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ABSTRACT 
The relationship between plants and hydrogen peroxide is a challenging one: H2O2 has many essential roles in plant metabolism but at the 
same time, accumulation related to virtually any environmental stress is potentially damaging. In this review, I consider H2O2 physiology 
broadly, both as a stress and as a developmentally and physiologically important metabolite, including its sources and mobility, and the 
vexing question of tissue level concentrations. I then consider problems associated with H2O2 as a signaling molecule, including mecha-
nisms of H2O2 sensing, signaling, and response networks. Finally, I discuss recent advances in transcript network modeling, and complex 
systems approaches to understanding the interactions between the transcriptome, proteome and metabolome in responses to H2O2. 
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INTRODUCTION 
 
It is now well established that virtually all biotic and abiotic 
stresses induce or involve oxidative stress to some degree, 
and the ability of plants to control oxidant levels is highly 
correlated with stress tolerance. Whether the antioxidant 
approach to explaining tolerance will, in the long run, be 
any better as a single factor explanation than, say, the 
ability to exclude Na from shoots and maintenance of K/Na 
discrimination ratios has been for salt tolerance, or the 
ability to accumulate compatible osmotica has been for 
drought tolerance, remains to be seen. It is now clear, how-
ever, that any stress condition or significant change in 
environment is associated with up- or down-regulation of 
hundreds of genes, that some proteins important to oxida-
tive metabolism may have high stabilities and low turnover 
rates, and that even the cell wall, once considered of little 
biological importance, contains hundreds of proteins and 
metabolites, many of which may be involved in oxidative 

metabolism. 
At the same time, it is also well established that oxi-

dative metabolism, and particularly H2O2, is involved in a 
wide variety of reactions and signaling cascades necessary 
for all aspects of plant growth and the integration of activity, 
ranging from the develop of individual root hairs, to xylem 
differentiation and lignification, to wall loosening and wall 
cross-linking, to root/shoot coordination and stomatal con-
trol. Thus, while the involvement of H2O2 in stress respon-
ses is of particular interest, it really must be considered in 
the context of, and even as a special case of, H2O2 involve-
ment in “normal” growth and metabolism. 

Overall, the current “fashion” in plant stress studies is to 
grow plants in controlled conditions, apply a stress rather 
suddenly after a period of unstressed growth, and then com-
pare some aspect or aspects of response – ranging from acti-
vity of a single enzyme to whole genome transcript net-
works – at a fixed time thereafter. Unfortunately for plant 
biologists, but fortunately for plants, such environmental 
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perturbations are not typical of the real world, and models 
built on them may be, as Manfred Eigen put it, “right, but 
irrelevant” (Eigen 1973). Much more difficult is under-
standing the small, minute-to-minute or day-to-day varia-
tions which preclude the necessity to respond dramatically, 
and developing relevant models that include them. 

My objective for this review is to consider the physio-
logy of H2O2 as it relates to plant stress responses, but to do 
so in a way that recognizes “normal” activities. To do this, I 
will acknowledge generality more than details of specific 
responses, and as many of the H2O2-related “tools” that 
plants have as possible, not just those for which the most 
detailed genetic models have been derived. This also means 
that important aspects of stress response that are only 
indirectly or distantly down-stream related to H2O2 will be 
emphasized less. This effort will, of necessity, leave out 
references to many reports: there have been more than 2100 
journal articles on the topic of peroxide in plants since 2000 
alone, and the number is increasing rapidly. 
 
What is H2O2? 
 
Hydrogen peroxide is the two electron reduction product of 
O2. It is potentially reactive oxygen, but not a free radical 
(Halliwell et al. 2000). By comparison with superoxide, O2

•, 
and certainly by comparison with the hydroxyl radical, •OH, 
H2O2 is relatively “safe”: in the absence of transition metals, 
it is stable and unreactive, even at concentrations much 
higher than a biological system would ever generate. Func-
tionally, this imparts on it greater mobility within tissues, 
and potential utility not only as a substrate in a variety of 
reactions, but as a molecule for ROS-related signaling. 

However, H2O2 is potentially quite reactive with mole-
cules containing Fe2+ or other transition metals, through the 
Fenton reaction (Becana et al. 1998). The “evil” result of 
this reaction is the homolysis of H2O2 to 2 •OH, and H2O2 
toxicity is most commonly associated with that action. For 
example, inhibition of Rubisco by exogenous H2O2 results 
from the fragmentation of the LSU at a glycine in the cata-
lytic site (Ishida et al. 1999), dependent on the activation 
state of the enzyme. An identical fragmentation pattern 
occurred in intact chloroplasts when oxidant scavenging 
systems were inhibited (Ishida et al. 1999), or when cold-
sensitive maize leaves were exposed to low temperatures 
(Kingston-Smith et al. 1999), as a consequence of the fact 
that chloroplasts contain as much as 80% of the Fe in a 
plant, and are a good source of radical oxygen species 
(ROS) generally. Similar Fenton reaction mechanisms have 
been associated with H2O2 (or actually, •OH) sensitivity of 
FeSOD (Bhattacharya et al. 2004), and glutamine synthase 
(Farber and Levine 1986), among other enzymes. By con-
trast, direct reaction of H2O2 with the –SH groups has been 
suggested as the mechanism by which H2O2 inactivates 
fructose bisphosphatase (Charles and Halliwell 1980, 1981) 
and sedohepulose bisphosphatase (Wise 1995; Tamoi et al. 
2006) in chloroplasts, and cytosolic glyceraldehyde 3-phos-
phate dehydrogenase (Brodie and Reed 1987; Hancock et al. 
2005). H2O2 toxicity is reduced by removing it enzymatic-
ally (i.e. by catalase or ascorbate peroxidase), or by com-
plexing Fe(III) and Fe(II) with compounds such as tannic 
acid and proanthocyanidins, thus preventing •OH genera-
tion (Toda 2005; Andrade et al. 2006). 
 
WHAT ARE THE RELEVANT TISSUE LEVELS OF 
H2O2? 
 
The basic question here is: how much H2O2 is there in 
plant tissue, and against what background might changes 
be useful signals? Given that there are so many good 
methods for assaying H2O2 in solutions, some of which are 
quite specific, it is surprising that there is such a wide 
range of estimates in plant tissues, spanning nearly seven 
orders of magnitude, and no apparent consensus concer-
ning how large a stress or treatment related change is phy-
siologically significant. At the low end, Hernández et al. 

