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Abstract

Circadian rhythm sleep disorders (CRSDs), whether chronic or transient, affect a broad range of individuals, including many elderly, those

with severe visual impairments, shift workers, and jet travelers moving rapidly across many time zones. In addition, various forms of

insomnia affect another large sector of the population. A feature common among CRSDs and some forms of insomnia is sensitivity to the

hormone melatonin, which is secreted by the pineal gland. Accumulating evidence suggests that melatonin may regulate the circadian clock

located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Although the light–dark cycle is the primary signal that entrains the

circadian clock to environmental cycles, exogenous melatonin has been shown to entrain the clock in individuals with no light perception and

free-running circadian rhythms. Furthermore, studies have reported beneficial effects of melatonin for treatment of certain insomnias.

Together, these studies suggest that melatonin may be useful for treating some insomnias and CRSDs. In these contexts, use of melatonin as a

supplement has been popular in the United States. Unfortunately, the therapeutic potential of melatonin has been difficult to realize in clinical

trials, possibly owing to non-specific actions of the agent and its unfavorable pharmacokinetic properties when administered orally. In an

attempt to take advantage of the therapeutic opportunities available through the brain’s melatonin system, researchers have developed several

melatonin agonists with improved properties in comparison to melatonin. Some of these agents are now in clinical trials for treatment of

insomnia or CRSDs.

q 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Melatonin, first identified in 1958 [1], is secreted by the

pineal gland during the night in a wide range of species.

This cycle of melatonin secretion is a robust hormonal

signal that can act as a ‘time-giver’ (zeitgeber) to indicate

time of environmental darkness [2]. In photoperiodic

species such as hamsters and sheep, in which reproductive

cycles are dependent on the seasons, seasonal changes in

night length are encoded as changes in melatonin secretion.

This hormonal signal synchronizes the onset of the

reproductive cycle during the appropriate season [3,4].
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In non-photoperiodic species such as humans, the circadian

rhythm of melatonin secretion is thought to contribute to

other functions of the circadian clock, such as consolidation

of sleep [5] and regulation of the circadian rhythm of core

body temperature [6].

The master clock controlling circadian rhythms is

located in the suprachiasmatic nucleus of the hypothalamus

[7]. Lesions of the SCN appear to abolish all circadian

rhythms in rodents [8,9]. In primates, SCN lesions disrupt

many circadian rhythms, but leave some intact, suggesting

that other neuronal centers contribute to circadian rhythmi-

city in primates [10–13]. However, the rhythms that persist

after SCN ablation are often less stable or robust, suggesting

that the SCN is important for maintaining these rhythms as

well. The SCN clock is also regulated by factors outside the

SCN, including signals from the retina encoding
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environmental light levels [14] and melatonin secreted from

the pineal gland [2,15–21]. Early studies in birds implicated

melatonin in the control of circadian rhythms, since removal

of endogenous melatonin by pinealectomy could abolish

free-running circadian rhythms of sparrows housed in

constant darkness [15]. Furthermore, continuous treatment

with exogenous melatonin could alter free-running circa-

dian rhythms [16] and pineal transplants could restore

rhythmicity in pinealectomized birds [17]. The pineal gland

does not play such a central role in the regulation of

circadian rhythm in mammals, since pinealectomy does not

disrupt mammalian rhythms to any large extent. However,

studies in rats demonstrate that exogenous melatonin can

also entrain free-running rhythms of mammals [17]. Further

support for melatonin as an important regulator of the

circadian clock comes from findings that neurons of the

SCN express high levels of melatonin receptors, and from

observations that treatment of SCN neurons with melatonin

can acutely alter neuronal activity [20] and phase-shift the

neuronal firing rate in vitro [18,21].

In addition to its effects on the circadian clock, melatonin

may have sleep-promoting properties. In some studies of

human subjects, melatonin has been found to induce

sedation, lower core body temperature, and induce other

changes associated with sleep [5,6,22–24]. However, in

nocturnal animals, melatonin is also secreted during the

dark phase of the circadian cycle—the time when these

animals are increasing their activity [25]. Thus, melatonin is

not a universal sleep-inducing hormone but, rather, acts as a

hormonal signal indicating time of darkness [26–28].

