the
configuration language, are used to attach controllers to robots
in the dynamics engine, specifying their inputs, outputs, sam-
pling rates, and transmission properties (top). In the second
tier, user-written controllers are implemented as C++ classes
that are derived from built-in parent classes (bottom), and the
parent classes handle all communication and synchronization
with the simulation system configuration language (middle).

the configuration-language interpreter locates the user-written
C++ classes and instantiates copies of the controllers. Each
instantiation of a controller is a distinct object with a unique
name and its own independent internal state variables.

The use of controller stubs allows some simple but useful
manipulations of controller input and output data as the data
pass between the simulator and the control algorithms. Both
input and output variables can have associated sampling rates
and transmission delays that instruct the simulator to buffer
and pipeline signals to simulate more realistically the prop-
erties of a physical system. A simple noise model can also
be applied to both controller inputs and outputs. The sim-
ulation of sampling rates, transmission delays, and noise is
handled automatically by the simulator, and does not require
any special design on the part of the control-code programmer,
meaning that transmission properties can be specified for any
controller class without modification or recompilation of the
control code itself. By varying simulated transmission prop-
erties, the control-systems engineer can explore more difficult
and realistic control tasks. Because the transmission proper-
ties are adjustable, real-world constraints can be introduced
in a controlled fashion.

4.2.7. C++ Controller Classes

Extensible C++ classes constitute the second tier of the
control-code interfacing scheme. In C++, a class is defined
as having certain variables and implementing certain proce-
dures or functions; classes may be derived from other classes,
inheriting the variables and functions of the parent class and
possibly adding new variables and implementing new func-
tions. This basic principle of inheritance is used to provide
the control-code programmer with the building blocks for cre-
ating new controllers.

The simulator code includes a set of extensible C++ classes
that handle communication and coordination between the sim-
ulation and user-written control algorithms. These extendable
parent classes provide the foundation for all control-code de-
velopment, and ensure that all control algorithms are well
behaved and present a uniform interface to our simulation en-
gine (and to any other related simulation engine). The built-in
parent classes provide the C++ functions and objects that man-
age communication with the simulator, and handle simulated
transmission properties. New control classes are derived from
these built-in parent classes, thereby inheriting the supervi-
sory functions of these classes and freeing the control-code
developer from having to worry about the internal structure
of the simulator. Rather than being tied to specific sensors
and actuators on a specific robot, controller classes exist as
encapsulated black boxes, specifying only the kinds of inputs
and outputs with which they expect to connect. Thus, they
can be plugged into robots and parameterized as needed for a
given experiment.



54 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / January 2000

Controller classes are designed to self-register with the
simulator automatically so that no modification of the simu-
lator code is necessary. The automatic self-registration of user
code is accomplished via an OOP design pattern known as a
“factory” (Gamma et al. 1995), which keeps track of all user
classes and is used to create new instances of the controllers
as needed. When a controller stub specifies the attachment
of a controller to a robot, the factory is asked to locate the
user class and create a new controller. Self-registration al-
lows users to add controllers without having to modify and
recompile the entire simulator every time (Beveridge 1998),
and it allows users to share controllers and custom modules.

It is important to remember that actual controller code is not
contained within configuration files, but is written in standard
C++ and placed in separate class files that may be compiled
independently. When the simulation starts, all user-written
controller classes are automatically registered with the simu-
lator. As configuration files are parsed, controller stubs spec-
ify which user-written controller classes should be attached
to which robots and where. The simulator locates the user-
written control classes, instantiates new copies of the con-
trollers, and binds the input and output variables. While the
simulation runs, input and output variables are automatically
updated by the simulator as specified by the controller-stub
parameters (incorporating sampling rates, delays, and noise).
All of this is done behind the scenes and without any modifi-
cation of the actual control code.

