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Resetting the Biological Clock: Mediation of Nocturnal CREB
Phosphorylation via Light, Glutamate, and Nitric Oxide
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Synchronization between the environmental lighting cycle and
the biological clock in the suprachiasmatic nucleus (SCN) is
correlated with phosphorylation of the Ca®*/cAMP response
element binding protein (CREB) at the transcriptional activating
site Ser'33. Mechanisms mediating the formation of phospho-
CREB (P-CREB) and their relation to clock resetting are un-
known. To address these issues, we probed the signaling
pathway between light and P-CREB. Nocturnal light rapidly and
transiently induced P-CREB-like immunoreactivity (P-CREB-Iir)
in the rat SCN. Glutamate (Glu) or nitric oxide (NO) donor
administration in vitro also induced P-CREB-Ilir in SCN neurons
only during subjective night. Clock-controlled sensitivity to
phase resetting by light, Glu, and NO is similarly restricted to
subjective night. The effects of NMDA and nitric oxide synthase
(NOS) antagonists on Glu-mediated induction of P-CREB-lir
paralleled their inhibition of phase shifting. Significantly, among

neurons in which P-CREB-lir was induced by light were
NADPH-diaphorase-positive neurons of the SCN’s retinorecipi-
ent area. Glu treatment increased the intensity of a 43 kDa band
recognized by anti-P-CREB antibodies in subjective night but
not day, whereas anti-aCREB-lir of this band remained con-
stant between night and day. Inhibition of NOS during Glu
stimulation diminished the anti-P-CREB-Iir of this 43 kDa band.
Together, these data couple nocturnal light, Glu, NMDA recep-
tor activation and NO signaling to CREB phosphorylation in the
transduction of brief environmental light stimulation of the ret-
ina into molecular changes in the SCN resulting in phase re-
setting of the biological clock.
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The daily rhythms of life are generated by a biological clock,
which in mammals resides within the suprachiasmatic nucleus
(SCN) of the hypothalamus (Meijer and Rietveld, 1989; Morin,
1994). Although the time-generating mechanism is endogenous to
the SCN, the dominant regulator of circadian clock phasing is
environmental light. Photic signals are communicated via the
retinohypothalamic tract, a direct neural projection from the
retina to the SCN (Moore and Lenn, 1972; Johnson et al., 1988).
The clock restricts its own sensitivity to stimulation (Gillette et al.,
1995) so that only nocturnal light adjusts its timing, causing phase
delays in early night and phase advances in late night (DeCoursey,
1960; Daan and Pittendrigh, 1976; Takahashi and Zatz, 1982;
Summers et al., 1984). This ensures that daily behavioral rhythms
are synchronized appropriately to phases of the environmental
cycle of darkness and light. We sought to discriminate the multi-
ple events linking sensory stimulation with SCN changes that
orchestrate these behavioral modulations.
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Important features of the photic phase shifting process are
(1) the brevity of the light pulse that can permanently reset the
near 24 hr cycle of circadian clocks (DeCoursey, 1960; Daan
and Pittendrigh, 1976; Takahashi and Zatz, 1982) and (2)
alterations of transcriptional elements (Ginty et al., 1993).
Within 2 min, a phase-resetting light stimulus induces tran-
scriptional changes in a state variable, the frequency gene, of
the Neurospora clock (Crosthwaite et al., 1995). In the nervous
system, too, long-lasting changes induced by a brief stimulus
often involve the alteration of gene expression (Goelet et al.,
1986; Montarolo et al., 1986; Morgan and Curran, 1989; Sheng
and Greenberg, 1990; Alberini et al., 1994). Induction of
immediate-early genes, especially members of the fos and jun
families, occurs in the SCN within 1 hr of a photic stimulus that
induces phase shifts of circadian rhythms (Rea, 1989; Rusak et
al.,, 1990; Kornhauser et al., 1992; Takeuchi et al., 1993).
Neurotransmission is coupled to gene induction in neurons via
signaling cascades that activate DNA-binding proteins through
transient phosphorylation of transcriptional activating amino
acid residues. Brief exposure of hamsters to light at night
induces phosphorylation of such a protein, cCAMP response
element binding protein (CREB), at its transactivation site;
Ser'*3-phosphorylated CREB (P-CREB) appears in the SCN
within 5 min on light exposure (Ginty et al., 1993). This
duration of light induces robust phase shifts of the circadian
rhythm of locomotor activity in the days after stimulation.
Thus, P-CREB is the earliest sign in the SCN of transcriptional
activation by photic stimulation that leads to adjustments in 24
hr timing.
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Although the sequence of events by which light signals P-CREB
formation is unknown, essential components of the pathway me-
diating light-stimulated phase resetting have been identified.
Light induces clock resetting through an excitatory signal trans-
duction pathway mediated by glutamate (Glu), NMDA receptor
activation, stimulation of nitric oxide synthase (NOS), and inter-
cellular movement of nitric oxide (NO) (Ding et al., 1994b;
Shibata et al., 1994; Shirakawa and Moore, 1994; Watanabe et al.,
1994). In cultured hippocampal neurons and PC-12 cells, Glu
activation of NMDA receptors with subsequent Ca** influx rap-
idly induces phosphorylation of CREB (Bading et al., 1993; Gallin
and Greenberg, 1995; Ghosh and Greenberg, 1995). Because light
triggers P-CREB in the SCN and the Glu/NO pathway mediates
light-induced phase shifts, we examined the hypothesis that Glu
and NO are components of the signal transduction cascade that
activates CREB in the circadian clock.