In humans, administration of exogenous melatonin in the

early evening advances the phase of circadian rhythms;

administration in the early morning delays the phase [27].

However, the phase-delaying effects of melatonin are less

robust and are not consistently observed [29]. Because of its

phase-shifting properties, melatonin has been studied as a

potential treatment for circadian rhythm sleep disorders

(CRSDs) (e.g. delayed-phase sleep syndrome, advanced-

phase sleep syndrome, and free-running rhythms in blind

people) [28,30]. In addition, the sedative and mild hypnotic

properties of melatonin, and its availability as a ‘natural

supplement’, have led to widespread use of the agent for

insomnia, especially in the United States. However, both

uses are supported by only limited clinical trial data.

Furthermore, melatonin has some properties that would be

expected to limit its usefulness as an oral agent-properties

such as a short half-life, high first-pass metabolism, and

binding to multiple melatonin receptors [31–36].

Several analogs of melatonin have been developed in an

effort to find better treatments for CRSDs or insomnia.

Some of these agents are selective for specific melatonin

receptors and have other advantageous properties. Clinical

trials of specific agents are underway, although limited data

are available to date. After reviewing the neurobiology of

the melatonin system and the possible use of melatonin for

treating sleep and circadian disorders, we will discuss some
of the results with the most promising melatonin agonists in

clinical trials.
2. Neurobiology of the melatonin system

2.1. Melatonin receptors

The older literature on melatonin describes two major

classes of receptors: ML1 (high affinity) and ML2 (low

affinity) receptors. The ML1 receptor is a member of the

large family of receptors with 7 membrane-spanning

domains—a family that includes the serotonin and

b-adrenergic receptors. In contrast, the ML2 receptor is a

distinct molecular species.

ML1 receptors are of clear importance to the nervous

system. Molecular cloning revealed that there are at least 3

subtypes of ML1 receptors: Mel1a, Mel1b, and Mel1c [32].

To date, Mel1c receptors have not been found in mammals.

Of particular interest to our discussion are the Mel1a and

Mel1b receptors, which are now referred to as the MT1 and

MT2 receptors, respectively. These receptors are classic

G-protein-linked receptors that inhibit adenylate cyclase.

Additionally, MT1 receptors activate protein kinase C-b,

whereas MT2 receptors inhibit the soluble guanylate cyclase

pathway [37] while stimulating protein kinase C [21,38].

MT1 receptors have the most widespread distribution in the

rodent brain, account for the majority of melatonin-binding

sites in most target tissues, and are widely believed to

account for many melatonin actions in the brain [20]. Both

MT1 and MT2 subtypes of the ML1 receptor appear to have

roles in regulating the SCN circadian clock (see later) [38].

The ML2 (also named MT3) receptor was poorly

characterized and enigmatic until a recent study identified

it as a form of quinone reductase [39]. This enzyme is

widely distributed in different tissues and across different

species [40]. The importance of melatonin-binding to this

enzyme is unclear. Specific melatonin agonists are becom-

ing available, which lack binding to the MT3/quinone

reductase receptor [36,41,42]; these agents will help to

isolate the specific effects mediated by the high-affinity

melatonin receptors, and may become important options

for pharmacologic treatment of insomnia or CRSDs without

the potential for side effects from interactions with the

MT3/quinone reductase binding site (see Section 4).

2.2. Control of melatonin release

As with most other circadian rhythms, the circadian

pattern of melatonin release is controlled by the SCN. The

primary source of melatonin is the pineal gland, which

secretes the hormone into the cerebrospinal fluid and

circulation. Some melatonin is also generated in the retina,

but this source is thought not to contribute to circulating

levels [43]. The SCN controls pineal melatonin release

through a multi-synaptic pathway, the final link of which is
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a noradrenergic synapse from the superior cervical ganglion

to the pineal gland [44]. The projections from the superior

cervical ganglion release norepinephrine onto pinealocytes

during the night. Norepinephrine, acting mostly through b1

adrenergic receptors, increases intracellular cAMP levels in

the pinealocytes leading to an increase in synthesis of

melatonin [45,46]. Indeed, it has been shown that the final

enzyme in the synthetic pathway for melatonin (N-acetyl-

transferase) is expressed in pinealocytes in a circadian

fashion; that rhythm is abolished by lesions of the SCN [47].