A benefit of the two-tier approach is that once a con-
troller has been written, it can be tested on arbitrarily con-
figured robots and with widely varying operating parameters
without any modification of the control code itself. Con-
trollers can be instantiated on the same or different robots
(for example, by placing independent copies of a simple joint
controller on multiple joints of a robot). The two-tier ap-
proach also makes it easy to interface control algorithms that
have been written for another application and to study the
effects of signal-transmission properties on such algorithms.
Because the controller classes exist as encapsulated black-box
structures, it becomes possible for nonprogrammers to assem-
ble and evaluate robot-control schemes using third-party con-
troller classes in a plug-and-play fashion. Furthermore, since
configuration files do not need to be compiled, the turnaround
time for modifying controller-stub parameters and rerunning
an experiment is short.

A key goal in the design of the simulation system was
to support the use of third-party sensor and actuator models.
The same mechanisms used to design black-box controllers
are used to “wrap” third-party sensor and actuator models so
that they can be employed as building blocks in the simula-
tion system. Essentially, the strategy we have followed has
been to require some extra work on the part of the component
programmer, in ensuring that all code presents a uniform inter-
face to the simulation, so that the job of experiment designer
is made easier.

5. Discussion

Robotics researchers often argue that robotic simulation is a
poor substitute for hardware implementation, because simu-
lation inevitably fails to capture the harsh reality of the real
world (Brooks 1991b). While we readily acknowledge that
simulation involves making simplifying assumptions about
the world, we take issue with the underlying premise that the
role of robotic simulation must be to provide a testing envi-
ronment that is as “unforgiving” as the real world. In our
opinion, this is an overly restrictive view. In large-scale con-
troller design, we suggest that there is a great need for tools
that permit a gentler development environment.

Ideally, a simulation should allow one to investigate, before
actually building the hardware, the limitations of control algo-
rithms under different assumptions about processor speed, I/O
performance, transmission-line properties, and so forth. And
while real-time constraints play an important role in the final
implementation of control code, there are substantial bene-
fits to a more flexible analysis of performance characteristics,
especially during the development phase, when researchers
have a justifiable reluctance to commit to a specific imple-
mentation of a controller in hardware. Circumventing the
hard constraint of real-time performance is especially impor-
tant for researchers investigating control algorithms for walk-
ing robots, algorithms that are frequently intended to run on
custom-distributed processors but are often first prototyped
using off-the-shelf PCs.

For example, in designing a controller to recover from mis-
steps, an engineer might like to be able to test the basic al-
gorithm without worrying about execution speed, and then,
given a candidate algorithm, explore implementation details
like how fast and accurately the algorithm would have to exe-
cute to be effective. Simulation can address issues concerning
how well a control algorithm will perform if the transmission
delay of a specific sensor is doubled, if its sampling rate is
halved, or if a noiseless transmission line is not practical.
These are questions that need to be answered when building
a real robot, but that because of hardware’s fixed character-
istics, are paradoxically the most difficult to answer without
the use of a simulator.

Simulation can also be an invaluable tool for investigating
nontraditional sensors, actuators, and robots that cannot eco-
nomically be built or acquired, for the automated training of
adaptable control algorithms, for performing tests that might
damage a physical robot or injure a human operator, and for
testing controllers that have been explicitly designed to work
with robots of varying configurations.

5.1. Interfacing with a Simulator

Considering that simulation has such a great potential to fa-
cilitate the development of robotic control algorithms, it is
surprising that most existing robotic simulation systems and



Reichler and Delcomyn / Dynamics Simulation and Controller Interfacing 55

dynamics simulators are so ill-suited for large-scale control-
code development.

Many simulators provide no facility whatsoever for inter-
facing control code, and assume that the robots being sim-
ulated will employ traditional, well-established, hardware-
based controllers, so that no software testing of control algo-
rithms is necessary. For other robotic simulators, it is possible
to interface control code, but the control engineer must possess
an intimate knowledge of the internal simulator code to access
specific state information. Control code becomes wedded to a
specific robot model, and it can be difficult to reuse control al-
gorithms or robot designs. For projects where the interfacing
of control code is viewed as a one-time custom-programming
job and where a dedicated control architecture will be incor-
porated into the actual dynamics-simulation code, this is an
acceptable approach.

