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A B S T R A C T

Oxidation-reduction reactions are essential to life as the core mechanisms of energy transfer. A large body of
evidence in recent years presents an extensive and complex network of interactions between the circadian and
cellular redox systems. Recent advances show that cellular redox state undergoes a ~24-h (circadian) oscillation
in most tissues and is conserved across the domains of life. In nucleated cells, the metabolic oscillation is de-
pendent upon the circadian transcription-translation machinery and, vice versa, redox-active proteins and co-
factors feed back into the molecular oscillator. In the suprachiasmatic nucleus (SCN), a hypothalamic region of
the brain specialized for circadian timekeeping, redox oscillation was found to modulate neuronal membrane
excitability. The SCN redox environment is relatively reduced in daytime when neuronal activity is highest and
relatively oxidized in nighttime when activity is at its lowest. There is evidence that the redox environment
directly modulates SCN K+ channels, tightly coupling metabolic rhythms to neuronal activity. Application of
reducing or oxidizing agents produces rapid changes in membrane excitability in a time-of-day-dependent
manner. We propose that this reciprocal interaction may not be unique to the SCN. In this review, we consider
the evidence for circadian redox oscillation and its interdependencies with established circadian timekeeping
mechanisms. Furthermore, we will investigate the effects of redox on ion-channel gating dynamics and mem-
brane excitability. The susceptibility of many different ion channels to modulation by changes in the redox
environment suggests that circadian redox rhythms may play a role in the regulation of all excitable cells.

1. Introduction

The suprachiasmatic nucleus (SCN) of the hypothalamus is the
master regulator of the circadian rhythms in mammals. It generates the
daily rhythms of behavior, metabolism, and other important physiolo-
gical processes. The main driver of the circadian clock is a transcrip-
tion-translation feedback loop of core circadian genes. However,
emerging evidence suggest that metabolic oscillators also play a crucial
role in the generation of circadian rhythms. Circadian rhythms in cycles
of oxidation and reduction have been reported in a broad array of
mammalian tissues and cell types and are conserved across the domains
of life [1]. The discovery of a near-24-h oscillation of redox state in the

SCN also revealed that cellular metabolic state could modulate neu-
ronal excitability, an integral component of SCN timekeeping, via
modification of redox-sensitive K+ channels [2]. These studies de-
monstrate that redox homeostasis is dynamic, displays circadian char-
acteristics, and may play a role in the regulation of daily rhythms of
electrically excitable cells.

Since the pioneering work of Hodgkin and Huxley [3], the scientific
community has developed deep insights into neuronal membrane dy-
namics. Neuronal excitability is linked directly to ion channel activity.
A change in permeability of ions across the plasma membrane can lead
to significant changes in resting membrane potential. The electrical
properties of neurons and other excitable cells rely on many different
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types of voltage-gated, ligand-gated, and leak channels that are
permeable to ions such as Na+, K+, Cl-, and Ca2+. Membrane potential
(Vm) is determined by the differential distribution of these ions. Ion
channels are regulated by a vast number of ligands, post-translational
modifications, and other mechanisms. They are susceptible to mod-
ulation by phosphorylation, second messengers, gaseous signaling
molecules such as carbon monoxide (CO) and nitric oxide (NO), and by
the redox environment [2,4–7].

Cellular redox encompasses the dynamic regulation of reactive
oxygen species (ROS), antioxidants, and redox-sensitive metabolic co-
factors. ROS have been viewed historically as toxic. There are many
studies regarding their detrimental effects to the body and contribu-
tions to disease and aging. However, there is also increasing evidence
that ROS signaling is integral to a multitude of normal cellular pro-
cesses and signaling pathways [8–10]. ROS generation and redox
homeostasis are no longer only relevant as sources of oxidative stress.
Mounting evidence in the past few years shows circadian rhythms in
redox state are an intrinsic and dynamic feature of all cell types and
may contribute to daily regulatory processes.

Intrinsic circadian oscillations of signaling molecules exist in the
SCN and hippocampus, opening windows of excitability and suscept-
ibility. Cyclic changes that gate activity have been termed "iterative
metaplasticity" to describe states permissive for plasticity mechanisms
that are expressed as daily cycles [11]. In nucleated cells, the molecular
circadian clock is reciprocally connected to the redox system. These
interactions produce daily rhythms in redox state which can then
modulate neuronal activity via regulation of ion channels [2]. Thus,
day/night differences in redox state may play a role in the generation of
daily changes in brain states that underlie the potential to establish
long-lasting changes in brain function that we know as memory. In-
deed, changes in the redox state have been found to modulate cognitive
decline [12,13].

In this review, we examine fundamental features of circadian
rhythms, the role of the SCN as master circadian clock, and explore the
reciprocal connections between circadian timekeeping and the cellular
redox oscillation, including the redox modulation of neuronal excit-
ability. Then, we consider the many reports of redox modification of ion
channel activity. We propose that circadian regulation of neuronal ex-
citability via redox-sensitive ion channels may not be unique to the
SCN.

2. Circadian rhythms

The 24-h cycle of day and night generated by the Earth's rotation
has accompanied and driven the evolution of most organisms. As a
result, myriad life forms, from some prokaryotes to all eukaryotes, have
developed intrinsic daily rhythms in cellular processes, behavior, and
metabolism. The self-sustained circadian oscillation provides an evo-
lutionary advantage as it allows organisms to coordinate their internal
states and anticipate changes in the timing and duration between night
and day so that cellular, physiological, and behavioral events occur at
appropriate times. Misalignment of the internal clock with the external
environment can disrupt these functions and lead to disease [14–17].