To selectively probe elements regulating CREB phosphoryla-
tion, we compared the response of the SCN in vivo to light with
that in vitro to specific reagents affecting Glu and NO pathways.
We used the rat SCN in a hypothalamic brain slice, a preparation
in which the circadian clock persists for 3 d (Gillette, 1991). The
mean firing frequency of the population of SCN neurons under-
goes a 24 hr oscillation in vitro (Green and Gillette, 1982) that
matches the pattern of SCN neuronal activity in vivo (Inouye and
Kawamura, 1979, 1982). Likewise, the SCN clock in vitro contin-
ues to regulate its own sensitivity to stimuli that can adjust its
timing over the circadian cycle (Ding et al., 1994b; Gillette et al.,
1995; Gillette, 1996).

MATERIALS AND METHODS

Brain slice preparation and electrophysiological recordings of the SCN
circadian neuronal activity. The detailed description of this method has
been reported previously (Gillette, 1991; Ding et al., 1994b). Briefly, a
500-um-thick coronal hypothalamic brain slice containing the paired
SCN was prepared at least 2 hr before the onset of the dark phase from
7- to 10-week-old, inbred Long—Evans rats housed in a 12:12 hr light/dark
cycle. The brain slices survived for up to 3 d in vitro with continuous
perifusion of Earle’s Essential Balanced Salt Solution (EBSS, Life Tech-
nologies, Gaithersburg, MD), supplemented with 24.6 mM glucose, 26.2
mM sodium bicarbonate, and 5 mg/l of gentamicin, and saturated with
95% 0,/5% CO, at 37°C, pH 7.4. The single-unit activity of the SCN
neurons was recorded extracellularly with a glass microelectrode, and
running means were calculated to determine the time-of-peak activity.
The unperturbed sinusoidal pattern of neuronal activity is predictably
high in the day and low during the night, peaking at mid-day at approx-
imately circadian time 7 (CT 7) (Prosser and Gillette, 1989). The onset of
the light phase of the entraining light/dark cycle of the brain slice donor
was designated as CT 0. Thus, the time-of-peak of the neuronal firing rate
can be used as a reliable assessment of the phase of the circadian rhythm
(Gillette et al., 1995). For treatment of the brain slice, the perifusion
pump was stopped, and a 0.2 ul microdrop of a test substance dissolved
in EBSS was applied bilaterally to the SCN for 10 min before rinsing with
EBSS and resuming pumping with normal medium. To evaluate potential
blockers of the stimulus, the bathing medium was replaced with antago-
nists dissolved in EBSS, pH 7.4, for 20 min before the phase-shifting
stimulus was applied to the SCN. To determine the phase of the circadian
rhythm, the time-of-peak neuronal activity was assessed for the following
1 or 2 d in vitro.

Immunocytochemistry and histochemistry. We compared the sensitivity
of this biological clock to treatments during the subjective day, when the
clock is insensitive to light-induced resetting, with its responsiveness
during the subjective night. Reagents were applied directly to the SCN in
vitro, and their efficacy was assessed with reference to that of light in vivo.
The appearance of P-CREB in the tissue was assayed using an antibody
(anti-P-CREB) that recognizes the peptide sequence containing phos-
phorylated Ser'*®. This sequence is found within the transcriptional
activating domain of the CREB family of transcription factors «CREB,
CREM, and ATF-1 (Ginty et al., 1993; Ghosh et al., 1994).
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To assess Glu-induced P-CREB-like immunoreactivity (P-CREB-lir) in
vitro, Glu was applied to the SCN for 10 min, after which the brain slices
were placed in 4% paraformaldehyde for 12-18 hr at 4°C. The slices were
then transferred to a cryoprotectant (15% sucrose in PBS) for 24 hr
before sectioning at 20 um by cryostat at —15°C; sections were affixed to
gelatin-coated microscope slides and stored at —15°C. For light-induced
P-CREB-lir, animals were exposed to 150 lux of white light for 10 min at
CT 19. After appropriate durations, animals were deeply anesthetized
with sodium pentobarbital (75 mg/kg, i.p.) and perfused intracardially
with 60 ml of chilled PBS followed by 600 ml of chilled 4% paraformal-
dehyde. For immunocytochemical detection of P-CREB, the tissue sec-
tions were rinsed with PBS and then incubated for 1 hr at room temper-
ature with 0.3% Triton X-100 and 1% heat-inactivated goat serum to
permeabilize the lipid membrane and block nonspecific binding sites,
respectively. The sections were then incubated for 18—24 hr at 4°C with
affinity-purified polyclonal anti-P-CREB antibody diluted 1:1000 in PBS
with 0.3% Triton X-100 detergent. The avidin—biotin—peroxidase com-
plex (Vector Laboratories, Burlingame, CA) was used with the glucose
oxidase reaction as the peroxide generator to form an insoluble brown
DAB product localizing the antigen. The sections were then air-dried
before alcohol dehydration and xylene defatting, and coverslips were
applied with Permount (Ding et al., 1994a).

