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Abstract

The recent identification of specific genes responsible for the generation
of endogenous circadian rhythmicity in the suprachiasmatic nucleus
presents a new level of investigation into endogenous rhythmicity and
mechanisms of synchronization of this circadian clock with the environ-
mental light/dark cycle. This article describes techniques that employ anti-
sense and decoy oligodeoxynucleotides (ODN) to determine the roles of
specific molecular substrates both in endogenous rhythmicity and in reg-
ulating the effects of light on the mammalian circadian clock. Application
of antisense ODN technology has revealed a role for timeless (Tim) in the
core clock mechanism and established that induction of period1 (Per1) is
required for light responsiveness. Likewise, a decoy ODN designed to
sequester activated CREB protein definitively demonstrated a require-
ment for CRE-mediated transcription in light signaling. Experiments de-
signed with these molecular tools offer new insights on the interaction of
cellular processes and signaling with the molecular clockworks.

Introduction

The rotation of the earth on its axis, and the resulting daily alternation
of light and darkness, imparts arguably the single-most persistent, stable
environmental factor influencing the evolution of life on this planet. The
importance of the ability to measure time on a daily scale is reflected by the
genomic incorporation of circadian rhythmicity, or near 24-h patterns of
physiology and behavior driven by gene expression, into nearly all eukary-
otic organisms. This internal clock can generate and maintain rhythms in
the absence of external stimuli, but it also retains the ability to respond to
specific cues to allow synchronization with the solar cycle.

There is an emerging consensus that individual cells in virtually all
tissues contain clocks; however, in mammals, organismic rhythmicity re-
mains an emergent property of the suprachiasmatic nucleus (SCN).
Strategically positioned in the basal hypothalamus adjacent to the optic
chiasm, the SCN navigates a recurrent sequence of dynamic cellular events,
driven by the coordinated function of a core group of clock genes and
organized into discrete time domains. Progression through this daily cycle
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is characterized by waxing and waning sensitivities of the SCN to resetting
stimuli, such as to light extending inappropriately into the night. This
circadian oscillation in sensitive periods is underscored by clock-controlled
adjustments in available molecular and biochemical substrates and
activation of signal transduction pathways (Gillette and Mitchell, 2002).

The circadian clockwork is embedded in alternating transcription–
translation loops of a limited number of clock genes and their products
that together generate near 24-h periodicity (King and Takahashi, 2000).
Clock genes, by convention, are those essential to circadian timekeeping.
Several mammalian clock genes appear to be highly conserved elements of
circadian clocks across phyla (Okamura et al., 2002). In some cases, they
have assumed additional roles, as regulators of developmental pattern
formation (Li et al., 2000; Xiao et al., 2003) or the cell cycle (Matsuo et al.,
2003), which has complicated analysis of a specific gene’s timekeeping
role in the context of a central brain clock of mammals. Furthermore, the
SCN is composed of paired clusters of �10,000 cells. Whereas circadian
clocks are properties of single cells, how timekeeping is organized within
the SCN tissue is unclear. Nevertheless, insights into the positive and
negative regulation of clock gene transcription and the roles of clock
effector proteins and their regulation within the SCN are emerging. Studies
in vivo and in vitro are defining essential elements and critical regulators.
This article reviews methods for analyzing SCN rhythmicity in vivo and
in vitro with new techniques that can probe the contribution of specific
molecular elements to the mammalian clockwork, the regulatory pathways
that intersect it, and clock-controlled outputs.
Analysis of SCN Rhythmicity In Vivo and In Vitro

Changes in rhythmic locomotor activity in freely behaving rodents have
long been considered the ‘‘gold standard’’ for analysis of function in
mammal models of circadian timekeeping. These studies take advantage
of the fact that locomotor activity cycles readily entrain to light:dark cycles
and persist when the animal is placed in constant environmental lighting
conditions, albeit with a somewhat altered period (tau, �) under these free-
running conditions. Over the years, a plethora of substances have been
tested by injection, either systemically or by stereotaxic direction into
the ventricular system, into the SCN or other brain regions of interest.
Typically substances are tested for their direct effects on the circadian
timing system or for their impact on well-characterized photic or nonphotic
phase shifts in behavioral rhythms. Advantages of this model system in-
clude the opportunity to examine overt effects on the entire circadian
system and, more recently, the ability to directly couple changes in the
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expression of specific genes to alterations in animal behavior. Disadvan-
tages include the fact that results may not reflect only what is happening
in the SCN, but also within multiple layers of integration at other brain and
body sites because the SCN is intricately connected to multiple input and
output systems.