3. The mammalian suprachiasmatic nucleus as master clock

The mammalian circadian system is organized hierarchically into a
master oscillator and secondary oscillators in the brain and body. The
suprachiasmatic nucleus (SCN) of the hypothalamus is the master cir-
cadian clock in mammals that synchronizes peripheral clocks in other
brain regions and organ systems [18–20]. The SCN is a pair of small
nuclei on either side of the third ventricle, directly above the optic
chiasm in the anterior hypothalamus (Fig. 1) [21]. Each nucleus is
composed of approximately 10,000 tightly compacted cells whose col-
lective activity is considered to be the central “pacemaker” of circadian
rhythm [22]. Destruction of the SCN results in the loss of daily rhythms

in sleep-wake cycle, body temperature, locomotor activity, drinking,
and endocrine release [23,24].

3.1. Oscillation of clock genes and proteins in the SCN

Circadian rhythms are generated by a transcription-translation
feedback loop of clock genes and proteins that form an oscillatory
molecular clock [25]. This core molecular clock consists of a hetero-
dimeric complex of protein products of the genes CLOCK and BMAL1,
which positively regulate the expression of Period (Per1, 2, and 3) and
Cryptochrome (Cry1 and 2) genes. The accumulated protein products
form their own heterodimeric transcriptional repressor complex of PER
and CRY that represses the activity of CLOCK and BMAL1. The tran-
scriptional-translational loop of these core clock genes repeats with a
period of approximately 24 h and is the basis for the mammalian mo-
lecular clock.

An additional interlocking feedback loop involves the BMAL1/
CLOCK-mediated transcription of nuclear receptor genes, Rev-Erbα/β
and RAR-related orphan receptor alpha (Rorα). To complete the circadian
loop, REV-ERB and ROR proteins then compete for binding sites within
the promoters of Bmal1 and CLOCK, where REV-ERB inhibits tran-
scription and ROR initiates transcription. Additionally, casein kinase 1
(CK1)-mediated phosphorylation contributes to timekeeping through
the destabilization of PER proteins [26]. Post-translational modifiers
like protein kinases and small molecule messengers such as cAMP and
Ca2+ play important roles to determine and modify the intrinsic cir-
cadian rhythm [27–32]. Together, these modifiers work to synchronize
firing rate, gene expression, and secretion across the SCN.

Fig. 1. The mammalian circadian clock is located in the suprachiasmatic nucleus
(SCN) of the anterior hypothalamus. Upper: In this fresh coronal section of the brain of
a rat, the SCN lies near the base (within the dashed box). Lower: Vasoactive intestinal
peptide (VIP) immunoreactive staining shows the pair of small hypothalamic nuclei is
positioned medially, on either side of the third ventricle (3 V), and directly superior to the
heavily myelinated optic chiasm (OC).
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3.2. Oscillation of neuronal activity in the SCN

Circadian rhythms in SCN electrical activity were first revealed via
in vivo recordings by Inouye and Kawamura in 1979 [33]. The activity
of the SCN neuronal population oscillates: it is nearly electrically silent
at night but exhibits significantly higher frequency during the day,
peaking at midday [2,34,35]. This rhythm exists endogenously and will
persist for days in an SCN brain slice without input from other brain
regions or the external environment [34,36,37]. Interestingly, this high
level of spontaneous action potentials occurs during the day regardless
of whether the species is nocturnal or diurnal [38]. The SCN is able to
generate these neuronal activity rhythms in vivo, in slice, and in dis-
persed cell culture [36,39,40].

Circadian oscillation in neuronal electrical activity is generated at
the level of individual neurons. The spontaneous firing of SCN neurons
emerges from modulation of a combination of intrinsic currents. These
currents can be divided into those that provide excitatory drive and
depolarization during the day, those that maintain a regular pattern of
action potentials, and those that produce the hyperpolarization that
renders SCN neurons silent at night [38]. Underlying activity rhythms
are day/night changes in resting membrane potential. Studies have
shown the resting membrane potential of neurons in the SCN is most
depolarized during midday and most hyperpolarized in the early night
[2]. The daytime depolarization of SCN neurons is accompanied by a
decrease in overall K+ conductance while a larger K+ conductance at
night results in hyperpolarization [41,42]. The differences in mem-
brane potential and ionic conductances during the day and night persist
even in the absence of synaptic activity and are likely clock-driven [43].

Whereas neuronal activity in the SCN could be interpreted as an
output of the molecular clock that mediates communication with other
brain regions, research from the past 20 years has established that
neuronal activity is an important component of rhythmic gene expres-
sion. A decade ago, a landmark study showed that electrically silencing
Drosophila melanogaster pacemaker neurons stops the free-running
rhythms of core molecular clock components PERIOD and TIMELESS,
as well as behavioral activity rhythms [44]. Furthermore, a recent study
showed that optogenetic activation and suppression of SCN neuronal
firing in mice can reset the phase and alter the period of the molecular
clock, respectively [45]. These conceptual advances establish that the
molecular rhythm and neuronal activity rhythm are, in fact, linked as
core clock mechanisms.

4. Extra-SCN clocks

Rhythms of core clock genes are found in cells and tissues
throughout the body and in regions of the brain outside of the SCN.
These molecular rhythms persist when cells or tissues are maintained in
culture in the absence of the SCN. Because non-SCN cells also contain
these endogenous molecular oscillators, the molecular circadian clock is
now recognized as a fundamental component of all cells [46,47].
However, the SCN alone behaves as the master clock. A key difference
between the SCN and peripheral oscillators with respect to emergent
behavior is in their network properties. SCN explants are capable of
sustaining synchrony via synaptic and neuropeptidergic coupling me-
chanisms. While isolated cells and cells within cultured peripheral
tissue can oscillate independently of one another [48], they are coupled
within tissues in the body [47].