Because neuronal NOS also mediates the neuronal NADPH-
diaphorase histochemical reaction (Hope et al., 1991), NADPH-
diaphorase staining is widely used to visualize neuronal NOS. Histochem-
ical detection of neuronal NADPH diaphorase was performed according
to Vincent and Kimura (1992) with minor modifications. Briefly, the rat
brains were fixed and sectioned as above for immunocytochemistry. The
tissue sections were first incubated in PBS with 0.3% Triton X-100 for 30
min at room temperature and then incubated with 0.5 mMm nitro blue
tetrazolium (NBT, Sigma, St. Louis, MO) and 1.0 mm B-NADPH (Sigma)
in 50 mM Tris—-HCI buffer, pH 7.8, at 37°C for 30-60 min. The tissue
sections were transferred to PBS to stop the color reaction. Histochem-
ical reactions in the absence of NADPH or NBT, respectively, were used
as controls.

Because P-CREB is a nuclear protein and NOS/diaphorase is a cyto-
plasmic enzyme, it is possible to discriminate the two proteins in the same
neurons to evaluate their colocalization. For double-label immunocyto-
chemistry and histochemistry, the animals were exposed to a light pulse
for 10 min at CT 19. The animals were perfused, and the brains were
removed and sectioned as described above. The tissue sections were first
incubated with the primary and secondary antibodies recognizing
P-CREB to generate a brown DAB-peroxidase staining in the nucleus.
After PBS washes, the sections were then incubated with NADPH and
NBT. A diaphorase histochemical reaction will generate blue NBT stain-
ing in the cytoplasm. The sections were then dehydrated and mounted as
described above.

Quantitative analysis of P-CREB-lir. Because the tissue fixation and
immunocytochemical reaction may vary from time to time, all experimen-
tal and control slices were processed simultaneously with the same batch
of reagents. Cell counting was performed manually to include all visible
P-CREB-lir-positive cells within one focal plane of each 50 wm section of
the entire SCN. For the supraoptic nucleus (SON), only the sections that
were on the same level of the nucleus circularis were counted. For
computerized imaging analysis of P-CREB-lir, brain sections were placed
under a Zeiss microscope, and the images were captured by a CCD video
camera (NEC). The digitalized image was displayed on a Macintosh
computer equipped with National Institutes of Health Image software. By
moving a cursor masking the SCN, the image intensity in nonresponsive
brain regions was determined. A frequency histogram of the image
intensity was used to select a threshold cutoff for signal from background.
By calculating the histogram for image intensity above the threshold, the
average intensity of the signal and the number of pixels exceeding the
threshold were determined (data not shown). Statistical analyses were
performed using the software SAS.

Nuclear protein extraction and Western blot. Brain slices were main-
tained in vitro for >5 hr until the appropriate CT, when they were
quick-frozen on a glass slide cooled on dry ice. A stainless steel needle
(400 pum inner diameter) was used to punch both SCN from each
500-um-thick brain slice. For each experimental condition, the SCN from
five animals were collected (~50 ug protein) and stored at —80°C until
use. Samples enriched for nuclear protein were prepared according to
Dash et al. (1995). All steps were carried out at 4°C with the following
reagents present in all solutions: 1 mm EGTA, 5 mm EDTA, 2 mm NaF,
1 mM sodium orthovanadate, 10 mm glycerol phosphate, 200 uM sodium



Ding et al. « Circadian Regulation of SCN P-CREB by Glu and NO

CT7

Xt |

Light

Glu

Figure 1. Sensitivity of SCN to CREB phosphorylation by light or Glu is
restricted to the night. Robust nuclear staining of P-CREB-lir was induced
in the SCN under free-running conditions after stimulation with light in
vivo (150 lux, 10 min) or Glu in vitro (10 mm in 0.2 ul drop, 10 min) during
subjective night (CT 19-20). In contrast, only a weak basal level of
P-CREB-lir was detected at CT 7 after the same light or Glu treatment.
When the anti-P-CREB antibody was preabsorbed with equal amount of
phospho-CREBtide, no positive immunoreactivity was detected. Scale bar,
200 um.