Still other robotic simulators include a proprietary con-
trol language, but because such languages have limited gen-
eral appeal, they tend to be found in simulators for mechani-
cally simple, fixed-configuration robots, such as commercial
wheeled robots (for example, see the work of Mach and Al-
brecht (1992); although Liu and Qin (1997) and Strippgen,
Peters, and Milde (1998) described sophisticated dynamics
simulators with dedicated control languages). While such
languages can be extremely useful in demonstrating the va-
lidity of a specific control approach (Brooks 1986), they tend
to have limited appeal and are not suited for advanced control
engineering. There do exist a number of powerful, flexible,
stand-alone robot-control languages that exist independently
of any physical robot or mechanical simulation. These lan-
guages often provide sophisticated algorithms for path plan-
ning, trajectory control, or other high-level robotic control
tasks (Pelich and Wahl 1997), and could theoretically be incor-
porated into sophisticated physical modeling systems. How-
ever, designers of complex physical modeling simulators are
reluctant to commit themselves to a specific robotic control
language having a limited audience, so they tend to abandon
the control-code interfacing issue entirely, leaving it instead
as a project for the end user.

We have presented in this paper a simulation tool specifi-
cally designed for the development of control code for legged
robots, concentrating in part on our novel scheme for interfac-
ing with the simulation. As researchers interested in apply-
ing theories of biological motor control to robotics (and vice
versa), we were particularly keen to reduce what we perceive
as the prohibitive overhead incurred when interfacing with
existing robot simulators. The interfacing scheme we have
described could be added to virtually any simulation engine,
yielding a substantial increase in utility with very little ex-
penditure of effort. A standardized configuration language,
whether or not bearing any resemblance to our interfacing
scheme, along with self-registering sensor, actuator, and con-
troller modules, would be useful because it would allow com-
ponents of a robotic control system to be shared between re-

searchers and different simulation engines in a plug-and-play
fashion.

There are three particular aspects of the interfacing scheme
that we believe may be of interest to robotics researchers
and robotic simulation designers. First, we have described
a high-level configuration language that acts as a bridge, or
layer of abstraction, between simulation components. It facil-
itates the efficient description of robots, their actuators, sen-
sors, and controllers, and provides a unified framework for
control-code interfacing, user-interface design, data analysis,
and extensibility. A generalized referencing scheme allows
control structures and user-interface elements to communicate
flexibly with one another and to access arbitrary state infor-
mation. Second, we have described a simple mechanism that
facilitates the integration of modular, distributed control code
written in a popular object-oriented language, C++. Third, we
have shown how controller stubs facilitate the simulation of
signal properties such as sampling rates, transmission delays,
and signal noise.

5.2. Simulation Trade-Offs

It should be remembered that in all simulation systems, dif-
ficult choices must be made regarding the detail at which to
model underlying phenomena; trade-offs between accuracy
and speed must be balanced. We have presented one ap-
proach to dynamics simulation, geared to supporting control-
code development for legged walking robots. While the
core articulated-body-dynamics algorithms employed by the
simulation system are well founded, the contact-force rou-
tines that we currently use are penalty-based methods and
only provide heuristic approximations of physical contact.
We therefore consider the dynamics routines to be useful in
producing qualitative models rather than quantitative ones.
The same can be said about our current sensor and actuator
models. Qualitative simulation is not appropriate in all situa-
tions. In some projects, a simulation may need to be meticu-
lously constructed to reproduce an existing (or soon to exist)
plant. In such cases, it is necessary that the model reproduce
the physical plant as closely as possible, so that precise mea-
surements and performance parameters can be gleaned from
the simulation (Ma et al. 1997). Our simulation system is not
appropriate for such work.