Direct measures of SCN activity in vivo have revealed an oscillatory
pattern of a high activity in the daytime and low activity at night. This
pattern extends from spontaneous neural activity (Inouye and Kawamura,
1982) to energy utilization (2-deoxyglucose) (Schwartz et al., 1980, 1983) to
mRNA expression of certain clock genes (Per, Tim). High daytime activity
is consistent across diverse mammals, including both nocturnal (Burgoon
et al., 2004; Inouye and Kawamura, 1979; Kurumiya and Kawamura, 1988;
Yamazaki et al., 1998) and diurnal rodents (Sato and Kawamura, 1984).
Other brain regions also show circadian oscillations in neural activity
(Inouye and Kawamura, 1982; Szymusiak et al., 1998), but only in the
presence of the SCN. Thus, spontaneous oscillation in the SCN drives
circadian rhythms at other brain sites. The selective pressures that have
caused universal high daytime activity in the SCN are unknown; however,
it follows that the signals that pattern the range of circadian behaviors, such
as when sleep/arousal occur relative to the day/night cycle, must be regu-
lated outside of the SCN.

Hypothalamic brain slices containing the paired SCN provide a mecha-
nism for direct probing of SCN function with minimal interference from
extra-SCN sources. Despite surgical deafferentation, separation of rostral
and caudal components, and lack of endocrine stimulation, the cultured
SCN retains its spontaneous, nearly 24-h oscillations in gene expression
(Yamazaki et al., 2000), neuronal firing rate (Prosser and Gillette, 1989),
and peptide secretion (Shinohara et al., 1995). Neuronal activity of SCN
slices shows a distinct rhythm of electrical activity with a peak in midsub-
jective day (Green and Gillette, 1982) like those observed in vivo (Inouye
and Kawamura, 1979). The time of the peak in electrical activity predict-
ably displays circadian periodicity that persists up to 3 days ex vivo (Prosser
and Gillette, 1989). Thus, this circadian rhythm in neuronal firing rate has
been used extensively as a bioassay to study mechanisms of phase resetting
in the SCN (Gillette and Mitchell, 2002).

The SCN expresses specific temporal domains, or windows of sensitivi-
ty, defined by continuously changing access to intrinsic signaling mol-
ecules. These sensitivities are easily probed in the SCN slice by applying
stimuli to receptive regions and observing the effects on the timing of the
peak oscillation of the electrical activity rhythm. Pharmacological ap-
proaches using the SCN slice preparation have identified specific cellular
substrates that underlie phase resetting in response to a variety of stimuli.
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Importantly, the validity of the SCN brain slice preparation has been
demonstrated repeatedly by experiments performed in whole animal mod-
els using circadian wheel-running activity as a measure of rhythmicity. In
most instances, results from pharmacological approaches using SCN slices
in vitro are consistent with in vivo studies, particularly when the test
substance is injected directly onto the SCN. For example, inhibition of
nitric oxide synthase blocks light-induced phase resetting in vivo (Weber
et al., 1995a), and glutamate, the neurochemical messenger of light, stimu-
lates the light-activated signaling pathways and phase resetting in vitro
(Ding et al., 1994). Furthermore, inhibition of protein kinase G blocks only
light- or glutamate-induced phase advances, with no effect on phase delays
(Ding et al., 1998; Mathur et al., 1996; Weber et al., 1995b). The major
difference between in vivo and in vitro approaches to phase resetting lies in
the magnitude of the phase shift. Phase shifts in vitro are generally larger in
amplitude than those observed in vivo. In the rat, light-induced phase shifts
in vivo are commonly in the range of 1 h, whereas glutamate-induced phase
shifts in this same animal model are usually around 3 h (Ding et al., 1994).
Similarly, we observed 3.5-h phase delays induced by PKG inhibition
in vitro, but the same treatment into the SCN in vivo caused phase delays
of less than 1 h (Tischkau et al., 2003b).