pyrophosphate, 5 uM microcystin, 0.5 wg/ml leupeptin, 0.7 ug/ml pepsta-
tin, 1.0 ug/ml aprotinin, 40 wg/ml bestatin, and 1 mm PMSF. The SCN
tissue was washed with sucrose buffer (0.25 M sucrose, 15 mm HEPES, 60
mM KCl, 10 mm NaCl, pH 7.2), and centrifuged at 2000 X g for 10 min.
Pellets were resuspended in cell lysis buffer (1.5 mm MgCl,, 10 mm KCl,
15 mm HEPES, pH 7.2), agitated gently, and centrifuged at 4000 X g for
10 min. Pellets were resuspended in 1 ul/SCN of nuclear lysis buffer (1.5
mMm MgCl,, 0.8 mm KCl, 100 mm HEPES, pH 7.2), tapped 3-4 times
during a 30 min agitation, and centrifuged at 14,000 X g for 30 min.
Supernatants containing the enriched nuclear extract were then stored
at —80°C.

For Western blots, denaturing buffer was added to a 2 ul aliquot of
SCN nuclear extract from each treatment. Samples were subjected to
SDS-PAGE on a 12% gel, transferred to nitrocellulose, and probed as in
Ginty et al. (1993), with the exception that a horseradish peroxidase
linked to goat anti-rabbit secondary (1:1000) and an ECL fluorescence
system (Amersham, Arlington Heights, IL) were used for detection. To
compare intersample protein loading, gels were silver-stained (Morrissey,
1981), and each lane was scanned densitometrically.

RESULTS

Circadian sensitivities of the SCN to Glu- and
light-induced CREB phosphorylation are coincident

To evaluate the temporal sensitivities of the SCN to Glu- and
light-induced P-CREB formation, we compared the effects of
these stimuli in subjective day and night. Induction of P-CREB-lir
in the SCN was dependent on the CT of treatment. When Glu (0.2
wl drop at 10 mm) was applied to the surface of the SCN for 10
min during the subjective day (CT 6-7), no increase in P-CREB-
lir above basal level was observed. In contrast, during the subjec-
tive night (CT 19-20), this treatment induced robust nuclear
P-CREB-lir within the SCN (n = 8) (Fig. 1). Application of a
microdrop of the medium only at CT 20 for 10 min did not change
P-CREB-lir from the basal level (n = 6). Staining was fully
blocked by preincubating the antibody with P-CREBtide.

When the efficacy of Glu applied in vitro was assessed with
reference to that of light in vivo, we observed that the patterns
of P-CREB-lir were similar (Fig. 1), despite differences in the
spatial character of stimulation. After a 10 min exposure of rats
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Figure 2. Time course of P-CREB-lir in the SCN after light exposure.
After a light pulse at CT 19, P-CREB-Iir in the SCN reached maximum
level within 10 min and remained at this level at 30 min. It declined to
approximately half-maximum by 1 hr and returned to nearly basal level in
~2 hr. In contrast, the P-CREB-lir in the SON of the same animals
remained unchanged throughout the entire duration after the light expo-
sure. General linear regression (GLM) for unbalanced ANOVA and post
hoc test (Duncan) revealed that the levels of P-CREB-lir in the SCN at 10,
30, and 60 min groups are significantly different from basal level and from
each other except for the values at 10 and 30 min. Each data point
represents at least three animals; **p < 0.01.

to light, distinctive nuclear staining of neurons was localized
primarily in the ventrolateral region of the SCN, where pro-
jections from the retina terminate. However, P-CREB-lir in-
duced by Glu in the brain slice was not always restricted to the
ventral SCN, possibly because the microdrop can exceed the
retinorecipient region. Furthermore, despite the less localized
P-CREB staining, the phase shifts induced by Glu microdrops
are similar in timing, direction, and amplitude to those induced
by light.