(2001) reported tissue levels ranging from 10 to 150 pmol/ 
gFW in the pea leaf apoplast with the difference (salt in-
duced) being sufficient to cause oxidative lesions. At the 
other extreme, He et al. (2005) reported concentrations in 
Poa pratensis leaves as high as 1.3% of the dry weight, 
which, based on data in their report, was ca. 60 µmol/gFW 
or 100 mM on a leaf water basis. In maize, Tewari et al. 
(2004) reported concentrations of 20 µmol/gFW, rising to 
75 µmol/gFW with N deficiency. Ben Amor et al. (2006), 
in an interesting study of the coastal halophyte, Cakile 
maritima also reported tissue H2O2 contents on the high end, 
as much as 45 µmol/gFW. Veljovik-Jovanovic et al. (2002) 
were the first to recognize possible interferences by plant 
constituents with H2O2 assay protocols, and suggested that 
leaf levels should generally be less than 0.1 µmol/gFW. On 
the other hand, an analysis of field grown plants, with care 
to account for potential interferences as well as continued 
metabolism of H2O2 after harvesting, suggested that values 
in the 1-5 µmol/gFW range might be normal (Cheeseman 
2006). 

Similarly confusing is what it means – in terms of tis-
sue level H2O2 concentrations – to have an “oxidative 
burst”. This issue is undoubtedly complicated by the rapi-
dity of H2O2 turnover both in planta and after tissue harves-
ting (Cheeseman 2006). In response to an acute ozone ex-
posure, (200 ppb/ 2 hr), Chen and Gallie (2005) reported 
tobacco (cv. ‘Xanthi’) leaf H2O2 levels had increased ca. 4x 
(in the 100 nmol/gFW range, using plants grown with as 
little prior ozone exposure and potential irradiance stress as 
possible), but increased another four to five-fold after 24 hr 
recovery. Karpinski et al. (1997) on the other hand, repor-
ted an oxidative burst in Arabidopsis with exposure to 
excess irradiance - in this case, ten-fold higher than their 
growth irradiance of 200 µmol m-2s-1 - that increased the 
leaf content from about 5 µmol/gFW to less than 7 µmol/ 
gFW. The issue here is only partly the order of magnitude 
and the percent change. The more critical question – which 
I can not answer – is, what background levels and what sort 
of changes are needed to support the role of H2O2 in sig-
naling, especially if measurements are limited, in practice, 
to bulk tissue levels? 
 
WHAT PRODUCES H2O2? 
 
H2O2, and ROS generally, are a fundamental fact of life in 
an aerobic environment (Moller 2001). Understanding the 
role of H2O2 in plant growth or stress responses requires 
models that accommodate the large number of ways in 
which it can be formed and degraded at any given time, and 
that ROS produced by one source may be the drivers or 
substrates for a second (Allan and Fluhr 1997). Major sour-
ces include misfires in the electron transport chains of chlo-
roplasts and mitochondria, the Mehler reaction, a wide vari-
ety of limited substrate oxidases, type III peroxidases, and 
NAD(P)H oxidases (Halliwell and Gutteridge 1999). Some 
of these produce H2O2 directly, and others only via more 
reactive intermediates (e.g. 1O or O2

•). Broadly, these 
events are enhanced by stresses (Alscher et al. 1997; Bol-
well 1999), although they occur as an integral part of many 
facets of plant development. 
 
Excess light and other energy imbalances 
 
It is impossible to envision any environmental effect, whe-
ther or not we or plants recognize it as a stress, that does 
not reflect the energy available to respond or imbalances in 
energy availability, energy transduction and energy meta-
bolism. This necessarily links ROS metabolism with all as-
pects of plant life. Oxidative stress associated with photo-
synthesis is a potential problem any time, but especially 
when the capacity for electron transport exceeds the capa-
city for recycling the NADPH and ATP which result. This 
is likely at irradiances above light saturation, but also at 
lower irradiance when stomates (for example) limit CO2 
supplies. This problem is reduced by activity of the xantho-
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phyll cycle, (e.g. Demmig-Adams et al. 1999), but the ef-
fectiveness is not complete. In that case, the Mehler-Ascor-
bate Peroxidase, or water-water cycle also contributes to 
damage prevention (see Allen 1995; Asada 1999; Heber 
2002). This has been modeled as operating through the se-
quential actions of superoxide dismutase (SOD – genera-
ting H2O2), ascorbate peroxidase (APX – reducing H2O2 at 
the expense of ascorbate) and glutathione reductase (GR – 
regenerating ascorbate at the expense of reduced glutathi-
one). Oxidized glutathione, and the monodehydroascorbate 
radical can both be re-reduced by NADPH, both allowing 
the cycle to continue, and reducing the electron pressure 
for O2

• generation. 
That both the xanthophyll cycle and the water-water 

cycle are important under field conditions has been clearly 
demonstrated using cultivated (e.g. Logan et al. 1998a, 
1998b) or wild-grown plants (Streb et al. 1997; Logan et al. 
1998c; Streb et al. 1998). Moreover, the interplay between 
nutrient and CO2 availability has been demonstrated using 
FACE (free-air CO2 enrichment) studies (Polle et al. 1997). 
In the latter case (using three year old Fagus sylvatica), 
“intrinsic oxidative stress” was reduced when photosyn-
thesis was favored over photorespiration at elevated CO2, 
and modulated by relative nutrient resource availability 
and assimilation. 

Intracellular ROS scavenging is both highly efficient 
and adaptable, and H2O2 related stress, or its prevention, 
resulting from activities in the chloroplasts, mitochondria 
or other organelles, reflects the integration of all cellular 
activities. For example, following application of the cata-
lase (CAT) inhibitor, 3-aminotriazole in Arabidopsis, oxi-
dant damage was limited by increases in the activities of 
the pre-existing APX1 and GR1 isoforms (Kang et al. 
1999) or increased transcription of cytosolic APX (Morita 
et al. 1999). Pea also showed adjustments in the light-inde-
pendent photosynthetic pathways – net photosynthesis, the 
RuBP regeneration rate and carboxylation efficiency all 
declined (Amory et al. 1992). Photorespiratory carbon 
flow was reduced (as indicated by an increase in the for-
mate pool), preventing its return to the Calvin cycle. How-
ever, only when the capacity for H2O2 reduction was ad-
ditionally challenged by enhanced photorespiratory condi-
tions, did H2O2 concentrations increase. Similar manipula-
tions have also been accomplished using antisense tech-
niques. For example, tobacco was engineered to reduce 
APX and CAT expression, individually and together (Rizh-
sky et al. 2002). Double antisense plants compensated, 
preventing oxidative stress, by suppressing photosynthetic 
activity, up-regulating the pentose phosphate pathway, in-
creasing monodehydroascorbate reductase activity, and in-
ducing a chloroplast homologue of the mitochondrial alter-
native oxidase. Interestingly, the response network was 
less complete in plants that lacked only APX or CAT, ren-
dering them more sensitive to oxidative stress. 