Behavioral wheel-running activity and SCN electrical activity have
been valuable tools to assess cellular mechanisms that underlie circadian
rhythmicity. The discovery of circadian clock genes has provided another
level of depth of inquiry into circadian clock function. Behavioral wheel
running and SCN electrical activity rhythms remain essential bioassays for
exploring gene function and coupling signaling pathways to circadian gene
function within the clock. This article provides insight into new techniques
that enable exploration of the significance of clock genes, as well as other
molecular elements that activate the genome, to circadian behavior.
Targeted Deletion of Clock Genes

The generation of animals bearing genetic deficiency in a specific pro-
tein product is often considered the definitive test for establishing the
physiological role of any gene. The same is true for those genes tentatively
defined as circadian clock genes. Whereas these techniques are relatively
inexpensive and expeditious in several model circadian systems, such as
Drosophila and Neurospora, the development of mammalian models
deficient in one or more clock genes has required considerable effort.
Animals are subjected to customary testing, typically wheel-running be-
havior under constant conditions and responsiveness to nocturnal light, to
assess rhythmicity. These animals have been important for establishing the
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relative importance of several core clock genes, including Clock (King et al.,
1997; Vitaterna et al., 1994), bmal1 (Bunger et al., 2000), Per 1–3 (Bae et al.,
2001; Cermakian et al., 2001; Shearman et al., 2000; Zheng et al., 1999,
2001), and Cry1–2 (Okamura et al., 1999; Thresher et al., 1998; van der
Horst et al., 1999) for circadian rhythmicity. In addition, mutant animals
have also established roles for an ever-expanding number of regulatory
elements, such as casein kinase Ie (Lowrey et al., 2000) and REV ERB�
(Preitner et al., 2002), and clock output molecules, such as prokineticin
2 (Cheng et al., 2002), phospholipase C �4 (Park et al., 2003) and D-binding
protein (DBP) (Lopez-Molina et al., 1997).

Experience indicates that analysis of data from these animal models is
not always straightforward and must be interpreted with caution. Bmal1�/�

mice exhibit the expected immediate disruption of circadian wheel-running
activity under constant environmental conditions (Bunger et al., 2000). In
contrast, animals bearing an ENU-induced mutation of the transactivation
domain of mCLK exhibit a lengthened free-running period followed by a
gradual loss of rhythmicity (Antoch et al., 1997; King et al., 1997; Vitaterna
et al., 1994). Moreover, evolutionary duplication of the Per and Cry genes
adds additional complexity. Deletion of Per3 has no effect on rhythmicity
(Shearman et al., 2000). Whereas some discrepancies have been noted
among mice with targeted deletion of either Per1 or Per2, the consensus
is that these animals have a partially functional clock. Most animals display
significantly reduced free-running periodicity (Bae et al., 2001; Cermakian
et al., 2001; Zheng et al., 1999, 2001); animals generated by one laboratory
also exhibit disrupted rhythms after prolonged exposure to constant dark-
ness (Bae et al., 2001). Likewise, mutations in either Cry1 or Cry2 result in
altered periodicity, but retention of rhythmicity (Okamura et al., 1999;
Thresher et al., 1998). Simultaneous disruption of Per1 and Per2 or of
Cry1 and Cry2 results in animals whose rhythms are immediately disrupted
when they are placed in constant darkness (van der Horst et al., 1999;
Zheng et al., 2001).

Inconsistencies with studies in mutant animals likely stem from the
developmental nature of the model, where other genes may compensate
for the missing gene, or from differing genetic backgrounds of mouse
strains, thereby providing misleading or false-negative results. For exam-
ple, pharmacological studies have implicated a role for nitric oxide in light-
induced phase resetting (Ding et al., 1994; Melo et al., 1997; Weber et al.,
1995b). However, mice deficient in either nNOS or eNOS show normal
responses to nocturnal light (Kriegsfield et al., 1999a,b, 2001). Furthermore,
animals with a targeted deletion of protein kinase G-II display abnormal
phase delays and normal phase advances, despite pharmacological data
that implicate a role for PKG restricted to the late night, when light causes
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phase advance of rhythmicity (Ding et al., 1998; Mathur et al., 1996; Oster
et al., 2003; Weber et al., 1995b). Additionally, the embryonic lethality of
mTim�/� mice led to premature exclusion of this core gene from the
mammalian clockwork (Gotter et al., 2000).
Antisense Oligodeoxynucleotides and Small Interfering RNA
as Tools to Investigate Gene Function in Circadian Timekeeping