Induction of P-CREB-lir in the SCN after light exposure
is rapid and transient

To establish a time course for the level of light-induced P-CREB-
lir in the SCN, animals were killed at 10, 30, 60, and 120 min after
the 10 min light exposure at CT 19. Quantitative analysis of
P-CREB-lir was performed by cell counting as well as by comput-
erized imaging analysis. Although immunocytochemical methods
cannot determine the exact amount of antigen, they do permit the
measurement of relative changes between control and treated
groups, while preserving neuroanatomical localization (Ding et
al., 1994a; Mize, 1994). Basal P-CREB-lir was low in the rat SCN,
similar to basal levels in the hamster (Ginty et al., 1993). However,
a high level of P-CREB-lir appeared rapidly in response to a light
stimulus at night (Fig. 2). Quantitative analysis of P-CREB-lir in
the SCN showed that after a light pulse at CT 19, P-CREB-lir
reached maximum level within 10 min and remained at this level
at 30 min. It declined to approximately half-maximum by 1 hr, and
returned to nearly basal level in ~2 hr (n = 18) (Fig. 2). In
contrast to the SCN, the level of P-CREB-lir in the supraoptic
nucleus SON of the same animals was unaffected by light
exposure.
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Figure 3. Blockade of Glu-induced P-CREB-lir in the SCN brain slices by
inhibitors of the NMDA receptor and NOS. A 20 min preincubation in the
NMDA receptor blocker APV (0.1 mm) or the NOS inhibitor, L-NAME
(0.1 mm) diminished Glu-induced P-CREB-lir in the SCN at CT 20,
whereas D-NAME (0.1 mm), the inactive stereoisomer of L-NAME, failed
to block Glu-induced P-CREB-lir. These levels of staining are represen-
tative of four to six replications of each condition. Scale bar, 200 wm.

Glu-induced CREB phosphorylation in the SCN is
channeled via the NMDA receptor and NO

signaling pathway

To determine whether Glu effects on P-CREB were mediated via
an NMDA receptor, SCN slices were bathed in a specific NMDA
receptor antagonist, 2-amino-5-phosphonovaleric acid (APV, 0.1
mMm), for 20 min before Glu treatment. Although APV alone had
no effect on the basal level of P-CREB-lir (n = 6) (Fig. 3), it
prevented Glu-induced P-CREB-lir at CT 20 (n = 6). Thus, as in
Glu-stimulated phase resetting (Ding et al., 1994b), P-CREB
formation requires NMDA receptor activation.

To test whether NOS activation is in the pathway leading to
P-CREB induction, a competitive NOS inhibitor, L-N ©-nitro-Arg-
methyl ester (L-NAME) was used. L-NAME has been shown to
block both GLU-induced phase shifts of SCN neuronal circadian
rhythms in vitro and light-induced phase changes of locomotory
rhythms in vivo (Ding et al., 1994b; Weber et al., 1995a). Prein-
cubation in L-NAME (0.1 mm) for 20 min significantly diminished
the P-CREB-lir normally induced by Glu at CT 20 (n = 8),
whereas the inactive stereoisomer D-N ©-nitro-Arg-methyl ester
(D-NAME, 0.1 mm) failed to prevent the effect of Glu on
P-CREB-lir (n = 6) (Fig. 3). Neither L-NAME nor p-NAME,
when applied alone, had apparent effects (n = 6 each).

Microdrops of an exogenous NO generator, S-nitroso-N-acetyl-
penicillamine (SNAP; 0.01 mm), induced P-CREB-lir in the SCN
during the subjective night but not the subjective day (n = 4) (Fig.
4). This coincides with the circadian sensitivity of the SCN to
NO-induced phase resetting. The pattern of P-CREB-lir induced
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Figure 4. CT-dependent P-CREB induction by exogenous NO donor in
the SCN. A microdrop (0.2 ul) of NO generator SNAP (0.01 mm) applied
directly to the SCN induced P-CREB-lir at CT 19 (4), but not at CT 7 (B).
Nissl stain demonstrates the histological boundary of the rat SCN (C).
Scale bar, 200 wm.
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Figure 5. Circadian sensitivity of SCN to phase resetting. Phase resetting
was assessed by measuring the time-of-peak of the endogenous circadian
rhythms of the neuronal activity of the SCN in brain slice. Top panel,
Continuous single-unit extracellular recording of the unperturbed SCN
neuronal activity from 112 units over 38 hr. The firing rate of this circadian
rhythm peaked in midsubjective day at CT 7, on both days 2 and 3 in vitro.
Middle panel, At CT 19, Glu advanced the peak of the SCN activity rhythm
by 3 hr. A 0.2 ul droplet of 10 mm Glu was directly applied to the SCN for
10 min (arrow), followed by EBSS wash. Neuronal activity was recorded
over 10-12 hr on each of the next two cycles to define the time-of-peak
activity. Bottom panel, At CT 19, a 0.2 ul droplet of 0.01 mm SNAP
advanced the peak of the SCN firing rate by 3.5 hr. The horizontal bars
indicate the subjective night of the circadian cycle. The dashed vertical lines
mark the time (CT 7) of the normal peak of the circadian rhythm of the
neuronal activity in unperturbed and EBSS-treated controls.
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Figure 6. Quantitative comparison of phase shifts and P-CREB-Iir in-
duced by various reagents affecting the Glu/NMDA receptor/NOS/NO
pathway at CT 19-20. All measurements were made on SCN studied in
vitro. Phase shifting data are replotted from Ding et al. (1994b) to facilitate
direct comparison. P-CREB-lir was determined after treatment, fixation,
and sectioning so that n = each SCN brain slice per treatment (1 SCN slice
was obtained from each animal). GLM for unbalanced ANOVA and post
hoc test (Duncan) revealed that only Glu, SNAP, and Glu + pD-NAME
significantly induced phase shifts as well as increased P-CREB-lir from
basal levels in the SCN in vitro. Each data point represents the mean + SD
of four to eight animals; **p < 0.01.

by SNAP was similar to that induced by Glu, except that the
P-CREB-like nuclear staining was sometimes also found outside
the SCN, possibly because NO can diffuse to a greater radius than
the microdrops. However, the P-CREB-lir inside the SCN was
always stronger than the surrounding hypothalamus (Fig. 4).