In complex organisms, the circadian system is comprised of multiple
oscillators. Peripheral oscillators are not directly entrained by light, so
they rely on the SCN for synchronization within tissues and to the ex-
ternal environment. Circadian oscillations have been identified within
various structures of the central nervous system. Robust rhythms in
core clock gene expression and electrical activity have been observed in
extra-SCN hypothalamic nuclei, the olfactory bulb, amygdala, cere-
bellum, cerebral cortex, and hippocampus [49–51]. These areas differ
in phase, ability to sustain rhythmicity, and their relationship to the

SCN. The SCN entrains other oscillators partly through efferent pro-
jections, but primarily through release of diffusible factors such as
peptides and hormones [52,53]. Circadian oscillations in the liver and
hippocampus can be entrained by external cues other than light. Re-
stricted feeding is a salient signal for entraining the circadian clocks of
these peripheral oscillators, whereas the SCN is relatively unaffected
[54].

5. Circadian rhythms and metabolism

A large body of evidence has demonstrated circadian rhythmicity in
metabolism. Plasma concentrations of glucose and insulin show a day/
night pattern in mammals and the SCN is required for this rhythmicity
[55]. In addition, glucose utilization in the SCN is rhythmic, with the
highest level of uptake in the subjective day when SCN neuronal ac-
tivity peaks [56]. Furthermore, circadian rhythms and metabolism are
inextricably linked. Food acts as a powerful zeitgeber (time-giver,
German) and the circadian clock contributes to metabolic homeostasis
by shifting physiological processes to support changes in activity [57].
Animal models that lack a functional circadian clock show not only a
lack of rhythmicity, but also abnormal metabolic phenotypes [58].

Transcriptomic studies reveal that nearly half of the mouse genome
oscillates with a near-24-h rhythm in an organ-specific manner [59].
Strikingly, many of the genes that show circadian oscillation are in-
volved in metabolic functions [60,61]. Metabolomic screens of mice
and humans have found that large amounts of metabolites are rhythmic
even when conducted in constant environmental conditions. Further-
more, nuclear hormone receptors that participate in fatty acid and
glucose metabolism as well as metabolic hormones, like glucagon and
insulin, display circadian oscillation [62,63]. Recently, work from
Feeney et al. demonstrated that in eukaryotes, the level of intracellular
Mg2+ displays circadian rhythmicity and can feed back to regulate
clock periodicity [64]. What makes this finding exciting is that Mg2+ is
a necessary cofactor for ATP to be biologically active, thus giving cir-
cadian significance to global cellular energetics and vice versa. These
combined data strongly suggest that metabolism is influenced by cir-
cadian rhythm and there is increasing evidence that these metabolic
fluctuations can feed back to regulate elements of the clock.

6. Cellular redox signaling

Energy metabolism is linked to redox homeostasis. On a cellular
level, metabolic state is represented by the redox state. Redox is the
potential to donate or receive electrons for biochemical processes and
redox state can be defined by the balance of oxidizing and reducing
potential. This can be evaluated biochemically by the ratio of small
molecule cellular redox pairs, such as glutathione disulfide (GSSG)/
glutathione (GSH), nicotinamide adenine dinucleotide (NAD+/NADH),
nicotinamide adenine dinucleotide phosphate (NADP+/NADPH) or
dehydroascorbic acid (DHA)/ascorbic acid (AA) (Fig. 2). These redox
molecule pairs are sensitive to electron flow and to fluctuations in the
reducing/oxidizing potential of the cellular environment.

Cells possess multiple regulators of redox state. GSH is the most
abundant free thiol in cells and is primarily responsible for maintaining
a physiological intracellular redox environment. Reduced GSH is oxi-
dized to GSSG, and the GSH/GSSG ratio is frequently used to assess
overall redox state [65]. The thioredoxin (Trx) system is another ubi-
quitous thiol-reducing complex. Like GSH, thioredoxins serve as elec-
tron donors to reversibly reduce intracellular protein disulfides and
maintain redox homeostasis [66]. Peroxiredoxins (Prxs) are a family of
peroxidases that scavenge and reduce hydrogen peroxide (H2O2) as
regulators of the cellular redox environment. Mammals express six
different Prx isoforms (Prx1–Prx6) with distinct subcellular distribu-
tions in different brain regions and cell types. Upon encountering H2O2,
Prxs go through several levels of oxidation. The reduced thiol (-SH)
reacts to form a sulphenic acid (-SOH), then sulphinic acid (-SO2H), and
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a fully oxidized sulphonic acid (-SO3H) [67].
Relative to its size, the brain consumes a disproportionately large

amount of O2 and is highly sensitive to oxidative stress and damage.
Reactive oxygen species (ROS), such as H2O2, superoxide anion (O2

-),
and hydroxyl radical (HO•), are frequently implicated in oxidative da-
mage and pathogenesis of disease. O2

- is generated primarily as a by-
product of mitochondrial oxidative phosphorylation and also by
NADPH oxidase (NOX) enzyme complexes [68]. Only moderately re-
active, O2

- is rapidly converted to H2O2 by superoxide dismutases. H2O2

is more inert and capable of diffusing through cellular membranes [69].
In low levels, H2O2 can act as a local signaling molecule and, in high
levels, can have cytotoxic effects [70]. H2O2 is catalytically broken
down to H2O by scavenging enzymes such as catalase (Prxs), or glu-
tathione peroxidases (GPx), which keep ROS levels contained. More
reactive than either O2

- or H2O2 is HO•, which can be generated from
H2O2 in the presence of metal ions via the Fenton reaction. A careful
overall balance in production and neutralization of oxidants is main-
tained using a variety of mechanisms. When ROS levels rise sig-
nificantly and overwhelm the antioxidant defense system, oxidative
stress can occur and cause damage to cellular structures [71]. However,
small changes in ROS are integral to many biochemical processes. Ac-
cumulating evidence suggests that ROS also play important roles in
intracellular signal transduction and many physiological processes
[72–74].