The emphasis on scavenging may no longer be suffici-
ent, however (Foyer and Noctor 2003). Rather, the in-
volvement of H2O2 in signaling demands closer attention: 
redox cascades in both chloroplast and mitochondrial elec-
tron transport chains, and the redox states of compounds 
including thioredoxins, ascorbate and glutathione, carry in-
formation in addition to electrons. Indeed, the cellular 
redox state may have precedence over ATP production: a 
Nicotiana sylvestris mutant defective in mitochondrial 
complex I, for example, compensated through antioxidant 
crosstalk, a whole network response involving mitochon-
dria and other organelles, maintaining whole cell redox 
balance (Dutilleul et al. 2003). This included markedly in-
creased alternative oxidase (AOX) activity, and enhanced 
oxidative stress tolerance. Cytosolic APX and glutathione 
reductase, mitochondrial MnSOD, and two isoforms of 
CAT also showed substantial increases in transcript levels. 
Similarly, when low-light-acclimated (200 µmol m-2s-1) 
Arabidopsis plants were exposed to excess light (2000 
µmol m-2s-1) for 1 hr, inducing reversible photoinhibition, 
signal transduction reflecting the redox status of the 

plastoquinone (PQ) pool, led to elevated expression of two 
cytosolic ascorbate peroxidases. Preventing the change in 
the PQ redox poise by supplying reduced glutathione en-
hanced photoinhibition and prevented the APX transcrip-
tional changes (Karpinski et al. 1997). 

In mitochondria, the alternative oxidase (AOX) pro-
vides an additional way of reducing ROS production which 
has too often been overlooked in stress response studies 
(Wagner 1995; Popov et al. 1997). Mitochondrial ROS pro-
duction is particularly associated with electron transfer be-
tween the multiple Fe-S centers and cytochromes in Com-
plexes I and III. Under conditions of surplus electron sup-
ply or limitations in ATP consumption, AOX and the non-
proton-pumping NADH dehydrogenases on the matrix side 
of the inner membrane function to limit mitochondrial ROS 
production by keeping the electron transport chain rela-
tively oxidized and minimizing the number of individual 
electron transfers (e.g. Baxter et al. 2007). Antioxidant en-
zymes in the matrix, together with small antioxidants such 
as glutathione, help remove ROS that are formed. The anti-
oxidants are kept in a reduced state by matrix NADPH pro-
duced by NADP-isocitrate dehydrogenase and non-proton-
pumping transhydrogenase activities (e.g. Purvis and Shew-
felt 1993; Popov et al. 1997; Braidot et al. 1999; Maxwell 
et al. 1999; Casolo et al. 2000). AOX is induced by a num-
ber of stresses (e.g. Farrar and Rayns 1987; Parsons et al. 
1999; Xie and Chen 1999). If these defenses are over-
whelmed, as can occur during both biotic and abiotic stress, 
the mitochondria may be damaged. This can be induced, for 
example, by inhibition of AOX with salicyl hydroxamic 
acid (SHAM) or propyl gallate, stimulating H2O2 produc-
tion with the same substrate dependence as inhibition of 
CN-insensitive respiration (Popov et al. 1997). Antisense 
suppression of AOX also leads to significantly higher ROS 
production, while AOX over-expression has the opposite 
effect (Maxwell et al. 1999; Parsons et al. 1999). 

As important as chloroplast and mitochondrial electron 
transfer are in generation of ROS, they are not the only 
sources. Indeed, multiple sources may be involved in many, 
if not all, stress reactions, and different sources may be 
important in different species (e.g. Allan and Fluhr 1997; 
Bolwell et al. 1998). 
 
Limited substrate oxidases 
 
Limited-substrate oxidases such as glycolate oxidase in per-
oxisomes, and xanthine oxidase and urate oxidase in glyo-
xisomes, are flavin-containing enzymes which directly pro-
duce H2O2 (as opposed to indirect production via O2

•) 
(Delrio et al. 1992). Recently, a H2O2-producing sulfite 
oxidase has also been identified, localized to peroxisomes 
(Hansch et al. 2006). H2O2 produced in these organelles is 
usually quickly consumed by catalase, although isoforms of 
ascorbate peroxidase (APX3) localized to the organelles 
may also contribute to its control (Wang et al. 1999). Other 
flavin-containing oxidases important in specific compart-
ments or tissues include a variety of monoamine (MAO) 
and polyamine (PAO) oxidases, and germin-like proteins. 
For example, in maize, flavin-containing polyamine oxi-
dases have been identified especially in cell types destined 
for lignification (Cona et al. 2005; Paschalidis and Roube-
lakis-Angelakis 2005; Cona et al. 2006a, 2006b). Produc-
tion of polyamines under water or low-temperature stress 
has also been correlated with protection against oxidative 
stress (e.g. in chickpea – Nayyar and Chander 2004). The 
maize PAO is, like many flavin-containing enzymes, DPI 
sensitive, but its activity can be differentiated from others 
sensitive to the inhibitor (such as NAD(P)H oxidases) by 
the fact that H2O2 is released on supply of spermidine or 
other polyamines, and that it is sensitive to phosphatase 
inhibitors. Diamine (copper-containing) oxidases, (DAO) 
using putrescine and cadaverine (diamines) or spermidine 
(triamine) in the apoplast as their substrates, are also impor-
tant in H2O2 production for lignification, as well as being 
induced in response to fungal elicitors and wounding and in 
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cells destined for programmed cell death (Angelini et al. 
1996; Moller and McPherson 1998; Laurenzi et al. 2001; 
Langebartels et al. 2002). 