To compare the effect of Glu and SNAP on phase resetting,
single-unit recording was performed to determine the time-of-
peak of the SCN neuronal activity. At CT 19, the phase advance
(3.5 £0.79 hr, n = 4) induced by a microdrop of SNAP (0.01 mm)
applied for 10 min was overlapping with the response to Glu
(3.3 £ 0.6 hr, n = 6) (Fig. 5).

To evaluate the effects of stimulating or inhibiting elements of
the Glu, NMDA, and NO signaling pathway on both production
of P-CREB-lir and phase shifts, the results of each treatment were
compared quantitatively (Fig. 6). Only in SCN exposed to Glu,
SNAP, and Glu + pD-NAME were there significant phase shifts
and P-CREB-induction (p < 0.01) (Fig. 6). This demonstrates
that both the stimulatory effects of Glu, NMDA, and NO donors
and the inhibitory effects of NMDA and NOS antagonists on Glu
induction of P-CREB-lir matched their effects on SCN clock
phasing (n = 4-6 per condition) (Fig. 6). Together, these data
reveal a quantitative correlation between phase shifts of the
circadian rhythm and putative P-CREB formation in the SCN
during the nocturnal period of sensitivity of the clock to light-,
Glu-, and NO- stimulated resetting.
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Figure 7. Colocalization of NADPH diaphorase and light-induced
P-CREB-lir in the SCN. NADPH-diaphorase-positive neurons of varying
size, arborization, and intensity are localized in the ventrolateral region of
the SCN (a). Some diaphorase-containing neurons in the ventrolateral
SCN have long processes projecting to the core of the SCN (b). The
double-label immunocytochemistry and histochemistry revealed that the
brown nuclear staining of P-CERB-lir was colocalized with the blue
cytoplasmic staining of neuronal diaphorase within SCN neurons (c).
Scale bars: a, 50 um; b, 40 um; ¢, 20 wm.

Colocalization of NADPH diaphorase and light-induced
P-CREB-Ilir in the SCN

To study the spatial relationship between P-CREB- and NOS-
containing neurons, a double-label immunocytochemistry and his-
tochemistry procedure was used to evaluate potential colocaliza-
tion of light-induced P-CREB-lir and NADPH-diaphorase
staining in the SCN (n = 12). The neuronal NADPH-diaphorase
histochemical reaction has been shown to visualize neuronal NOS
(Hope et al., 1991). Consistent with previous reports (Decker and
Reuss, 1994; Amir et al., 1995; Reuss et al., 1995; Chen et al.,
1997), NADPH-diaphorase- and neuronal NOS-containing neu-
rons are sparse in the SCN. They are concentrated in the ventro-
lateral region (Fig. 74). SCN neurons of varying size, arboriza-
tion, and intensity were observed with diaphorase staining (Fig.
7A,B). The double-label histochemistry and immunocytochemis-
try procedure revealed that the blue cytoplasmic staining of neu-
ronal diaphorase was colocalized in a subset of neurons with the
brown nuclear staining of P-CERB-lir after a 10 min light pulse
(Fig. 7C). However, not every diaphorase-containing neuron in
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Figure 8. Glu induces a 43 kDa phosphoprotein in the SCN at night. Top
panel, Affinity-purified anti-P-CREB antibody was used in Western blot
analysis of the SCN nuclear extracts. A robust increase above basal level
of a 43 kDa band was detected after Glu treatment at CT 20, but not at CT
7. A less intense reaction was also seen in bands of 33-36 kDa. The NOS
inhibitor L-NAME diminished the amount of the 43 kDa band recognized
by the anti-P-CREB antibody. Bottom panel, When the same gel was
reprobed with the anti-«CREB antibody, equivalent amounts of the 43
kDa protein were present under all conditions. All experiments were
repeated at least three times.

the SCN was colocalized with P-CREB-immunoreactive neuron
and visa versa. Both P-CREB-lir neurons and diaphorase-positive
neurons were localized in the ventrolateral region of the SCN.
However, there were more P-CREB immunoreactive neurons
than diaphorase-containing neurons in the SCN. Cell counts of
both P-CREB-lir and diaphorase-positive neurons revealed that
the ratio between them was ~50:1.