Protein amino acid residues are major targets of cellular oxidants.
Many of the effects of signaling via ROS are through the reversible
modification of exposed cysteine and methionine residues of redox-
sensitive proteins. Cysteines and methionines have reactive sulfur-
containing side chains that make them more susceptible to redox
modifications than other amino acids. The thiol (–SH) functional groups
of cysteine residues make them especially susceptible to oxidation.
Upon exposure to H2O2, the redox-sensitive thiol can be reversibly
oxidized to reactive sulphenic acid (-SOH) or further oxidized to sul-
phinic acid (-SO2H) and irreversibly to sulphonic acid (-SO3H) [75].
Non-enzymatic and reversible disulfide bond formation with a nearby
cysteine is the most common product of -SOH cysteine oxidation [76].

The redox state of sulfur-containing amino acids is tightly regulated
by GSH. GSH is a major source of cellular cysteine. Its linkage to redox-
sensitive cysteine residues within proteins is termed S-glutathionyla-
tion. This transient incorporation of GSH into cellular protein via re-
active thiols is a metabolically driven form of post-translational mod-
ification [77]. Redox-sensitive methionine residues do not form
disulfide bonds and, instead, are oxidized to methionine sulfoxide
(MetO) by a variety of different ROS [78]. The reduction of oxidized
methionine is catalyzed by the enzyme methionine sulfoxide reductase

(MsrA) [79]. The redox modification of these sulfur-containing amino
acids can result in functional changes to protein structure and/or ac-
tivity.

7. Redox-molecular clockwork interactions

There is compelling evidence that redox state may play a regulatory
role in the circadian clockwork. Reduced forms of the redox cofactors
NAD(H) and NADP(H) have been shown to enhance DNA-binding ac-
tivity of the core clock proteins BMAL1 and CLOCK, while their oxi-
dized forms inhibit it. Even minute changes in cellular redox state can
affect binding activity of these circadian transcriptional activators [80].
The BMAL1/CLOCK heterodimer regulates the expression of nicotina-
mide phosphoribosyltransferase (NAMPT), a rate-limiting enzyme in
the NAD+ salvage pathway [81,82]. This relationship is the driving
force for rhythmic levels of NAD+, which in turn activate NAD+-de-
pendent histone deacetylases, sirtuin 1 (SIRT1) and sirtuin 3 (SIRT3)
[82,83]. SIRT1, an important element of metabolic control, displays
circadian oscillatory activity, and alters PER2 stabilization and CLOCK
function [84–86]. SIRT1 is localized in the mitochondrial matrix where
it mediates the deacetylation of metabolic enzymes (Fig. 3).

Heme, a protein cofactor that acts as a sensor of cellular redox state,
is another component in the metabolism-circadian relationship. Heme
reversibly binds to the circadian nuclear receptors REV-ERBα and REV-
ERBβ in a redox state-dependent manner and modulates their activity,
providing a link between energy sensing and an arm of the molecular
clock [87–89]. Heme also binds to neuronal PAS domain protein 2
(NPAS2), a CLOCK paralog that binds to BMAL, and modulates its DNA-
binding activity [90]. Another link between metabolism and circadian
systems comes from the clock's sensitivity to the AMP/ATP ratio
through AMP-activated protein kinase (AMPK)-mediated phosphoryla-
tion of CRY and casein kinase I (CK1) [91]. Phosphorylation of CRY
results in its degradation, and phosphorylation of CKIε increases its
activity and accelerates the degradation of PER2. Most recently, Hirano
et al. showed that in mammalian cells, CRY proteins are stabilized by
the redox cofactor flavin adenine dinucleotide (FAD) [92].

The first evidence of a molecular clock-independent circadian os-
cillation came in the form of redox rhythms [93]. Both sulphinic and
sulphonic forms of peroxiredoxin are considered “hyper-oxidized.” A
circadian oscillation of hyper-oxidized Prx proteins has been observed
in red blood cells. The presence of this rhythm in cells that lack a nu-
cleus established that circadian metabolic cycles can exist in-
dependently of the core molecular clock based on transcription-trans-
lation. However, in embryonic fibroblastic cells from mCry1/2 -/- mice,
hyper-oxidized Prx rhythms are altered [93]. Therefore, in nucleated

Fig. 2. Cellular redox state is determined by several redox
cofactor pairs. Redox state can be evaluated by the balance of
small molecule redox cofactor pairs that are sensitive to the oxi-
dizing/reducing potentials of the cell. These reversible reactions
are regenerated enzymatically. Depicted are glutathione disulfide
(GSSG)/glutathione (GSH), nicotinamide adenine dinucleotide
(NAD+/NADH), nicotinamide adenine dinucleotide phosphate
(NADP+/NADPH), and dehydroascorbic acid (DHA)/ascorbic
acid (AA).
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cells, there is interplay between a non-translational redox-based oscil-
lator and the clock gene-dependent oscillator. This redox cycle of Prxs is
conserved broadly across domains of life, from prokaryotes to the ro-
dent SCN [1]. These findings raise the possibility that rhythms in me-
tabolism may be an ancient timekeeping oscillator [94].