Several neurotransmitters—and drugs that interact with

neurotransmitter systems—modify melatonin synthesis in

the pineal gland; such agents include a2-adrenoceptor

agonists [48], b-adrenoceptor antagonists [49], and benzo-

diazepines acting through GABA receptors [50]. Nocturnal

exposure to bright light immediately and acutely suppresses

melatonin secretion via degradation of pineal N-acetyl-

transferase [52,53]. The signal by which light mediates this

regulation is transmitted from the retina through the SCN to

the pineal.

In the absence of environmental signals such as light

input from the retina, the SCN maintains a circadian rhythm

with a period either slightly shorter or longer than 24 h (i.e.

about a day or ‘circa diem’). Under such conditions, the

organism is said to be free-running, and the rest-activity/

sleep–wake cycles will gradually become out of phase with

the 24-h day/night cycle. When the organism is exposed to

normal daylight cycles, the circadian rhythm is entrained to

the 24-h cycle of the sun. Such entrainment is mediated, in

large part, by light signals received by the retina and relayed

to the SCN through the retino-hypothalamic tract [7]. This

pathway is activated by melanopsin-containing photo-

receptors in the ganglion cell layer of the retina [53,54].

Unlike the visual pathways of the eye and brain, which are

concerned with image formation and processing, the retino-

hypothalmic pathway is dedicated to transmitting infor-

mation about the presence and intensity of light.

Nocturnal exposure to light has been shown to affect the

expression of specific genes in the SCN known as clock

genes, such as period (per) [55,56]. The level of per

expression within cells of the SCN determines the phase of

the circadian clock. Thus, exposure to bright light in the

evening causes a phase delay in the circadian clock, whereas

similar exposure in the late night causes a phase advance

[56]. Because the SCN clock controls pineal melatonin

release, such phase shifts will be manifest as changes in the

timing of melatonin secretion. Indeed, the level of

circulating melatonin is one of the most reliable measures

of the phase of the circadian clock in humans [2,30].

2.3. Effects of melatonin on the circadian clock

As mentioned earlier, melatonin receptors are expressed

in specific nuclei in the brain, including the SCN.

Interestingly, while the SCN clearly controls the timing of

the melatonin rhythm, melatonin exerts reciprocal effects on
the SCN. For example, in rats maintained in constant

darkness, exogenous melatonin entrained the activity cycle

[17]. The direct effects of melatonin on the SCN have been

examined using an isolated brain slice preparation, in which

the circadian clock continues to cycle for several days [18].

In this preparation, application of melatonin at times

corresponding to dusk or dawn caused phase shifts in the

circadian rhythm of electrical activity recorded from SCN

neurons. Melatonin applied at other times had little or no

effect on the SCN clock [21].

Later studies extended this work and described two

distinct effects of melatonin on SCN neurons: acute

inhibition of electrical activity and phase-shifting of the

clock [20]. Transgenic mice with disrupted MT1 receptors

were used to study the role of MT1 versus MT2 receptors in

these effects. In SCN neurons from mice lacking MT1

receptors, melatonin failed to acutely inhibit electrical

activity as it does in normal mice, but the phase-shifting

effects of melatonin were largely intact. Other experiments,

using pharmacological or transgenic approaches, further

support the importance of MT2 receptors in the phase-

shifting effects of melatonin on the SCN clock [37,38,

57,58]. For example, transgenic mice with a disruption in

the MT2 gene exhibited no evidence that the circadian clock

was sensitive to melatonin, although melatonin still elicited

acute inhibition of SCN neurons [57].

The receptor specificity for phase-shifting and acute

inhibitory effects of melatonin may vary across species. For

example, a species of hamster that naturally lacks MT2

receptors still exhibits circadian rhythms, and the rhythm

phase-advances in response to exogenous melatonin [59]. In

general, however, the results from various animal studies

suggest that the MT1 and MT2 receptors have distinct

functional roles in the SCN, albeit with some overlapping

function. These distinct roles provide great potential for

receptor-specific pharmacological agents to affect specific

aspects of the sleep–wake cycle and/or circadian

rhythmicity.