Whereas generation of tissue-specific, conditional deletion or induction
of target genes will likely overcome many of the problems associated with
traditional approaches to genetic deletion of clock genes, this technology
remains in its infancy. Thus, antisense oligodeoxynucleotide (�ODN) and,
more recently, small interfering RNA (siRNA) approaches have been used
as inexpensive models devoid of the developmental problems inherent to
the whole animal targeted deletion paradigms (Estibeiro and Godfray,
2001). The distinct advantage of this approach in circadian biology is the
ability to reversibly downregulate expression of the gene of interest in an
adult animal in a time- and tissue-specific manner. In the brain, �ODN and
siRNA can be directed to the site of interest by stereotaxic cannula place-
ment. Furthermore, �ODN technology is widely adaptable for use in
numerous species, whereas traditional genetic approaches are restricted
primarily to mice.

Watson–Crick base pair formation dictates that �ODN will bind to the
sense stand of the RNA or DNA of interest with a high degree of specificity
and thus block the formation of gene products. Typically, the �ODN is
designed to target a specific mRNA sequence. Criteria that must be consid-
ered when designing an �ODN include (1) the uniqueness of the target
sequence, (2) the length and sequence of the�ODN, (3) modifications of the
nucleotides, and (4) appropriate controls (Kashikara et al., 1998). Although
there is currently no way to predict the best target sequence to yield the
maximal effect, two commonly successful targets include the 3

0
-untranslated

region and the AUG translation initiation codon. Use of the latter predicts a
mechanism of action through blockage of translation by preventing binding
of initiation factors. The length of the �ODN must be considered: it must be
long enough to confer specificity to the sequence of interest, yet short
enough to allow uptake into the cell. In our hands, 15- to 21-mer �ODNs
are highly effective (Barnes et al., 2003; Tischkau et al., 2003a,b). The
�ODN sequence should always be evaluated to avoid those that will form
strong secondary structures because they are self-complementary.

Modifications can be introduced to increase the half-life of the
�ODN within the cell. Common modifications include phosphorothioate,
methyl phosphate, phosphoroamidate, and methyl phosphate derivatives



[31] oligodeoxynucleotides in circadian rhythmicity 599
(Cho-Chung, 2003). The unmodified �ODN is readily degraded by endo-
or exonucleases so it has a relatively short half-life of an estimated 20 min
(Kashikara et al., 1998). In contrast, phosphorothioate modifications confer
nuclease resistance and are still present 8–16 h after injection into hypo-
thalamic sites (Ogawa et al., 1995). However, this same modification can
impair cellular uptake of the �ODN, decrease the specificity of binding to
the RNA of interest (Kashikara et al., 1998), exert nonspecific effects by
binding to proteins and small molecules (Perez et al., 1994; Yakubov et al.,
1993) and, in some cases, can be toxic (Hebb and Robertson, 1997).

Because of the potential for nonspecific effects, design and use of
appropriate controls are critical for interpretation of data obtained in
�ODN experiments. Sense ODN that is complementary to the �ODN is
a commonly used control. However, sense ODN has the potential to bind
DNA for the gene of interest and thereby inhibit transcription (Kashikara
et al., 1998). Therefore, a scrambled ODN with the same base composition
as the �ODN but in random order is a better control. Additionally, repla-
cing one or more nucleotides in the �ODN with a different base can disrupt
complementary binding. We have found that as little as a single base pair
mismatch in a 15-mer is enough to disrupt the effectiveness of the �ODN
(Barnes et al., 2003; Tischkau et al., 2003a,b).
Effects of Antisense Oligodeoxynucleotides in Circadian
Clock Responses to Light