Recent studies have identified the pentose phosphate pathway (PPP)
as a regulator of circadian redox rhythms. Glucose utilization through
the PPP is essential for replenishing the cytoplasmic NADPH content as
well as for the generation of nucleotide and amino acid precursors.
NADPH availability is required for the regeneration of cellular anti-
oxidants, such as GSH, and prevention of oxidative stress. By pharma-
cological and genetic inhibition of the PPP, Rey and colleagues de-
monstrated that NADPH availability is able to alter both the phase and
period of the molecular clock in human osteosarcoma cells [95]. A si-
milar study found that PPP inhibition affects only clock gene expression
amplitude and phase with no changes in periodicity [96]. These in-
consistencies may be explained by the differences in inhibitors and cell
types employed. Taken together, these data suggest that metabolic and
redox mechanisms can modulate the core circadian clock.

This is by no means an exhaustive list of known circadian-metabo-
lism interactions. However, these findings provide strong support for
metabolic regulation of the core molecular clock and vice versa. In
mammalian systems, redox rhythms work in concert with molecular
circadian timekeeping and have both input and output roles.

8. Circadian redox rhythms and SCN neuronal excitability

Corresponding circadian oscillations of redox state and neuronal
excitability were observed in the SCN of rats and mice [2]. Through
measurement of FAD/NAD(P)H, glutathiolation, and DHA/AA ratios,
Wang et al. reported that the SCN redox environment is at its most
reduced in the mid-subjective day and most oxidized in the early sub-
jective night. Strikingly, midday corresponds to the peak in sponta-
neous action potentials and most depolarized state of membrane po-
tential (Vm), assessed by patch clamp recording of SCN neurons. Early
night corresponds to the lowest levels of spontaneous action potentials
and Vm of SCN neurons is most hyperpolarized. The circadian redox
rhythm is not present in arrhythmic Bmal1-/- mice, suggesting that it is
dependent upon a functional circadian molecular clock [2].

Imposed changes in redox state cause immediate changes in excit-
ability [32]. Thus, unlike the transcription-translational relationship of
changes in the molecular clock to SCN physiology, redox modulates
neuronal excitability by tight coupling. A parallel relationship between
redox state and membrane potential of SCN neurons suggests metabolic
state has a modulatory role in membrane excitability. Patch-clamp
electrophysiology showed that redox state regulates SCN neuronal ex-
citability via post-translational modulation of K+ channels. The rela-
tively reduced daytime environment decreases hyperpolarizing K+

currents, which results in membrane depolarization and increased
neuronal activity. Conversely, the oxidized nighttime environment
potentiates K+ currents, resulting in membrane hyperpolarization and
reduced neuronal activity. Application of pharmacological blockers
suggests that both leak and A-type K+ channels in SCN neurons are
sensitive to redox environment and mediate changes in membrane ex-
citability (Fig. 4) [2]. These findings established a new connection
between redox state and neuronal excitability in the SCN: metabolic
state can be a modulator, rather than only the result, of neuronal ac-
tivity.

Extending beyond the central nervous system (CNS), endogenous
redox oscillations can have modulatory effects on other excitable cells
in the body. For instance, there is considerable research on how the
heart responds to ROS. The redox environment can affect cardiac ex-
citability via modulation of Ca2+, Na+, and K+ ion channels [97].
Furthermore, a growing number of studies are focused on the re-
lationship between redox and pain pathways, specifically, the effects of
redox modulation of ion channels and excitability in peripheral sensory
neurons [98–100].

9. Redox modulation of K+ channel activity

Ion channels permeable to K+ are components of the plasma
membrane of most mammalian cells. K+ channels play central roles in
the regulation of neuronal excitability via the resting membrane po-
tential, the repolarization phase of action potentials, and firing fre-
quency [7]. Alterations in their activity can lead to changes in many
aspects of neuronal activity. Four major classes of K+ channels can be
identified when grouped by common characteristics and function:
voltage-gated, Ca2+-activated, inward-rectifying, and leak K+

Fig. 3. Interactions between cellular metabolism,
the circadian molecular clock, and ion channels.
The core molecular clock consists of positive ele-
ments, such as circadian locomotor output kaput
(CLOCK) and brain and muscle ARNT-like 1
(BMAL1), that positively regulate the expression of
PERs and CRYs, which comprise negative elements,
repressing the activity of CLOCK and BMAL1 [26].
An additional feedback loop involves the BMAL1/
CLOCK-mediated transcription of REV-ERB and RAR-
related orphan receptor (ROR) proteins that inhibit
and initiate Bmal1 transcription, respectively. Casein
kinase 1 (CK1) enzymes contribute to timekeeping
through phosphorylation and destabilization of PER.
Reduced forms of NAD(H) and NADP(H) enhance
DNA-binding activity of BMAL1 and CLOCK, while
oxidized NAD+ and NADP+ inhibit their DNA
binding [80]. Nicotinamide phosphoribosyl-
transferase (NAMPT) is a rate-limiting enzyme in the
NAD+ biosynthetic pathway and is the driving force
for rhythmic levels of cellular NAD+ which, in turn,
activate NAD+-dependent histone deacetylases, sir-
tuin 1 (SIRT1) and sirtuin 3 (SIRT3) [82,83]. SIRT1
has been found to exhibit circadian oscillatory ac-
tivity and alter clock gene expression. SIRT3 is lo-
cated in the mitochondria where it mediates meta-

bolic processes. Heme is a known sensor of cellular redox state that binds to nuclear receptors REV-ERBα and REV-ERBβ and modulates their activity [87,88]. AMP-activated protein
kinase (AMPK) is an important sensor of cellular energy state activated by a high AMP/ATP ratio. AMPK mediates phosphorylation of CRY and CK1 [91]. Phosphorylation of CRY marks it
for degradation and phosphorylation of CK1 increases its activity and accelerates degradation of PER2. The balance between ROS levels and antioxidant defense systems, such as
peroxiredoxins (Prx) and glutathione (GSH), contribute to the overall redox state. Ca2+, K+, and Na+ ion channels have been shown to be sensitive to redox modifications.
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channels. In this section, we will discuss the redox sensitivity of voltage-
gated, Ca2+-activated, and inward-rectifying K+ channels, which have
been more thoroughly studied.