The distinct functional roles of MT1 and MT2 receptors

may provide the opportunity to develop specific agents that

promote sleep without phase-shifting the circadian clock, or

the converse. Ligands that are highly selective for one

subtype (MT1 or MT2) of receptor have become available in

recent years, but are still the subject of structure–activity

studies [41,58,60–63]. Progress in the development of such

compounds will lead to a much greater understanding of the

distinctive roles of the melatonin receptor subtypes.

Furthermore, such compounds hold promise as potentially

useful for treating sleep disorders or CRSDs. At this time,

these agents require further study in experimental systems

before their efficacy in humans can be assessed.

2.4. Circadian cycle of melatonin sensitivity

Melatonin receptors in the SCN are not expressed at

constant levels. Several studies in different mammalian
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species have reported that receptor protein and mRNA

levels in the SCN vary on a circadian basis, and that

expression levels are influenced by light and melatonin

[64–68]. In general, levels of MT1 receptors are low during

the subjective day and highest during the subjective night,

when melatonin secretion is also peaking. The implications

of these findings for pharmacological use of melatonin are

not clear. For example, exogenous melatonin is known to

promote sedation in humans when administered during the

day [69,70], at a time when SCN melatonin receptor levels

are expected to be low. If the sedative properties of

exogenous melatonin are mediated by the SCN, these

findings suggest that exogenous melatonin is able to activate

the small number of receptors present in the SCN during the

day. Alternatively, the sedative effects of melatonin may be

mediated by other brain centers regulating sleep, or perhaps

even sites in the peripheral circulation involved in

regulation of core body temperature [5,24,71,72].
3. Melatonin for insomnia and circadian rhythm

sleep disorders

3.1. Sleep in healthy subjects

In humans, as in other animals, circulating levels of

melatonin are highest during the night [73]. Furthermore,

electrophysiological studies have found that the timing of

highest urinary excretion of 6-sulfatoxymelatonin (a reliable

indicator of melatonin levels in the general circulation) is

correlated with the greatest increase in nocturnal sleepiness

[72]. Such studies have engendered great interest in the

potential for use of exogenous melatonin as a sleep-

promoting agent.

Melatonin is not required for sleep in humans. For

example, patients who have had their pineal gland removed

for medical reasons often experience little disturbance in

their sleep–wake cycle [2]. Nevertheless, several studies

have examined the ability of exogenous melatonin to

promote sleep in humans, often with conflicting results

[28,74–80]. Here we focus on the mechanisms that may

underlie the differential effects of melatonin on the sleep–

wake cycle.

In healthy human subjects, administration of 0.3 or 1 mg

of melatonin in the early evening was associated with

reduced sleep latency and improved sleep efficiency

[23,81]. Another study, which used EEG to monitor sleep

parameters, found no effect of 5 mg melatonin on normal

sleep [82]. Overall, melatonin has had variable efficacy

when studied as a hypnotic agent [75]. There are several

possible explanations for this variability.

One possible explanation is that the sedative or hypnotic

effects of melatonin are dependent on the time of day, or the

phase of the circadian rhythm. For example, the hypnotic

effects of melatonin in humans vary depending on the

time of administration [70], consistent with the circadian
phase-resetting properties of melatonin, which also depend

on time of administration [17,18,21,27]. A recent, well-

controlled study in healthy human volunteers compared the

effects of melatonin on nocturnal sleep (melatonin adminis-

tered at 23:30 h) with its effects on evening sleep (melatonin

administered at 18:00 h) [22]. The two times of adminis-

tration were examined in separate, double-blind, placebo-

controlled studies that also involved administration of

temazepam as a positive control using a crossover design.

Patients were monitored by EEG, measurement of core

body temperature, and testing of cognitive performance

after awakening. Melatonin administered at night (23:30)

had no significant effect on nighttime sleep in healthy

individuals. In contrast, melatonin administered in the early

evening (18:00) had hypnotic activity similar to temazepam.