In tobacco (Nicotiana tabacum cv. ‘Xanthi’), ornithine 
decarboxylase, genes involved in polyamine biosynthesis, 
and polyamine oxidase activities were up-regulated in res-
ponse to tobacco mosaic virus infection. These were quan-
titatively related to the magnitude and size of the hypersen-
sitive response (HR) and HR-like cell death (Yoda et al. 
2003). Inhibiting polyamine biosynthesis with α-difluoro-
methyl-ornithine, or apoplast-localized PAO synthesis by 
RNAi, suppressed H2O2 production and prevented cell 
death (Yoda et al. 2006). Note, however, that amine oxi-
dases are also constitutively present in the apoplast (Liu et 
al. 1995), and different enzymes (e.g. diamine vs. poly-
amine oxidases) show different patterns of constitutive and 
pathogen-induced expression (Asthir et al. 2004). In Me-
sembryanthemum crystallinum, NaCl shock activated both 
diamine oxidase and guaiacol peroxidase, as did exogenous 
cadaverine (Shevyakova et al. 2006). Thus, at least in some 
cases, it appears that synthesis of the amines themselves is 
the controlling factor in responses, rather than synthesis of 
the enzymes (Rea et al. 2004). 

An alternative to polyamines as a substrate for extra-
cellular H2O2 production is the organic acid, oxalate. Oxa-
late oxidase (germin or germin-like protein, GLP) func-
tions in this role, generating H2O2 for the purpose of per-
oxidase-mediated wall cross linking (Caliskan et al. 2004), 
in association with wall formation by protoplasts, and in 
response to wounding (Bernier and Berna 2001; Le Deunff 
et al. 2004). It also increases resistance to certain patho-
gens, e.g. the oxalate producing Sclerotinia sclerotiorum 
(Cober et al. 2003; Hu et al. 2003), and in plants lacking 
the enzyme, oxalate has been shown to inhibit H2O2 pro-
duction (Cessna et al. 2000). In transgenic sunflowers, 
however, in addition to increased resistance to the fungus, 
low constitutive expression of oxalate oxidase activated a 
suite of defense genes and higher expression led to HR-like 
lesions (Hu et al. 2003). Treatment of tobacco (cv. ‘Petit 
Havana SR1’) with 100 mM NaCl also led to increased 
apoplastic accumulation of the protein (Dani et al. 2005). 

As the name suggests, GLP also plays a role in seed 
germination. Combining in vitro germination experiments 
with data on emergence potential of sugar beet (Beta vul-
garis) in the field, de los Reyes and McGrath (2003) 
screened for germination-enhancing and stress-induced 
genes. In accessions with superior germination potential, 
GLP gene expression, oxalate oxidase activity, and H2O2 
content (but not catalase activity), were induced under 
flooding, salt, osmotic, or oxalate treatment. In this case, 
H2O2 production promoted germination, and partially com-
pensated for salt or osmotically-related inhibitions. Acces-
sions with poorer rates of germination had correspondingly 
lower activity of oxalate oxidase. 
 
Type III peroxidases 
 
Unlike APX which is largely intracellular and involved in 
the control of cellular H2O2 levels (Veitch 2004), type III 
peroxidases (POX) are more frequently secreted into the 
apoplast and involved in phenolic metabolism using H2O2 
as a substrate. Despite their classification in one group, 
they perform a wide diversity of functions, inspiring their 
comparison to a Swiss army knife (Passardi et al. 2005). In 
part, this is possible because of their large number. In 
Arabidopsis, for example, there are 73 POX genes and 
their products are found in the cytosol and vacuole as well 
as in the apoplast (Mittler et al. 2004). Peroxidases show 
tissue and developmental specificity (Kay and Basile 1987; 
Perez and Burgos 2004) and vary with respect to substrate 
specificity and pH optima (Bestwick et al. 1998). The pre-
sence of multiple peroxidase isoforms with different sub-
strate specificities can affect cell wall composition, cell 
wall rigidity, the wall redox environment, signaling and de-
fense. In addition, different oxidized substrates differ in 

their potential to be re-reduced by ascorbate, and presu-
mably, other reducing agents (Pearse et al. 2005). However, 
other than, perhaps, in its role in lignification, the actual, in 
vivo substrates of peroxidase are unclear (Halliwell and 
Gutteridge 1999). 

In addition to their role in oxidation of phenolics, some 
forms of POX, especially basic forms, can generate H2O2 
coupled to oxidation of NADH (Ros Barceló 2000; Kou-
taniemi et al. 2005; Sukalovic et al. 2005). In such reac-
tions, peroxidase acts as an oxidase, creating a substrate 
free radical (XH•) which reduces O2 (Halliwell and Gut-
teridge 1999). This activity was first demonstrated with 
NADH using horse radish peroxidase (HRP) by Akazawa 
and Conn (1958), and 25 years ago, Mäder and Amberg-
Fisher, showed that two cell wall peroxidases from tobacco 
differing in pI and in their ability to polymerize cinnamyl 
alcohols, could act similarly (Mäder and Amberg-Fisher 
1982). It has received considerable attention since then. 
Details of the reaction and reaction mechanisms have been 
most intensively studied with respect to NADH, although 
an analogous mechanism has been postulated for stimula-
tion of H2O2 production by salicylic acid (SA) (Kawano 
and Muto 2000). Whether or not NADH is a potential sub-
strate in vivo clearly depends on whether or not it is present 
in the same compartment as the peroxidase. In the apoplast, 
this is doubtful (Otter and Polle 1997; Karkonen et al. 
2002). 

Type III peroxidases are also important in the responses 
of plants to pathogens, with distinct differences between 
isoenzyme effects: changes in the activity and distribution 
of the enzyme were examined during the development of a 
nonhost hypersensitive reaction (HR) to Pseudomonas syr-
ingae pv. phaseolicola and an hrp mutant of the bacterium 
in lettuce (Bestwick et al. 1998). Inoculation with water or 
with wild-type or hrp mutant strains of the bacteria caused 
an initial decline in total POX activity, followed by reco-
very dependent on the phenolic substrate. In tissues experi-
encing the HR, guaiacol peroxidase (pHopt 6.0) recovered 
more rapidly, while recovery of tetramethylbenzidine per-
oxidase (pHopt 4.5) was independent of the type of inter-
action, and chlorogenic acid peroxidase activity (pHopt 6.0) 
was significantly higher in response to the hrp mutant. 
Direct involvement of wall peroxidases in H2O2 production 
in response to fungal elicitors has been demonstrated in 
French bean cell cultures (Bolwell et al. 1998), Arabidopsis 
(Bolwell et al. 2002; Bindschedler et al. 2006), cotton 
(Martinez et al. 1998), and other species, but there clearly 
appear to be species specific differences in this activity 
(Bolwell et al. 1998). The complexity of plant responses 
and H2O2 metabolism is especially clear with respect to 
pathogens: in the hypersensitive response of Arabidopsis 
responding to Fusarium, for example, H2O2 production via 
POX in the apoplast stimulated NAD(P)H oxidase activa-
tion, and apoplastic Ca, K, Cl and wall alkalinization were 
intimately associated with this in a signaling cascade 
(Davies et al. 2006). 