9.1. Voltage-gated K+ channels

Voltage-gated potassium (Kv) channels form a large and evolutio-
narily conserved family of ion channels that play essential roles in the
generation and propagation of electrical impulses in excitable cells.
Each Kv channel contains four α−subunits that form the pore structure
and may also contain auxiliary β−subunits that modify channel ac-
tivity [102]. Kv channels can be physiologically divided based on in-
activation properties into fast-inactivation A-type K+ channels and
delayed-rectifier K+ channels. Rapid inactivation occurs via the "ball
and chain" mechanism where the N-terminus of an α− or β−subunit
blocks the pore and inhibits ion flow [103]. This is also sometimes
referred to as "N-type inactivation."

Several rapidly inactivating (A-type) Kv channels have been found
to be sensitive to the redox environment. Ruppersberg et al. showed
that A-type K+ channels cloned from mammalian brain can be modu-
lated by intracellular GSH. In an oxidized state, reversible formation of
a disulfide bond forms in the inactivating gate, preventing it from
closing/inactivation. Application of reduced GSH rapidly restored fast-
inactivation of the channel [104]. This modulation of inactivation
properties may lead to changes in hyperpolarization or depolarization
of the membrane. Similar redox modulation of β−subunit cysteine
residues can determine inactivation states [103,105]. Additionally,
subsequent studies have shown that the oxidation of methionine in Kv
channels rapidly reverses the inactivated state of the channel [106].

Several types of delayed-rectifier K+ channels are expressed in the
CNS with distinct channels localized to specific areas [107]. In freshly
dissociated CA1 neurons from the rodent hippocampus, application of
H2O2 inhibits delayed rectifier K+ currents. The effect is completely
abolished by the addition of membrane-permeable thiol-reducing
agents, indicating the involvement of sulfhydryl groups [108]. Fur-
thermore, oxidation by H2O2 increases M-type K+ current in superior
cervical ganglion (SCG) neurons and, consequently, decreases neuronal
resting membrane potential [109]. These effects result in reduced

neuronal excitability and are reversed by the reducing action of di-
thiothreitol (DTT). The mammalian Shaker family channels (Kv1) can
undergo inactivation from their associated β subunits (Kvβ). Studies
have shown that the Kvβ subunits are oxidoreductase enzymes that
bind and utilize NADPH, coupling channel activity with cellular redox
[105]. Oxidation of Kvβ-bound NADPH limits N-type inactivation by
obstructing the N-terminus from blocking the channel, leading to a
potentiated K+ current (Fig. 4) [101].

9.2. Ca2+-activated K+ channels

The large conductance Ca2+- and voltage-activated K+ (BK) chan-
nels contribute to a variety of functions, including the regulation of
membrane excitability and intracellular Ca2+ concentration. BK chan-
nels are activated during action potentials by membrane depolarization
and Ca2+entry through voltage-sensitive Ca2+ channels. Fast BK acti-
vation leads to hyperpolarization and closure of Ca2+ channels [110].
Under physiological conditions, intracellular Mg2+ also is capable of
enhancing BK channel activity with low affinity independent of the
high affinity Ca2+ binding site [111–113]. BK channels are essential for
circadian pacemaker neuronal firing in the SCN with peak activity that
suppresses spontaneous firing at night [114]. Daily expression of SCN
BK channels shows circadian rhythmicity in the absence of light and is
dependent on the intrinsic molecular clock [115–117]. Although BK
channel expression is decreased during the day and BK activity is sen-
sitive to the intracellular Ca2+ concentration, N-type inactivation of BK
channels also contributes to the decrease in daytime K+ current that
modulates SCN firing rhythms [114].

Similar to voltage-gated K+ channels, BK channels contain a tetra-
meric pore formed of α subunits that may be associated with auxiliary β
subunits that confer various functional properties to the channel [118].
BK channels have been shown to be directly modulated by redox state
with somewhat inconsistent results. Direct application of reducing and
oxidizing agents modulates activity of human Ca2+-activated K+ (BK)
channels expressed in Xenopus oocytes and human embryonic kidney
cells. The thiol-reducing agent DTT enhances and stabilizes channel
activity while the oxidizing agent H2O2 decreases the channel open
probability [119].

In dissociated adult rat hippocampal pyramidal neurons, application
of GSSG, oxidized glutathione, increases channel open probability and
thus activity, while application of GSH, reduced glutathione, reverses
the effects [120]. Another study using cultured neonatal rat hippo-
campal neurons reported the opposite results: GSSG decreases channel
activity and GSH activates the channels [121]. These conflicting results
may be explained by the heterogeneity of ion channels due to the
variety of accessory subunits. BK channels have four known β subunits
and each modulates channel function in different ways [122]. Ad-
ditionally, BK channels have both cysteine and methionine residues that
are redox sensitive; oxidation of the different amino acids appears to
have opposite effects on channel activity [123–125].