Glu induces the appearance of a 43 kDa

CREB-positive phosphoprotein in SCN nuclear
extracts at night

To further characterize the protein species representative of
P-CREB-lir induced by Glu, SCN nuclear extracts (Dash et al.,
1995) were denatured (Laemmli, 1970) and subjected to West-
ern blot analysis with the anti-P-CREB antibody. An increase
above basal P-CREB-lir was observed in a 43 kDa nuclear
protein after Glu treatment in the subjective night, but not
subjective day (n = 6) (Fig. 8). In addition to this major band,
increased immunoreactivity in minor bands of 33-36 kDa was
also observed after night-time treatment. Consistent with the
results of quantitative immunocytochemistry, the NOS inhibi-
tor L-NAME greatly diminished the amount of the 43 kDa band
recognized by the anti-P-CREB antibody. When the same gel
was reprobed with the anti-«CREB antibody, which recognizes
aCREB regardless of the phosphorylation state, the quantity of
this 43 kDa protein was constant across samples and between
day and night.

DISCUSSION

Phosphorylation of the transcription factor CREB has been iden-
tified as a key step coupling extracellular stimuli to long-lasting
intracellular responses (Sheng and Greenberg, 1990; Brindle and
Montminy, 1992). When CREB is phosphorylated on Ser'*?, by
cAMP or Ca**/calmodulin-dependent protein kinases (Gonzalez
and Montminy, 1989; Dash et al., 1991; Sheng et al., 1991), it
becomes active in promoting transcription at the cAMP-response
element (CRE) (Hunter and Karin, 1992; Chrivia et al., 1993).
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P-CREB can activate the CREs of a number of genes, including
the immediate-early gene c-fos (Sassone-Corsi et al., 1988; Sheng
et al., 1990) and zif/268 (Sakamoto et al., 1991), and genes encod-
ing synaptic vesicular protein synapsin I (Sauerwald et al., 1990).
CREB phosphorylation has been implicated in the learning and
memory processes in a wide range of organisms, including Aplysia
(Dash et al., 1990; Alberini et al., 1994), Drosophila (Tully et al.,
1994; Yin et al., 1994, 1995), and mammals. CREB-deficient
mutant mice exhibit impaired long-term memory, whereas short-
term memory remains intact (Bourtchuladze et al., 1994). Phase
shifting of the circadian clock is a neuronal phenomenon consis-
tent with this coupling pattern between short-term extracellular
stimuli, P-CREB induction, and long-term response with behav-
ioral consequences; a brief light pulse to free-running animals
during their subjective night can rapidly induce P-CREB in the
SCN and reset the phase of circadian behavioral cycles (Ginty et
al., 1993).

The present study demonstrates that direct application of Glu
or an NO-releasing agent to the SCN, treatments that induce
phase resetting, can induce phosphorylation of the transcription
factor CREB at the transcriptional regulatory site Ser'*.
P-CREB was induced only at CTs when the clock is sensitive to
phase resetting by light, Glu, and NO. Further, we demonstrate
that production of the gaseous neurotransmitter NO, a critical
element in light- and Glu-induced phase shifting of circadian
rhythms (Ding et al., 1994b; Weber et al., 1995a), is required for
the phosphorylation of CREB through the Glu pathway. The
P-CREB-lir induced in vitro by Glu possesses the same molecular
weight as P-CREB-lir induced by light in vivo.

The time course of P-CREB induction by light in the SCN is
rapid and transient; peak P-CREB-lir appears 10-30 min after the
onset of the light pulse. It remains significantly elevated at 60 min
but returns to basal level by 120 min. The timing of this response
is consistent with findings of P-CREB induction in the magnocel-
lular hypothalamic SON by salt loading (Shiromani et al., 1995)
and the parvocellular neurons in the PVN by stress (Kovacs and
Sawchenko, 1996), respectively. In addition, a quantitative corre-
lation exists both between phase shifts of circadian rhythms and
the level of P-CREB-lir stimulated by light and Glu at CT 20.
Because NO is a freely diffusible intercellular messenger and
intercellular diffusion is required for the alteration in phase (Ding
et al., 1994b), it is likely that a relatively smaller population of
NOS-containing neurons may be able to activate a larger popu-
lation of target cells. We found that Glu-induced P-CREB-lir in
~50 times more neurons than the number of diaphorase-
containing neurons in the SCN. Furthermore, the extensive spatial
overlap and colocalization between light-induced P-CREB-lir and
NADPH diaphorase in the ventrolateral retinorecipient region of
the SCN support the idea that NOS-containing neurons may be
targets of photic entrainment signals from the retina (Decker and
Reuss, 1994; Ding et al., 1994b).