Other studies have concluded that ‘physiologic’ doses of

melatonin have little or no effect on nighttime sleep in

healthy individuals, but that high ‘pharmacologic’ doses can

have hypnotic activity [24]. It is widely believed that the

lack of effect of exogenous melatonin on nighttime sleep is a

result of high levels of endogenous melatonin–melatonin

receptors in the SCN may already be exposed to saturating

concentrations of the endogenous hormone. This hypothesis

has not been thoroughly tested. Furthermore, so-called

‘physiologic’ concentrations are often based on levels found

in the general circulation. However, studies in sheep have

suggested that melatonin levels in the cerebrospinal fluid

(CSF) from the third ventricle may be as much as 20-fold

higher than levels in the general circulation [83]. Thus,

when administering melatonin by the oral route, high doses

may be needed to influence the levels of melatonin

perfusing the relevant brain structures, such as the SCN.

Alternatively, a lower dose of a melatonin receptor agonist

with improved solubility, bioavailability, or transport

properties may be able to act on brain melatonin receptors

to influence sleep propensity at nighttime, even in healthy

individuals with normal levels of endogenous melatonin.

Another difficulty associated with pharmacologic use of

exogenous melatonin is that serum levels vary widely

among individuals [31]. Such variability can have a

detrimental effect on clinical trials, introducing variability

that obscures potential efficacy. Improved agents with better

absorption and lower first-pass metabolism are likely to

improve the consistency of clinical trials and may prove

more efficacious than melatonin itself.

An ideal hypnotic agent will increase total sleep time and

sleep efficiency, in addition to reducing sleep latency. While

some studies have reported that exogenous melatonin

improves sleep efficiency, this effect is not consistently

observed [75]. The lack of effect on sleep efficiency or total

sleep time may not be surprising given the short half-life of

melatonin in the circulation (less than 1 h) [31]. An agent

with a longer half-life may have a better opportunity to

activate brain melatonin receptors and influence sleep

properties long enough to improve sleep efficiency and

total sleep time. Indeed, accumulating evidence supports
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the concept that melatonin participates in the consolidation

of sleep into prolonged nighttime episodes [5]. And, it has

been suggested that a continuous delivery system for

melatonin may be beneficial for some patients with

impaired sleep efficiency or sleep consolidation [5]. A

longer-acting melatonin receptor agonist may be a viable

alternative.

It has also been suggested that methodological differ-

ences in monitoring the sleep–wake cycle may underlie

some of the conflicting data regarding the effects of

melatonin on sleep. While the gold standard for monitoring

sleep is the use of EEG/EMG recordings to monitor brain

state and sleep stages, the use of actigraphy for monitoring

movement to define sleep–wake activity is often used as an

easy and reliable substitute. It has been hypothesized that

melatonin may act as a muscle relaxant, reducing body

movements, thereby leading to more sleep as defined by

actigraphy measurements [84]. Indeed, this proposed effect

of melatonin may underlie its soporific effects.

3.2. Sleep in subjects with insomnia

Several studies have examined the use of melatonin for

elderly or medically ill patients with insomnia [85–89].

Melatonin levels decline as an individual ages [90–93], and

it has been suggested that sleep disruption in the elderly is

related to declining melatonin levels. Others have argued,

however, that much of the decline in melatonin secretion

occurs during adolescence [94] and that there is little

additional decline during adulthood in healthy individuals

[95]. However, some brain degenerative diseases, parti-

cularly Alzheimer’s disease, are associated with markedly

low levels of melatonin [96–98]. Many of these patients

experience insomnia or other disturbances associated with

the sleep–wake cycle, such as ‘sundowning’ syndrome

[74,99,100]. Several small studies have shown beneficial

effects associated with use of melatonin in such patients

[101–104].

Insomnia is a common complaint in elderly populations;

the most common therapies prescribed for these patients are

benzodiazepines or benzodiazepine agonists. Long-term use

of benzodiazepines is not recommended because of

concerns about the potential for dependence or abuse.

Unfortunately, many elderly patients experience difficulty

discontinuing benzodiazepine hypnotics. Melatonin has

been studied as an agent to help reduce or eliminate the

use of benzodiazepines among these patients [105]. This

study found that elderly patients with insomnia who

received controlled-release melatonin were significantly

more likely to successfully discontinue benzodiazepines in

comparison to those receiving placebo.