Apart from the enzyme-substrate relationship between 
POX and phenolics, phenolic metabolism is part of normal 
plant growth and responses to environment, and there are 
very large differences in the extent to which plants accumu-
late phenolics, including tannins, constitutively or follow-
ing induction. It is important that phenolic accumulation 
not be considered indicative of pathology alone; phenolic 
acids are critical to normal leaf development and senes-
cence (Tamagnone et al. 1998), and more broadly, are often 
critical to successfully integrating overall resource acquisi-
tion and allocation. This is reflected in “tissue quality”, e.g. 
toughness and phenolic content, both of which are associ-
ated with H2O2 metabolism. As noted by Haslam (1985, 
1986), when C and energy utilization are limited by lack of 
other resources, the resulting metabolic imbalance requires 
diversion of carbon from energy production to energy 
consuming pathways. This occurs within chloroplasts, in 
the glycolytic pathway, and within the mitochondria. For 
example, pyruvate, PEP, acetyl-CoA and 3-phosphogly-
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cerate may be shunted into end products which are metabo-
lically harmless, but ecologically useful in defensive roles. 
While this may reduce the potential for oxidative damage 
to mitochondria, it will not necessarily eliminate it. The 
response of oxidative (and anti-oxidative) metabolism to 
nutrient limitations is, thus, also closely tied to mitochon-
drial protection (see above). Recently, Baxter et al. (2007) 
demonstrated the extent of both transcriptome and metabo-
lome changes associated with oxidative stress in heterotro-
phic Arabidopsis cells, confirming the extent to which 
rapid metabolic adjustments can occur. 

Both abiotic and biotic stresses can cause shifts in phe-
nolic metabolism. In bean (Phaseolus vulgaris) for exam-
ple, Malusa et al. (2002) reported that induction of mild 
oxidative stress, lipid peroxidation, and an increase in phe-
nolic production reflecting a redirection of carbon metabo-
lism, all occurred under conditions of P-limitation, while 
Cakmak (1994) reported strong induction with either K or 
Mg deficiency. Similar induction has also been associated 
with other nutrient deficiencies, e.g. K (Shin and Schacht-
man 2004), Mg (Tewari et al. 2006), and Fe (Ranieri et al. 
2001). In response to herbivory, POX responses are crit-
ical to reducing tissue palatability by wall cross linking 
(Brisson et al. 1994). It is important to note, however, that 
shifting phenolic metabolism does not necessarily mean 
induction of POX genes, at least in the short term. POX 
enzymes are frequently stable and long-lived, enabling 
rapid and flexible responses (Pearse et al. 2005). 
 
NAD(P)H oxidases 
 
These membrane proteins oxidize NADPH at the cytosolic 
surface of the plasmamembrane, and reduce O2 to O2

• at 
the outer surface (Sagi and Fluhr 2006). H2O2 is produced 
indirectly by spontaneous or SOD-mediated dismutation. 
Plant NAD(P)H oxidases were first identified in 1987 in 
purified plasmamembrane fractions from cauliflower (As-
kerlund et al. 1987) and the activity was attributed to a 
membrane bound peroxidase. Trans-plasmamembrane 
electron transport and NAD(P)H dehydrogenase activity 
were subsequently identified, not associated with peroxi-
dases (Misra 1991; Serrano et al. 1994), and insensitive to 
POX inhibitors but sensitive to DPI, also an inhibitor of 
neutrophil NADPH oxidase (Murphy and Auh 1996). 
However, at least some enzymes with these characteristics 
were found to lack flavin cofactors, suggesting that they 
were mechanistically different from the mammalian en-
zyme (Murphy et al. 2000). In some cases, e.g. cultured 
soybean cells, NADH can be oxidized on either side of the 
plasmamembrane (de Hahn et al. 1997). Given that NADH 
has not been found in the apoplast, an alternative function 
has been suggested for this enzyme in protein disulfide-
thiol interchange (Chueh et al. 1997; de Hahn et al. 1997). 
Note, too, that DPI inhibition is far from diagnostic of 
NAD(P)H oxidases: it also inhibits mitochondrial NADH-
ubiquinone reductase, NO synthase, xanthine oxidase, and 
cytochrome P-450 reductase due to phenylation of a flavin 
co-factor or a haem (in the case of cytochrome P-450), 
during enzyme turnover (O'Donnell et al. 1993). 

Plant homologs to neutrophyll NADPH oxidase make 
up a gene family identified as respiratory burst oxidase 
homologs (rboh) of which there are 10 members in Arabi-
dopsis. All have significant similarity to one subunit 
[gp91(phox)] of the neutrophil enzyme (Keller et al. 1998), 
but plant transcripts are larger and have a hydrophilic N-
terminal domain with binding sites suggesting Ca, and G 
protein stimulation of O2

• production. Also unlike the 
mammalian enzymes, plant forms are not glycosylated. 
Different rboh family members are constitutively ex-
pressed or inducible, and expressed throughout the plant or 
limited to specific tissues. AtrbohA, for example, is consti-
tutively expressed and largely restricted to roots, atrbohD 
is involved in ROS production during the hypersensitive 
response to pathogens, and atrbohF is associated with con-
trol of programmed cell death (Torres et al. 2002). In to-

bacco (N. benthamiana), nbrbohA, is expressed constitu-
tively at a low level in leaves, but mere infiltration with 
buffer increases its expression. NbrbohB, on the other hand, 
was specifically induced by a protein elicitor from Phy-
tophthora infestans. Based on virus-induced gene silencing, 
both are involved in programmed cell death responses (Yo-
shioka et al. 2003). A similar pattern was demonstrated in 
potato tubers (strobhA and strobhB) where the proteins 
were localized to the plasmamembrane by immunoloca-
lization and the O2

•-generating capacity (sensitivity to DPI, 
but not azide) was shown (Kobayashi et al. 2006). Speci-
ficity of function of the enzymes in the absence of pathogen 
attack is suggested by expression of different homologues 
in the mesophyll, epidermis and guard cells in leaves and 
their association with darkness- and ABA-induced stomatal 
closure (Desikan et al. 2004). 