Fortunately, the very nature of research on the control
of legged robots makes it amenable to efficient, qualitative
dynamic simulation. There are two main reasons for this.
First, contact resolution, which is by far the most compli-
cated, time-consuming, and error-prone aspect of dynamic
simulation, is typically quite restricted and stereotyped in lo-
comotion. Second, unlike the situation for devices meant to
operate within narrow tolerances in a well-defined workspace,
walking robots are intended to be tolerant to variations in their
environment and their internal configuration; because robust-
ness and adaptability are central elements in the design of



56 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / January 2000

these control schemes, the importance ofquantitativelyre-
producing a specific environment is overshadowed by the im-
portance of being able to easily test control algorithms with a
variety of robot configurations and under a variety of qualita-
tively different environmental conditions.

The simulation system described in this paper is freely
available on the Internet for noncommercial uses at
http://www.life.uiuc.edu/delcomyn.

Acknowledgments

This research has been supported in part by the Research
Board of the University of Illinois and NSF grant BAC
92-16562.

References

Armstrong, W., and Green, M. W. 1985. The dynamics of
articulated rigid bodies for purposes of animation.Visual
Comp.1(4):231–240.

Baca, A. 1998. Application of computer animation tech-
niques for presenting biomechanical research results.
Comp. Biol. Med.28(4):449–454.

Baraff, D. 1992. Dynamic simulation of nonpenetrating rigid
bodies. PhD thesis, Cornell University.

Beveridge, J. 1998. Self-registering objects in C++.Dr.
Dobb’s J.288:38–41.

Brandl, H., Johanni, R., and Otter, M. 1986 (Vienna, Austria).
A very efficient algorithm for the simulation of robots and
similar multibody systems without inversion of the mass
matrix. Proc. of the IFAC/IFIP/IMACS Intl. Symp. on the
Theory of Robots.

Brooks, R. A. 1986. A robust layered control system for a
mobile robot.IEEE J. Robot. Automat.2(1):14–23.

Brooks, R. A. 1991a. Intelligence without representation.
Art. Intell. 471:139–159.

Brooks, R. A. 1991b. New approaches in cybernetics.Sci-
ence253(Sept.):1227–1232.

Burden, R. L., and Faires, J. D. 1993.Numerical Analysis,
5th ed. Boston, MA: PWS.

Corke, P. 1996. A robotics toolbox for Matlab.IEEE Robot.
Automat. Mag.3(1):24–32.

Davidson, H. 1996. Working model 3.0 and automation.De-
sign News52(6):172.

Elmqvist, H., Mattson, S. E., and Otter, M. 1998 (Manch-
ester). Simulation using Modelica.Proc. of the 12th Eu-
ropean Simulation Multiconference, pp. 127–131.

Featherstone, R. 1987.Robot Dynamics Algorithms.Nor-
well, MA: Kluwer Academic.

Fisette, P., Peterkenne, J. M., and Smain, J. C. 1998 (Manch-
ester). MBSOFT: A symbolic/numerical multibody pro-
gram for analyzing mechanical and mechatronic systems.

Proc. of the 12th European Simulation Multiconference,
pp. 566–570.

Freeman, P. 1989. Decoupled tree-structure approach to effi-
cient dynamic simulation of a quadruped robotic vehicle.
Master’s thesis, Ohio State University.

Freeman, P., and Orin, D. 1991. Efficient dynamic simulation
of a quadruped using a decoupled tree-structure approach.
Intl. J. Robot. Res.10(6):619–626.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995.
Design Patterns: Elements of Reusable Object-Oriented
Software.Reading, MA: Addison-Wesley.

Garcia de Jalon, J., and Bayo, E. 1994.Kinematic and Dy-
namic Simulation of Multibody Systems: The Real-Time
Challenge. New York: Springer-Verlag.