�ODN technology has been employed to explore the function of clock
gene proteins and other regulatory elements in the molecular events lead-
ing to phase resetting in response to nocturnal light in vivo or its messen-
ger, glutamate, in vitro. A rapid, transient increase in Per1 mRNA is a
hallmark of the molecular response to nocturnal light (Albrecht et al., 1997;
Miyake et al., 2000; Shearman et al., 1997; Shigeyoshi et al., 1997; Takumi
et al., 1998). An unmodified �ODN designed to target the region surround-
ing the initiation codon of Per1 mRNA (50-taggggaccactcatgtct-30) blocks
glutamate-induced phase resetting of the SCN electrical activity rhythm
in vitro and light-induced phase delays in vivo (Akiyama et al., 1999;
Tischkau et al., 2003a); control sequences with 1- to 3-bp changes are
ineffective. These results demonstrate definitively that induction of Per1
mRNA is required for phase resetting in response to nocturnal light. It
follows that the PER1 protein contributes critically to molecular changes
that mediate clock resetting.

The �ODN technique has also been used to examine the roles of
other proteins in the light/Glu signaling pathway. The core of the hamster
SCN contains a densely packed population of calbindin-containing cells
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that receive direct retinal input and express Fos in response to light (Bryant
et al., 2000; Hamada et al., 2003; Silver et al., 1996). Intracerebroventri-
cular injection of phosphothionate-modified �ODN against calbindin
(50-aggtgcgattctgccatgg-30) significantly reduced calbindin mRNA and pro-
tein in the SCN core and attenuated both the light-induced increase in Per1
and phase advances in response to light (Hamada et al., 2003). These data
implicate Ca2þ buffering via calbindin in the light response and further the
idea that Ca2þ is critical for light-induced signaling in the SCN. Interest-
ingly, simultaneous inhibition of JunB and cFos with �ODN also blocked
light-induced phase resetting (Schlingensiepen et al., 1994).

The cGMP/protein kinase G (PKG) signal transduction cascade has
also been implicated in light-induced phase shifting. Activation of cGMP/
PKG occurs only in response to light that signals advance clock phase in
the last half of subjective night. Pharmacological inhibition of PKG blocks
light- and glutamate-induced phase advances, but not the phase-delaying
effect of light/Glu in early night (Ding et al., 1998; Mathur et al., 1996;
Weber et al., 1995b). Two major isoforms of PKG have been described and
a different �ODN can be designed to the start site of each. Preliminary
studies suggest that this �ODN approach is a powerful tool for differ-
entiating isoform-specific function of PKG in the SCN (S. A. Tischkau
and M. U. Gillette, unpublished observations).
Effects of Antisense Oligodeoxynucleotides on Circadian
Clock Rhythmicity

Because short-term inhibition using �ODN technology is effective
for identifying the roles of specific proteins in light/Glu-induced phase
resetting, we hypothesized that long-term inhibition might be used to
identify molecular components that are required for the expression of
overt rhythmicity in the SCN. Initially, we utilized this approach to exam-
ine whether mammalian timeless (Tim) is required for the generation of
circadian rhythmicity. Traditional approaches using genetic deletion of Tim
had been unsuccessful because the Tim�/� mutation yields an embryonic
lethal phenotype (Gotter et al., 2000). We circumvented this developmental
problem by examining electrical activity rhythms in SCN-containing brain
slices incubated continuously with Tim �ODN (acagtccatacacc). SCN slices
treated with Tim �ODN expressed � 40% of the TIM protein levels in
controls and were completely arrhythmic (Barnes et al., 2003). Moreover,
short-term application of Tim �ODN over the course of a 24-h cycle
revealed a specific sensitive period where downregulation of Tim led to
phase resetting of the circadian clock (Barnes et al., 2003). Furthermore,
introduction of siRNA targeting Tim demonstrated that Tim knockdown
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alters expression of other clock genes. Together, these data demonstrate a
specific requirement for Tim in SCN rhythmicity and allow restoration of
Tim as a core mammalian circadian clock element.

The success of these experiments led us to explore the role of additional
elements in SCN rhythmicity. Previously, we had demonstrated a circadian
rhythm of cGMP levels and PKG activity inherent to the SCN. Pharmaco-
logical disruption of this endogenous rise in PKG activity caused significant
phase delay of the circadian clock in vitro and in vivo specifically at the
dawn-to-dusk transition (Tischkau et al., 2003b). These data led to the
hypothesis that increased PKG activity at the end of subjective night is
required for circadian clock progression. A corollary of this hypothesis is
that continuous inhibition of PKG would lead to arrhythmicity. Utilizing
isoform-specific �ODNs, we can discriminate the isoform required for
PKG mediation of clock function at the dawn transition (Tischkau et al.,
2003b). These studies demonstrate the power of �ODN technology in
defining a role for specific proteins in circadian clock function.