The activity of rboh proteins as integrating agents be-
tween ROS production and plant responses to stress is sug-
gested by evidence linking them to Ca-dependent signaling 
associated with such diverse activities as root hair growth 
(Preuss et al. 2004; Shin et al. 2005; Carol and Dolan 2006), 
abscisic acid (ABA) induced Ca-channel activation in 
guard cells (Kwak et al. 2003; Desikan et al. 2004; Bright 
et al. 2006; Desikan et al. 2006), and activation of a mito-
gen-activated protein kinase (MAPK) cascade (Desikan et 
al. 1999; Hancock et al. 2001; Mittler et al. 2004; Zhang et 
al. 2006). Recently, extracellular ATP, which unlike 
NAD(P)H has been demonstrated to occur, has been added 
to the list of agents interacting with the proteins as well as 
stimulating their expression (Song et al. 2006). The in-
volvement of NAD(P)H oxidases in H2O2 production asso-
ciated with lignification and the HR was concluded for cells 
in the xylem of Zinnia elegans based on sensitivity to a 
variety of NADPH oxidase inhibitors (Ros Barceló 1999). 
Interestingly, ROS, particularly O2

•, are also required for 
wall loosening and leaf extension (Rodriguez et al. 2002; 
Liszkay et al. 2004), and root elongation (Renew et al. 
2005). 

In some, but not all species, NAD(P)H oxidase has 
been implicated in responses to drought and other abiotic 
stresses. For example, in maize leaves subjected to a sud-
den stress by floating them on PEG, H2O2 production in-
creased transiently by about 50% over a period of 2 hr 
(Jiang and Zhang 2002), preceded by an increase in ABA 
concentration and followed by increased activities of anti-
oxidant enzymes. Pretreatment with non-enzymatic ROS 
scavengers or DPI prevented the increase, as did suppres-
sion of ABA accumulation with tungstate. 
 
Others and unknowns 
 
In addition to the major enzymatic sources of H2O2 dis-
cussed above, there are many physiologically interesting, 
interspecific differences, even differences between acces-
sions of a single species, which are poorly characterized 
and which might shed light on the ecological breadth of 
H2O2 involvement in stress responses if they were pursued. 
A few examples will illustrate this: when the response to 
100 mM NaCl stress was compared under controlled condi-
tions in Lycopersicon esculentum and its wild relative, L. 
pennellii, the changes were substantially opposite (Mittova 
et al. 2003). L. esculentum showed oxidative stress in the 
form of increased lipid peroxidation and H2O2 levels while 
L. pennellii did not. The levels of antioxidant enzymes 
remained the same or decreased in the domesticated species, 
but increased in the wild relative. Or, consider the coastal 
halophyte, Cakile maritime, which is also adapted to oligo-
trophic conditions. Ben Amor et al. (2006) studied two ac-
cessions which, although their growth was different under 
non-saline conditions, showed no differences at salinities 
ranging from 100 to 400 mM NaCl. On the other hand, all 
measures of oxidant/antioxidant activity, from accumula-
tion of ascorbate and H2O2, to lipid peroxidation and elec-
trolyte leakage, to activities of antioxidant enzymes, dif-
fered significantly and substantially with increasing sal-
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inity: in one accession, the damage related measures were 
unaffected by salinity while levels of antioxidants and en-
zyme activities increased. In the other, enzyme activities 
changed little while H2O2, electrolyte leakage and lipid 
peroxidation increased. 

Drought tolerance is another area where more infor-
mation is needed to understand the enzymatic basis for 
ROS generation and oxidative stress. Drought tolerance 
has been reported to be directly correlated with increases in 
antioxidant enzymes and inversely correlated with levels of 
lipid peroxidation and H2O2 accumulation (Zlatev et al. 
2006). The potential complexity of the oxidant sources was 
also indicated in tomato and Arabidopsis under water stress 
(Yesbergenova et al. 2005), involving xanthine dehydro-
genase (O2

•) and ascorbate oxidase (H2O2), neither of 
which was associated with the pathogen-induced HR. H2O2 
production was insensitive to DPI and both ROS produc-
tion and transcript levels for the two enzymes were up-
regulated by ABA and water stress. Interactions of water 
stress and factors such as mycorrhizal infection and the 
enhancement of tolerance associated with it (Gafur et al. 
2004; Fester and Hause 2005; Wu et al. 2006) also deserve 
further consideration, if possible under field conditions. 
 
HOW MOBILE IS H2O2? WHERE IS IT? 
 
Although it was previously hypothesized that H2O2 pro-
duced intracellularly diffuses to other cells for use by POX 
and other defensive enzymes (Takahama and Oniki 1997; 
Yamasaki et al. 1997), it now appears more probable that 
intracellularly produced H2O2 is consumed quickly and 
locally, and that extracellular metabolism uses H2O2 pro-
duced extracellularly (Bestwick et al. 1998). Transmem-
brane movements of H2O2 (e.g. from the apoplast to the 
cytosol) probably involve controlled passage through aqua-
porins (Bienert et al. 2007). Expressed in yeast, for exam-
ple, two Arabidopsis aquaporins decreased growth and sur-
vival when cells were challenged with H2O2, and blocking 
the channels reversed the effect. The effect also interacts 
with other stresses: low temperature exposure of cucumber 
roots led to extracellular accumulation of H2O2 in the milli-
molar range and reduced hydraulic conductivity (Lee et al. 
2004), consistent with subsequent reports on applied H2O2 
effects (Ye and Steudle 2006). On the other hand, at lower 
levels of H2O2, transport through aquaporins may be im-
portant in eliciting responses intracellularly, such as those 
reported by Allan and Fluhr (1997). This may be essential 
to H2O2-dependent signaling and in toxicity of extracel-
lular oxidants (de Marco and Roubelakis-Angelakis 1996; 
Bestwick et al. 1997; Pellinen et al. 1999). 