3.3. Circadian rhythm sleep disorders

Melatonin has also been proposed and studied as a

treatment for CRSDs, or for treatment of conditions
associated with misalignment of activity rhythms with the

light–dark cycle, such as shift work and jet lag. The

rationale for these studies comes from observations that

exogenous melatonin can entrain or phase-shift circadian

rhythms under appropriate circumstances [29,30,106–110].

However, because circadian rhythms can also be entrained

by light and other environmental signals, the effects of

melatonin can be obscured. The phase-shifting effects of

melatonin can be observed only at certain phases of the

circadian cycle, nearly 12 h out of phase from the phase-

shifting effects of light [111]. Light also affects endogenous

melatonin secretion [51], as does posture [106]. All these

influences on the circadian cycle, and on melatonin

secretion, have made it difficult to fully understand

melatonin’s ability to phase-shift human circadian rhythms.

Perhaps the clearest examples of the effects of melatonin

on circadian rhythmicity have come from studies of

exogenous melatonin administered to blind individuals,

especially those with no perception of light. Such

individuals often experience free-running rhythms of

endogenous melatonin secretion, and concomitant sleep

disturbances because their activity rhythms are at times out

of phase with social cues for sleeping and wakefulness

[112–115]. In many instances, exogenous melatonin is able

to stably entrain the sleep–wake cycle of these individuals to

a 24-h cycle [113,116–118].

Several studies have also examined the use of melatonin

for shift workers or for jet lag [119–121]. In two placebo-

controlled studies simulating shift work, subjects receiving

melatonin exhibited significantly better adaptation to a

phase shift in the light–dark cycle as compared to those

receiving placebo [122,123]. Such adaptation included

modest improvements in ability to sleep during the day

[123] and shifts in circadian rhythms of endogenous

melatonin and core body temperature [122]. A systematic

review of melatonin for jet lag has concluded that melatonin

may be useful for minimizing effects of the phase shift

imposed by flights across many time zones [124].

As with treatment of insomnia, a melatonin receptor

agonist with enhanced pharmacological properties may be

more effective than exogenous melatonin for phase-shifting

human circadian rhythms, and may lead to more reliable

results from clinical trials. As discussed earlier, a melatonin

receptor agonist with a longer half-life may be more suitable

for promoting sleep. However, for inducing phase shifts or

for maintaining circadian phase, the situation is more

complex. Indeed, there is evidence that a short-acting

agonist may be more effective for inducing phase shifts. For

example, multiple doses of melatonin are often less effective

for inducing phase shifts in comparison to a single dose

administered early in the subjective night [29,125,126].

These results are likely a consequence of the phase-response

curve for the phase-shifting effects of melatonin. Long-

acting melatonin, or a long-acting agonist, may be active

during both phase-advance and phase-delay portions of the

phase-response curve, thereby canceling or weakening any
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phase-shifting effects. These issues will need to be resolved

before melatonin agonists become useful and reliable for

inducing circadian phase shifts.
4. Melatonin receptor agonists

In mechanistic and preclinical studies, melatonin has

shown much potential for treatment of sleep disturbances

and CRSDs. Unfortunately, that potential has been difficult

to realize in clinical studies, owing to some of the physical,

biological, and pharmacokinetic properties of melatonin we

have discussed, as well as the relative lack of large-scale

clinical trials partially owing to the fact that melatonin

cannot be patented. In an effort to take advantage of the

biological actions of melatonin for treatment of sleep

disturbances in humans, several groups have developed

melatonin analogs that act as agonists or antagonists at

melatonin receptors. In general, the melatonin receptor

agonists have so far shown the greatest potential for clinical

usefulness. Here we discuss three of the more prominent

examples of melatonin receptor agonists that are furthest

along in clinical development.

4.1. Agomelatine (S20098); developed by Servier

Agomelatine is a napthalenic analog of melatonin that is

a high-affinity agonist at MT1 and MT2 receptors [42]. In

terms of published studies in animal models, it is the most

thoroughly characterized melatonin receptor agonist to date.

However, agomelatine is an antagonist at 5-HT2C and

5-HT2B receptors [127]. This action has been shown to be

associated with changes in dopaminergic and adrenergic

pathways in the frontal cortex of rats [127]. Owing to its

unique pharmacologic profile, agomelatine is being

developed for treatment of anxiety disorders and depression

[128,129]. In addition, experiments performed with this

agent have provided valuable information about the actions

of melatonin receptor agonists.