Use of Antisense Oligodeoxynucleotides in Defining
Circadian Clock Output

The �ODN approach has also been used to examine the roles of
proteins predicted to be components of one of the numerous SCN output
programs. Vasoactive intestinal peptide (VIP), which is secreted from the
SCN in a diurnal fashion (reviewed in van Esseveldt et al., 2000), is an
important regulator of the estrogen-induced luteinizing hormone and pro-
lactin surges (van der Beek et al., 1999). Intracerebroventricular or intra-
SCN injection of a VIP �ODN attenuates and/or phase delays rhythms of
circulating corticosterone, luteinizing hormone, and prolactin (Harney
et al., 1996; Scarbrough et al., 1996; van der Beek et al., 1999). The latter
is likely through an effect on neuroendocrine dopaminergic neurons in the
hypothalamic arcuate nucleus and periventricular nucleus (Gerhold et al.,
2002). Together, these results highlight the potential of �ODN technology
in exploring the specific roles of the array of output networks connected to
the SCN.

Decoy Oligodeoxynucleotides as Tools to Investigate
Transcriptional Control in Circadian Timekeeping

Using the same methods as for �ODN, ectopic enhancer oligodeoxynu-
cleotides sequences can be introduced in excess into cells or brain tissue.
These supernumerary enhancer sequences act as decoys, competing with
native cis elements for binding of specific transactivating DNA-binding pro-
teins and thereby diminishing activity at intrinsic transcriptional regulatory
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sites (Cho-Chung, 2003). Thus, a single-stranded 24-mer comprising three
repeats of the consensus CRE sequence (trioctamer of 50-TGACGTCA-30)
can be introduced to inhibit CRE-mediated transcription. The palindromic
nature of this CRE decoy allows it to self-hybridize upon entering the cell,
forming a hairpin structure that effectively binds CREB, which results in
loss of the ability to activate native CRE (Park et al., 1999). Previously, this
ODN has been used to interfere with CRE-mediated transcription and thus
potently inhibit growth in cancer cells (Park et al., 1999). In primary
cultures of neonatal hippocampal neurons, the CRE decoy was employed
to demonstrate the importance of CRE-mediated transcription in
providing protection against glutamate-induced cell death (Mabuchi et al.,
2001).

Effects of Decoy Oligodeoxynucleotides in Circadian Clock
Response to Light

CRE-mediated transcription has been implicated in the molecular
events leading to light/glutamate-induced phase resetting of the circadian
clock. Throughout the night, stimuli associated with light-induced phase
resetting cause increased phosphorylation of CREB (Ding et al., 1997;
Ginty et al., 1993) and activation of CRE-mediated transcription (Obrietan
et al., 1999). Furthermore, CREB may play a role in the stimulation of Per1
(Travnickova-Bendova et al., 2002; Yamaguchi et al., 2000), which is re-
quired for light-induced phase resetting (Akiyama et al., 1999; Tischkau
et al., 2003a). However, those studies fell short of establishing a require-
ment for CRE-mediated transcription for the molecular events leading to
phase resetting in response to light.

We introduced the CRE decoy to block CRE-mediated transcription in
the presence of stimuli known to mediate nocturnal light-induced phase
Fig. 1. Mechanism by which decoy ODN inhibits transcription. (A) Normal expression is

regulated by transcription factors binding to specific sequences in the promoter region of a

gene. These transcription factors provide a scaffold for RNA polymerase, which creates an

RNA copy of the coding sequence and leads to expression of the gene product. (B) Decoy

ODN technology is based on providing a tissue excess of short ODN recognition sequences

for a specific transcription factor, such as the CRE sequence (CACGTG) in the model. Decoy

ODN are constructed of the same sequence as a specific promoter element, but these ectopic-

binding sites are present in excess. This causes transcription factor binding to recognition

sequences in intrinsic promoter elements (e.g., CREB binding to CREs) to be outcompeted

by binding to the decoy. The target transcription factors will be unavailable to bind the

promoter and will fail to form the scaffold for tethering RNA polymerase at the endogenous

gene target. If these transcription factors are necessary for transcription of the gene, then

normal expression is interrupted.