H2O2 diffusion not involving membrane transit is also 
restricted to short distances, although much longer than 
movements of other ROS which are even more restricted 
by their greater reactivity. H2O2 localization within tissues, 
sometimes to portions of cell walls in root hairs (Carol and 
Dolan 2006), or in epidermal cells in association with 
wounding or stomatal movements (Allan and Fluhr 1997), 
indicates the extent to which plants control their internal 
environments, as does compartmentation at the tissue level 
within leaves (Doulis et al. 1997; Pastori et al. 2000), in 
vascular tissues (Ogawa et al. 1997; Moller and McPher-
son 1998), and in areas of regeneration (rhizogenesis) 
(Neves et al. 1998). As exemplified by comparative ozone 
studies, resistance may be determined by the extent to 
which H2O2 can be kept, first, out of cells, and then, out of 
chloroplasts (Pellinen et al. 1999; Oksanen et al. 2004). 
Localization with respect to lignification and xylem dif-
ferentiation in “normal” growth and development has been 
particularly well established (Olson and Varner 1993; 
Richardson et al. 1997; Ros Barceló 1998; Repka 1999; 
Ros Barceló 1999; Paschalidis and Roubelakis-Angelakis 
2005; Ros Barceló 2005), although the actual mechanism 
of H2O2 production at the cell surface remains unclear; this 
reflects, in part, differences between species or even within 
single plants responding to different environmental stimuli 

(Ros Barceló and Ferrer 1999). 
Using tissue printing techniques in a variety of plants, 

Schopfer (1994) and Olson and Varner (1993) demons-
trated longitudinal and radial gradients during hypocotyl 
growth, response to ethylene, association with lignification, 
with light mediated inhibition of elongation and with 
wounding, while Neves (1998) documented a progression 
of tissue level changes in H2O2 localization during auxin-
induced rooting of grapevine cuttings. K-deprivation led to 
ROS accumulation in regions of Arabidopsis roots which 
were active in K uptake and transport, and this accumula-
tion was suppressed, independent of the induction of high 
affinity transporters, by mutation of the atrbohC NADPH 
oxidase gene (Shin and Schachtman 2004). Interestingly, 
the application of H2O2 induced those transporters even 
under K-sufficient conditions. The same authors examined 
the role of ROS in Arabidopsis root hair mutants in res-
ponse to N and P deprivation (Shin et al. 2005). The pat-
terns of increased ROS production indicated that root hairs 
were important in N and K responses, but that P responses 
were localized in cortical layers. Even with respect to bac-
terial attack, H2O2 production can be highly localized to 
bacterial attachment sites in cell walls (Bestwick et al. 
1998). 
 
SIGNALING AND RESPONSE NETWORKS 
 
The production of H2O2 is seldom if ever the end of the 
story; frequently, if not always, it is associated with ad-
ditional responses and plays a major role in signaling. 
There is much better understanding of the fact that H2O2 is 
involved in signaling and for some of the intricacies of 
downstream processing than there is for what the meaning 
of the signal is, how a plant decides what the threat is, or 
how a decoded signal is interpreted for a particular stress or 
other metabolic need. In part this is due to uncertainty 
about what actual concentrations of H2O2 are in tissues; as 
noted above, a reported range of seven orders of magnitude 
is really too great to fit into any model. In part it is also due 
to the cellular and tissue-level, spatial restrictions of some 
responses. And in many ways, considering the concentra-
tion of H2O2 in tissue and its relationship to stress or 
defense is analogous to the situation with calcium. Bulk 
calcium levels in leaf tissues are much higher than could be 
tolerated intracellularly and indicate nothing about its acti-
vity in signaling and metabolic control. Some of the most 
exciting advances in integrative plant biology in recent 
years have been directed at understanding sensing, signal-
ing and response networks, and it is appropriate to conclude 
this review with a brief consideration of those results. In the 
end, however, there are many similarities in the response 
networks to different environmental stimuli and develop-
mental states, crosstalk between them seems certain, and 
understanding how plants avert problems inherent with that 
complexity remains a daunting but exciting challenge. 
 
Sensing H2O2 
 
If, for now, we accept the “normal” tissue level concentra-
tions of H2O2 in, for example, leaves, to be between about 
0.1 and 5 µmol/gFW (Veljovic-Jovanovic et al. 2002; 
Cheeseman 2006), that H2O2 turnover is rapid, and that it 
and other ROS have a number of important roles in 
development and physiology in the absence of stress, then 
sensing is clearly a complex problem. Instead of simple 
presence or absence, cells would need to be able to sense 
change, perhaps even qualitative change (e.g. Spiro et al. 
1998). Chandra and Low (1995) presented one model for 
this, involving protein phosphorylation. They reported that 
kinase inhibitors blocked the oxidative burst in cultured 
soybean cells, and if added once the burst were underway, 
terminated it. Phosphatase inhibitors, on the other hand, sti-
mulated it in the absence of other stimuli. They concluded 
that the kinases involved may be constitutively active and 
that the burst was signaled when their phosphorylated 
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forms were stabilized. On the other hand, Hancock et al. 
(2006) recently noted that the small size of the H2O2 mole-
cule made it unlikely that there would be specific receptor 
proteins involved in its sensing. They presented an alterna-
tive suggestion that ROS perception in general was moder-
ated by proteins with other roles, but sharing the charac-
teristic of having active thiol groups as redox targets. That 
is, sensing was a result of oxidation of the thiol groups by 
H2O2 and other ROS, including NO, perhaps even invol-
ving competition of the two types of oxidants for the same 
modification sites (see also Foyer et al. 1997; Neill et al. 
2002). One example of this would be the histidine kinase 
receptor, ETR1, essential for sensing H2O2 leading to 
stomatal closure (Desikan et al. 2005). Interestingly, the 
kinase domain itself was not required for this, but a single 
cysteine (Cys65) was. Kolbe et al. (2006) have presented 
results using both genomic and proteomic analysis to 
support this model. 

Yet another integrating hypothesis has come from ana-
lysis of heat shock responses, involving interactions be-
tween H2O2 and heat shock promoter elements as sensors 
(Volkov et al. 2006). Miller and Mittler (2006) have ar-
gued that heat shock transcription factors are the molecular 
sensors of ROS, and that their complexity, flexibility and 
specialization allow them to control the expression of a 
wide range of stress response genes, not only those invol-
ving heat shock. 
 