Agomelatine has effects on electrical activity of SCN

neurons that are similar to those of melatonin [130]. In

addition, in a manner that mimics the effects of melatonin,

agomelatine is able to facilitate re-entrainment of circadian

rhythms in response to a phase shift in the light–dark cycle

[131–133]. Importantly for its implications to human

studies, this effect of agomelatine has been observed in

diurnal species [132]. In addition, like melatonin, agome-

latine is able to entrain the free-running circadian rhythms

of rats maintained in constant darkness; this effect is

abolished by lesions of the SCN but not by pinealectomy

[134]. Overall, experiments with agomelatine establish that

a selective melatonin receptor agonist can mimic the

regulatory effects of melatonin on circadian rhythms.

In most cases, the effects of agomelatine on sleep and

circadian rhythms have been attributed to its agonist activity

at melatonin receptors. Nevertheless, agomelatine has other
effects in the CNS attributable to antagonism at 5-HT

receptors. The agent is currently in phase I clinical trials for

treatment of anxiety disorders and depression.

4.2. Ramelteon (TAK-375); developed by Takeda

Ramelteon is an indenofuran derivative that has high

selectivity and high affinity for MT1 and MT2 receptors

[135,136]. It has a longer half-life than melatonin in humans

[137], and thus may have superior properties as a sleep-

promoting agent. Unlike agomelatine, ramelteon exhibited

no binding to any of a large number of receptors or potential

binding sites in receptor-binding studies [138]. Although a

metabolite of ramelteon did exhibit some binding to 5-HT2B

receptors, this interaction occurred with such low affinity

that it is unlikely to influence pharmacologic use of this

agent.

Ramelteon has been studied in animal models of

insomnia as well as CRSDs. The agent promotes sleep in

freely moving monkeys [135] and cats [36]. In addition, like

agomelatine and melatonin, it is able to enhance the rate of

re-entrainment in response to a shift in the light/dark cycle

in rats [139]. The effects of ramelteon are associated with

very little impairment of cognitive or motor performance,

and there is no evidence that the drug has rewarding

properties that could lead to dependence [139].

In early-stage clinical studies, ramelteon has shown

promise in patients exposed to the first-night effect model of

transient insomnia and in patients with chronic insomnia

[140,141]. It is currently in phase III studies for insomnia

and circadian rhythm sleep disorders.

4.3. LY 156735; developed by Eli Lilly

LY 156735 is a b-substituted analog of melatonin that

was developed to have a higher potency than the parent

compound [142]. In addition, LY 156735 is reported to have

a better pharmacokinetic profile in comparison to melato-

nin. For example, when administered orally LY 156735 is

reported to have a bioavailability that is nearly an order of

magnitude higher than melatonin, and an area under the

curve that was about 6-fold higher than melatonin [143].

In early-stage clinical studies, LY 156735 reduced sleep

onset time in patients with moderate sleep-onset insomnia

[144]. Interestingly, the agent had little effect on sleep

latency in healthy volunteers when administered at bedtime

[145]. In contrast to melatonin, it did not lower core body

temperature when administered during daytime [145]. LY

156735 was administered to healthy volunteers in a study of

its ability to improve adaptation to a phase-advance in the

light–dark cycle [143]. Subjects were housed in a temporal

isolation unit and exposed to a phase-advance of 9 h. One of

two doses of LY 156735 (5 or 0.5 mg) or placebo was

administered at times just preceding lights-out of the post-

phase-advance schedule. Subjects adapted to the phase

shift significantly faster when receiving the high dose of
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the study drug as compared to the low dose or placebo [143].

LY 156735 is still in early stages of clinical development.
5. Conclusion

The melatonin system has a well-established role in

regulating the circadian clock and the rhythms the clock

controls. In pre-clinical studies, melatonin has shown great

promise for treatment of insomnia or CRSDs. However, the

physicochemical and pharmacokinetic properties of mela-

tonin have slowed realization of that potential. The

development of selective melatonin agonists with improved

properties has enhanced the prospects of manipulating the

melatonin system to treat patients with a range of sleep

disorders.
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