9.3. Inward rectifying K+ channels

Unlike most K+ channels, inwardly rectifying K+ (Kir) channels are
characterized by greater inward flow rather than outward flow. They
are an important class of K+ channels that contribute to regulation of
membrane potential and activity in excitable cells. Structurally, Kir

channels are tetramers with subunits of two transmembrane domains
and cytoplasmic N- and C-terminal domains linked by a conserved pore
region [126–128]. Under physiological conditions, these channels dis-
play greater conductance when membrane potential is more negative
than the reversal potential of K+ and permit less flow when membrane
potential is more positive [129–131]. Inward flow of ions through Kir

channels is due to interactions with intracellular Mg2+ and polyamines,
which physically block the cytoplasmic region preventing ion efflux
[132–134].

Fig. 4. Day-night oscillation of the redox environment modulates SCN neuronal
excitability. In the relatively reduced daytime environment, more K+ channels close and
the neuronal membrane becomes more depolarized, bringing the membrane potential
closer to threshold for action potentials. In the relatively oxidized nighttime environment,
more K+ channels open and the neuronal membrane becomes hyperpolarized [2]. Some
voltage-gated K+ channels have been shown to have oxidoreductase Kvβ subunits that
bind the redox cofactor NADPH, which determines gating dynamics [101]. This confers
sensitivity to the local redox environment.
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High-resolution kinetic analyses demonstrate that Kir channels are
susceptible to redox regulation. Ruppersberg and Fakler first observed
that presence of the reducing agent DTT in the buffer solution altered
the kinetics of Kir2.1channels expressed in Xenopus oocytes [135].
Furthermore, application of DTT reversibly increased channel activity
of G protein-coupled inwardly rectifying K+ (GIRK) channels Kir3.1/3.4
[136]. This modulatory activity depends upon a specific cysteine re-
sidue in the N-terminus because mutation of this cytoplasmic residue
abolishes redox-mediated effects. Beyond redox modifications, the de-
pendence of Kir and BK channel activity on cytoplasmic Mg2+ avail-
ability raises the interesting question of whether circadian oscillation in
intracellular Mg2+concentration can also exert rhythmic modulatory
effects on ion-channel kinetics. Thus, there are multiple potential ave-
nues for circadian metabolic regulation of neuronal excitability.

10. Redox modulation of Ca2+channel activity

Calcium has the unique role of contributing to the membrane
electrical potential as well as acting as a second messenger in the cy-
toplasm. Intracellular Ca2+ is an important regulator of neuro-
transmitter release, ion channel activation, gene regulation, and action
potential generation [137]. Elevated cytosolic Ca2+ in neurons comes
from the endoplasmic reticulum (ER) or the extracellular space.

10.1. Voltage-gated Ca2+ channels

Ca2+ influx from the extracellular space is achieved primarily
through several voltage-gated Ca2+ channels and Ca2+-permeable ca-
tion channels. Voltage-dependent Ca2+ channels can be classified based
on their sensitivity to activation into high-voltage-activated (HVA) and
low-voltage-activated (LVA) channels. LVA channels are also known as
"transient" T-type channels. HVA channels are further subdivided into
L-, N-, P, Q-, and R-type channels. Both L-type and T-type Ca2+ currents
contribute to the excitatory drive of SCN neurons in the morning, and
the L-type current amplitude shows a diurnal rhythm [38].

T-type Ca2+ channels have been widely implicated in redox sensi-
tivity of nociceptive neurons [138]. A study using dissociated primary
sensory dorsal root ganglion (DRG) neurons demonstrated that T-type
currents are significantly enhanced in the presence of a sulfhydryl-re-
ducing agent and inhibited in the presence of a sulfhydryl-oxidizing
agent, suggesting that T-type Ca2+ channels are redox sensitive [139].
Interestingly, the same study by Todorovic et al. showed that while
redox reagents affected the T current in DRG cells, none had an effect
on the HVA current, event at high concentrations. Furthermore, the
presence of reducing agents enhances neuronal excitability of periph-
eral nociceptors through T-type channel modulation [98,99]. Studies
show that the Cav3.2 isoform of T-type Ca2+ channels is the target of
redox modulation [139–141]. Consistent with these results, Cav3.2 T-
type currents in the thalamus are enhanced by thiol-reducing agents L-
cysteine and DTT, while the oxidizing agent 5,5-dithio-bis-(2-ni-
trobenzoic acid) (DTNB) inhibits the currents [142].

Many studies have demonstrated that L-type Ca2+ currents are af-
fected by reducing and oxidizing agents. However, most of these were
conducted in non-CNS cells. Thiol-specific oxidizing and reducing
agents have been shown to modulate L-type Ca2+ channels in cultured
cardiomyocytes and smooth muscle cells. Oxidizing agents increased
the basal L-type current and reducing agents decreased the current in
some cells whereas oxidizing agents inhibited the current in other cells
[131,143,144]. There is evidence that changes to current activity in the
presence of H2O2 and thiol-oxidizing agents is due to S-glutathionyla-
tion of the L-type Ca2+ channel [145,146]. These conflicting effects of
oxidation may reflect differences in subunit composition, cell type, and
membrane voltage.