Hollars, M. G., Rosenthal, D. E., and Sherman, M. A.
1994. SD/FAST User’s Manual. Symbolic Dynamics,
Inc., Mountain View, CA.

Konolige, K. 1997 (Freiburg, Germany). COLBERT: A lan-
guage for reactive control in Sapphira.Proc. of the 21st
German Conf. on Art. Intell., pp. 31–52.

Lilly, K. 1993. Efficient Dynamic Simulation of Robotic
Mechanisms.Norwell, MA: Kluwer Academic.

Liu, J., and Qin, H. 1997. C4, a software environment for
modeling self-organizing behaviors of autonomous robots
and groups.Robotica15:85–98.

Ma, C., Buhariwala, K., Roger, N., MacLean, J., and Carr,
R. 1997. MDSF—a generic development and simulation
facility for flexible, complex, robotic systems.Robotica
15:49–62.

Mach, R., and Albrecht, R. W. 1992. A mobile robot pro-
gramming language directed by an expert system.Robot.
Manufact.5:170–173.

Manko, D. J. 1992.A General Model of Legged Locomotion
on Natural Terrain.Boston, MA: Kluwer Academic.

Marhefka, D. W., and Orin, D. E. 1996. XAnimate: An edu-
cational tool for robot graphical simulation.IEEE Robot.
Automat. Mag.3(2):6–14.

McKenna, M., and Zeltzer, D. 1990. Dynamic simulation of
autonomous legged locomotion.Comp. Graphics24:29–
38.

McMillan, S., Orin, D., and McGhee, R. 1995. Efficient
dynamic simulation of an underwater vehicle with a
robotic manipulator. IEEE Trans. Sys. Man Cybernet.
25(8):1194–1206.

McMillan, S., Orin, D., and McGhee, R. 1996. A compu-
tational framework for simulation of underwater robotic
vehicle systems.Autonomous Robots3:253–268.

Mirtich, B. 1996. Impulse-based dynamic simulation of rigid-
body systems. PhD thesis, University of California at
Berkeley.

Multon, F., Cani-Gascuel, M., and Debunne, G. 1999. Com-
puter animation of walking: A survey.J. Visualization
Comp. Animation10(1):39–54.

Nethery, J. 1993. Robotica: A structured environment for



Reichler and Delcomyn / Dynamics Simulation and Controller Interfacing 57

computer-aided design and analysis of robots. PhD thesis,
University of Illinois.

Pelich, C., and Wahl, F. M. 1997. ZERO++: An OOP envi-
ronment for multiprocessor robot control.Intl. J. Robot.
Automat.12(2):49–57.

Reichler, J., and Delcomyn, F. 1998 (Manchester). A sim-
ulation testbed for biologically inspired robots and their
controllers.Proc. of the 12th European Simulation Multi-
conference, pp. 437–442.

Shih, L. 1986. Dynamic modeling and simulation of mech-
anisms consisting of combined closed and open kine-
matic chains with compliance. PhD thesis, University of
Wisconsin-Madison.

Shih, L., Frank, A., and Ravani, B. 1987. Dynamic simu-

lation of legged machines using a compliant joint model.
Intl. J. Robot. Res.6(4):33–46.

Strippgen, S., Peters, K., and Milde, J. 1998 (Manchester).
Situated communication with a simulated robot.Proc. of
the 12th European Simulation Multiconference, pp. 448–
452.

Walker, M. W., and Orin, D. E. 1982. Efficient dynamic com-
puter simulation of robotic mechanisms.J. Dyn. Systems
Meas. Control104:205–211.

Woo, M., Neider, J., and Davis, T. 1997.OpenGL Program-
ming Guide, 2nd ed. Reading, MA: Addison-Wesley.

Zeghloul, S., Blanchard, B., and Ayrault, M. 1997. SMAR:
A robot modeling and simulation system.Robotica
15(1):63–73.


	Untitled