Although it remains to be proven whether P-CREB formation
is essential for phase shifting of circadian rhythms, it is clear that
P-CREB is useful as a marker to study the signal transduction
elements linking nocturnal light and Glu/NO elevation to
P-CREB formation and its molecular consequences. The signaling
steps between Glu/NO and P-CREB are presently unknown.
However, Ca** and/or cGMP are likely to play important roles.
NO can potentiate Ca*"-induced gene expression involving the
activation of CREB in neuronal cells (Peunova and Enlkolopov,
1993), and NO can stimulate transcription via a cGMP pathway,
including expression of immediate-early genes c-fos and junB in
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PC-12 cells (Haby et al., 1994). A study of hippocampal neurons
demonstrated a functional correlation between CREB phosphor-
ylation and the induction of both long-term potentiation (LTP)
and long-term depression (LTD). P-CREB formation triggered by
LTP- or LTD-inducing stimuli required calmodulin and Ca**
calmodulin-dependent protein kinase (CaM kinase), but not
cAMP-dependent kinase (PKA) activities (Deisseroth et al,
1996). Both CaM kinase and cGMP-dependent protein kinase
(PKG) have been implicated as mediators of light-induced
phase shifts in hamster behavioral rhythms (Golombek and
Ralph, 1994; Weber et al., 1995b; Mathur et al., 1996), and a
CaM kinase inhibitor has recently been reported to atten-
uate light-induced P-CREB in hamster SCN (Glolombek and
Ralph, 1995).

This study has identified the initial signal transduction elements
linking photic stimulation to CREB phosphorylation in the SCN.
These signaling elements are the same as those that are critical to
light-induced phase resetting. The aggregate data support a sig-
naling pathway in which nocturnal light impinging on the retina
stimulates glutamate release from terminals of the retinal gan-
glion cells projecting to the ventrolateral SCN. Necessary ele-
ments at SCN neurons include NMDA receptor activation, NOS
stimulation, and intercellular movement of NO (Ding et al., 1994).
Because both the NMDA and non-NMDA Glu receptors are
present in the SCN (Mikkelsen et al., 1993; Gannon and Rea,
1994) and non-NMDA receptor agonists can induce phase shifts
(Shibata et al., 1994), non-NMDA glutamatergic neurotransmis-
sion may also contribute to stimulating CREB phosphorylation in
the SCN. However, it is likely that the influx of Ca™? attending
NMDA receptor activation leads to activation of kinases such as
CaM kinase as well as of NOS. The resulting rise in NO, in turn,
could activate PKG. The relative contributions of these potential
signaling pathways to CREB phosphorylation requires careful
evaluation. Nevertheless, the data thus far place P-CREB at the
earliest point of the critical transactivational sequence that inter-
sects with the clock mechanism.

Although the target gene(s) of P-CREB in the SCN have yet
to be identified, c-fos has been suggested as a candidate (Ginty
et al., 1993). Induction of c-fos is regulated by P-CREB in
response to Ca”?", cAMP, and growth factors in hippocampal
and PC-12 cells (Sheng et al., 1988; Berkowitz et al., 1989;
Sheng et al., 1990). In the SCN, P-CREB formation precedes
the appearance of c-fos mRNA in response to light (Korn-
hauser et al., 1992), and c-fos mRNA is induced in proportion
to the intensity of the light stimulus (Kornhauser et al., 1990).
In addition, intracerebroventricular injection of antisense oli-
gonucleotides for c-fos and junB attenuates c-fos transcription
and light-induced phase shifts (Wollnik et al., 1995). However,
a recent study reported an uncoupling between NO-mediated
photic stimulation of hamster behavioral phase shifts and Fos
expression in the SCN (Weber et al., 1995a). Furthermore,
systemic saline injection and handling can induce behavioral
phase shifting and Fos expression (Edelstein and Amir, 1995)
but not P-CREB-lir (Sumova et al., 1994) in the SCN. More-
over, it was reported recently that light-induced Fos expression
in the rat SCN was codistributed but not colocalized with
NADPH diaphorase (Amir et al., 1995). Our present study
demonstrates that a number of NADPH-diaphorase-positive
neurons do colocalize with the light-induced P-CREB-lir in the
rat SCN. Therefore, it is likely that multiple cellular compo-
nents, signal transduction pathways, and transcriptional activa-
tions contribute to the SCN response to light.
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Finally, the free-running biological clock shows circadian
changes in vivo and in vitro in its response to light, Glu, and NO
(Ding et al., 1994b). Therefore, the clock controls its own tempo-
ral sensitivity to these stimuli (Gillette, 1996). The consequence is
that P-CREB formation and phase resetting can only be stimu-
lated through this signaling pathway in the nocturnal domain of
the clock’s cycle. Yet, NMDA receptors (Gannon and Rea, 1994),
NOS (Chen et al.,, 1997), and CREB (Ginty et al., 1993) each are
present in both night and day. Therefore, among the signaling
elements between NO and CREB must lie the clock-controlled
molecular gate(s) through which the clock regulates its own tem-
poral sensitivity to these resetting stimuli.
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