10.2. Intracellular Ca2+ channels

Intracellular Ca2+ stores are released from the endoplasmic re-
ticulum (ER) by the inositol triphosphate (IP3) receptor in IP3-mediated
release and Ca2+-induced Ca2+ release via the ryanodine receptor
(RyR) on the ER. Ample evidence demonstrates that the activity of RyR
is sensitive to the cellular redox environment. RyRs are Ca2+ channels
embedded in the membrane of the endoplasmic reticulum and are re-
sponsible for release of Ca2+ from intracellular stores. RyR are sus-
ceptible to many posttranslational modifications, with redox mod-
ification being one of them. The sulfhydryl groups of RyR cysteine
residues are subject to reversible S-nitrosylation and S-glutathionyla-
tion, which can affect channel structure and activity. Additionally,
oxidizing agents increase RyR opening probability while reducing
agents have the opposite effect [147–149]. The RyR is most active
under oxidizing conditions, making redox state a potential regulator of
intracellular Ca2+ signaling. It is noteworthy that the activity of the
RyR in the SCN undergoes tight circadian regulation. RyR are sensitive
to activation in early night, when the oxidation state of the SCN is
maximal [2150].

11. Redox modulation of Na+ channel activity

Voltage-dependent sodium channels underlie the generation of ac-
tion potentials in many excitable cell types. The fast-inactivating Na+

current initiates action potentials, however, the Na+ current also has a
voltage-dependent non-inactivating component in some cells [151].
This persistent Na+ current is a key component of the excitatory drive
for SCN neurons to be spontaneously active [38]. Like K+ and Ca2+

channels, Na+ channels are susceptible to redox modulation. Wang and
colleagues observed that application of Chloramine-T (ChT), an oxidant
that targets both cysteine and methionine residues, inhibits channel
inactivation in toad myelinated nerve fibers and squid giant axons
[152,153]. Further investigation revealed that it is the oxidation of
methionine residues by ChT that attenuates fast inactivation of some
Nav isoforms [154]. These studies show oxidation of several methionine
residues suppresses inactivation; however, the cysteine residues of Na+

channels are also targets of redox modulation. In cultured neuro-
blastoma cells, thiol oxidizers significantly inhibited Na+ currents,
which could be fully reversed by thiol-reducing agents DTT and in-
tracellular GSH [155].

12. Circadian redox modification of membrane excitability in
Drosophila melanogaster

The Drosophila melanogaster circadian system provides perhaps the
most direct example for the interconnections between redox status,
neuronal excitability, and the core components of the circadian clock.
Approximately 150 neurons have been identified as the circadian clock
circuit in the Drosophila CNS. These neurons are organized into clusters
that include the large and small lateral ventral neurons (lLNvs and
sLNvs), which play important roles in timekeeping [156]. Electrical
properties of these pacemaker neurons show diurnal variation with
higher resting membrane potential and greater frequency of sponta-
neous firing during the subjective day than the subjective night [157].
Similar to the SCN, this oscillation in excitability helps maintain cir-
cadian rhythmicity and also is subject to circadian regulation
[44,158,159].

In this system, Cryptochrome (CRY) is photosensitive and functions
as a blue light photoreceptor that regulates circadian entrainment
[160,161]. CRY is expressed in clock neurons and interacts with the
core circadian machinery by binding to Timeless (TIM) upon light ac-
tivation to initiate its degradation. Light-activated CRY is also known to
regulate the firing rate of lLNv arousal neurons through modification of
K+ channel conductance [162]. In fact, CRY is coupled to neuronal
electrical activity by redox modulation of ion channels. Upon light
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activation, the CRY chromophore flavin adenine dinucleotide (FAD) is
reduced. This change in redox state is coupled to redox-sensitive β
subunits of the voltage gated K+ channels, leading to rapid membrane
depolarization [163].

13. Conclusion

The balance between generation of ROS and availability of anti-
oxidant defense systems in the cell is reflected in the redox state. There
is increasing evidence that small changes in ROS can regulate diverse
cellular processes and pathways. Many proteins, including ion chan-
nels, can be modified by oxidizing or reducing reactions. The discovery
of endogenous and conserved circadian redox oscillations brings time-
of-day significance to all cellular processes that are susceptible to redox
regulation. Wang and colleagues demonstrated that circadian redox
environment of the SCN can modulate K+ ion channel activity and thus
neuronal excitability [2]. This is the first and, to our knowledge, only
example of the modulation of neuronal excitability by redox state in a
circadian-dependent manner in mammals.

The SCN is unique among brain regions in that synchronized neu-
ronal firing is independent of synaptic input, depending instead upon
modulation of multiple intrinsic currents for daytime excitatory drive
and nightly silencing. It is not difficult to appreciate how circadian
redox regulation of key ion channels can rhythmically modulate SCN
neuronal activity. However, it is challenging to infer the relationship
between redox state and neuronal activity in other brain regions where
studies have focused primarily on high-resolution relationships be-
tween redox and ion channel kinetics; insight on cellular changes in
membrane potential and excitability due to redox modulation of spe-
cific ion channels in these regions is lacking. We predict that this re-
lationship may vary across brain regions on a case-by-case basis de-
pending on neuronal and circuit properties. This important area
remains to be explored.

Numerous reports have demonstrated redox regulation of ion
channels that contribute to cellular excitability. Thus, it is likely that
circadian rhythms in redox state extend beyond the SCN to diverse
brain regions where they may contribute to regulation of neuronal
excitability. Furthermore, the circadian timing system is present in all
tissues and cellular redox state has emerged as a contributor to tissue-
specific rhythmicity. The redox oscillation has the potential to orches-
trate the activation state of ion channels that underlie daily oscillations
of electrical activity in all excitable cells throughout the body, enabling
a nuanced fluctuation of excitable states. Redox-driven modulation of
ion channels may be a fundamental form of regulation of physiological
processes. The likelihood of this scenario raises the urgency of under-
standing the cellular and molecular groundwork and timing mechan-
isms that generate the metabolic redox oscillator and their relationship
to the transcription-translation oscillator. Establishing these inter-
connections will shed light on the general role of cellular redox state in
circadian timekeeping and in physiological regulation broadly.
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