604 cell and tissue culture system [31]
resetting in the SCN. Our synthetic CRE decoy included one important
distinction compared with previous studies in other cell systems. The CRE
decoy employed in those studies was composed of phosphorothioate-mod-
ified ODN to provide nuclease resistance and increase stability within the
cell (Agrawal et al., 1997; Zon, 1988). Because CREB is likely to regulate
many genes (Panda et al., 2002), not solely those activated during light-
induced transcription, we reasoned that the long-term presence of the CRE
decoy could disrupt other functions and complicate interpretation of data.
To restrict inhibition of CRE-mediated transcription to a narrow window,
our CRE decoy was synthesized with less stable, unmodified nucleotides.
This CRE decoy successfully blocked CRE-CREB binding and CRE-
mediated transcription in SCN2.2 cells (Tischkau et al., 2003a). When
applied to SCN brain slices, the CRE decoy blocked glutamate-stimulated
phase resetting of SCN electrical activity rhythms and induction of Per1.
In vivo, when injected unilaterally into the SCN, the CRE decoy blocked
light-induced phase resetting of behavioral wheel-running rhythms
(Tischkau et al., 2003a). This was the first study to combine use of this
technology in cells, brain slices, and in vivo. In a subsequent study, intra-
cerebroventricular injection of the CRE decoy effectively blocked CREB-
DNA binding in the gerbil hippocampus, confirming the efficacy of this
technique for use in vivo (Hara et al., 2003; Fig. 1).

Conclusions

Antisense and decoy oligodeoxynucleotides provide an inexpensive,
effective, and complementary alternative to molecular genetics for ana-
lyzing the function of specific gene products in the circadian timekeeping
system. Whereas these approaches may be limited somewhat by cell
permeability, degradation, and inability to totally knock out the RNA or
protein of interest (Scarbrough, 2000), the capacity to locally antagonize
the expression of a single gene product for a discrete, controlled time
renders this technology highly useful. Moreover, the reversibility of
�ODN effects is particularly attractive for physiological studies. When
coupled with monitoring electrical activity rhythms in vitro in SCN brain
slices or with locomotor activity rhythms in freely behaving animals, this
technology provides an efficient means to screen candidate gene products
for a role in the generation or regulation of rhythmicity.
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[32] Assaying the Drosophila Negative Feedback
Loop with RNA Interference in S2 Cells

By Pipat Nawathean, Jerome S. Menet, and Michael Rosbash

Abstract

Transcriptional negative feedback loops play a critical role in the
molecular oscillations of circadian genes and contribute to robust behavioral
rhythms. In one key Drosophila loop, CLOCK and CYCLE (CLK/CYC)
positively regulate transcription of period ( per). The period protein (PER)
then represses this transcriptional activation, giving rise to the molecular
oscillations of per RNA and protein. There is evidence that links molecular
oscillations with behavioral rhythms, suggesting that PER also regulates
the expression of downstream genes, ultimately resulting in proper behav-
ior rhythmicity. Phosphorylation of PER has also been shown to be critical
for rhythms. DOUBLETIME (DBT) and casein kinase II (CKII) have
been implicated in the phosphorylation of PER, which affects its stability
as well as nuclear localization. We investigated the role of these kinases on
PER transcriptional repression using the Drosophila S2 cell line in combi-
nation with RNA interference (RNAi) to knock down specific gene ex-
pression. This article describes the methods used to study PER repression
activity in the S2 cell system as well as to exploit RNAi in this system. We
also include protocols for immunocytochemistry and the application of
leptomycin to differentiate direct effects on repression from indirect effects
on subcellular localization. Finally, we discuss the generation of stable cell
lines in the S2 cell system; these will be useful for experiments requiring
homogeneous cell populations.

Introduction

Many eukaryotic and some prokaryotic organisms regulate their me-
tabolism, physiology, and behavior with a circadian (�24-h) period. These
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