Signaling 
 
The connection between H2O2 and signaling networks has 
been extensively documented for a number of stress res-
ponses, including to pathogen elicitors, insect feeding, 
wounding, high temperature and ABA associated stomatal 
closure (Larkindale and Knight 2002; Apel and Hirt 2004; 
Peng et al. 2004; Mateo et al. 2006). These share many 
common features, including the relationship between H2O2 
and Ca, and rather than attempt to review each of them 
here, my approach will be to focus first on that link, then 
on initial aspects of the response cascade, and finally on 
some aspects of the problem which pose the greatest chal-
lenges and opportunities. 

The link between H2O2, Ca, and stomatal closure was 
clearly established by Pei et al. (2000) using patch clamp 
techniques, showing that the well-established signaling 
cascade connecting ABA to stomatal closure runs through 
H2O2 and is mediated by calcium channels. Using fluores-
cent Ca-sensitive dye, the Ca current was shown to lead to 
increased Cacyt. The sensitivity of ABA-induced stomatal 
closure to DPI suggested that the increased Cacyt stimulated 
NAD(P)H oxidase activity, leading to extracellular release 
of O2

•, followed by dismutation to H2O2. Subsequently, 
Chen and Gallie (2004) showed that stomatal responsive-
ness reflects the internal redox state of the guard cells and 
diurnal variations in ascorbate levels and H2O2 production. 
 
Response networks 
 
In the last five years, this response network has been repea-
tedly extended and summarized, not only for stomatal res-
ponses but for responses to other biotic and abiotic stresses, 
and the signaling cascades have been shown to have many 
similarities (e.g. Desikan et al. 1999; Taylor et al. 2001; 
Mittler et al. 2004; Baier et al. 2005; Kalbina and Strid 
2006; Kotchoni and Gachomo 2006; Mishra et al. 2006; 
Suzuki and Mittler 2006; Zhang et al. 2006). Commonali-
ties include both early steps involving Ca or phosphatidic 
acid activated serine/threonine protein kinase (OXI1), a 
mitogen activated protein kinase (MAPK3/6) cascade, and 
downstream transcription factors which influence both 
transcription of scavenging enzymes and NAD(P)H oxi-
dase. As a result, the initial response to H2O2 can both 
reduce and amplify the oxidative signal, allowing graded 
or controlled response to particular elicitation events (Su-
zuki and Mittler 2006). 

The availability of much-of-the-genome microarrays, 
especially for Arabidopsis, has led to even greater exten-
sion of this response network. In 2004, Mittler et al. (2004) 
annotated 152 genes involved in ROS control in Arabidop-
sis, while Hancock et al. (2006) expanded this to at least 
400. The network is both redundant and dynamic, as should 
be expected because of the involvement of ROS in develop-
ment (which is cell and tissue specific), metabolism and 
defense, and the need to maintain a steady-state on which 
critical signals can be registered. Even more complex and 
complete models, including analysis of gene response 
clusters, has been possible with shared Arabidopsis micro-
array result databases (e.g. http://www.arabidopsis.org/info/ 
expression/ATGenExpress.jsp) (Ma et al. 2006; Schreiber 
and Baumann 2007). 

Although relevant studies have included numerous ex-
perimental conditions, ozone responses provide a conveni-
ent illustration both of the extent of the networks and their 
dependence on the conditions of the experiments (e.g. Ol-
brich et al. 2005; D'Haese et al. 2006; Lee and Yun 2006; 
Li et al. 2006a; Tosti et al. 2006). Ozone toxicity has been 
recognized for more than 50 years, but neither the mecha-
nism of action nor the response of organisms at the mole-
cular level is well understood (Rao et al. 2000a). An early 
role was recognized for ascorbic acid in ozone detoxifi-
cation (Tanaka et al. 1985), and mathematical modeling 
(Chameldes 1989) as well as studies using ascorbate defici-
ent or enhanced mutants suggested that it could account for 
a substantial portion of ozone defense (Conklin et al. 1996; 
Chen and Gallie 2005). This model has not, however, gone 
unchallenged (D'Haese et al. 2005). 

At the molecular level, initial studies of the response 
network showed that it had extensive similarities to the 
networks for other oxidative stresses (Baier et al. 2005). A 
recent study by Li et al. (2006a), however, illustrates the 
extent of differences possible even within one species and 
with close relatives of differing overall stress tolerance. 
These authors used microarrays to study the response of 
Arabidopsis and its stress-tolerant relative, Thellungiella 
halophila to ozone. Uniquely, they performed the study in 
the field. Ozone was manipulated using free air concentra-
tion enrichment (FACE) conditions, comparing plants at 
ambient levels and at a mere 1.2-times ambient (dynamic-
ally adjusted). Three Arabidopsis ecotypes were included: 
Columbia-0 (Col-0), Cape Verde Islands (Cvi-0), and Was-
silewskija (WS). Even within this small range of genotypes, 
the responses at both the physiological and transcription 
levels were significantly different. The number of genes 
responding (up- or down-regulation) to elevated ozone 
ranged from 320 in Thellungiella to more than 2900 in WS. 
Among Arabidopsis ecotypes, WS was also the most affec-
ted, i.e. showed the greatest actual damage to leaves, and 
transcriptome responses included photosynthetic light reac-
tion genes, genes in the phenylpropanoid pathway, ROS 
scavenging, photorespiration and the reductive pentose 
phosphate pathway, and hormone biosynthesis and res-
ponse (ethylene, jasmonic acid and salicylic acid). Interes-
tingly, but underscoring the importance of conducting field 
studies rather than relying on highly contrived controlled 
conditions, the relative ozone resistance of the Arabidopsis 
genotypes was reversed under FACE conditions to what it 
had been reported with acute exposure (see Rao et al. 
2000b). The authors emphasized, in addition, the depen-
dence of the results on local weather conditions, time of 
growth and harvesting, and potential biotic stresses during 
the experiment. The “take home lesson” from this is that 
any “definitive” model of a stress response should be ac-
cepted very cautiously. 
 
Complex systems modeling and proteomics 
 
Returning to stomatal responses – this phenomenon pro-
vides the basis for models extending in a different direction. 
Stomatal closure can mediated by external H2O2 directly, 
without prior activation of the NAD(P)H oxidase or ABA; 
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it happens without preceding changes in gene expression. 
In this case, the H2O2 can be produced by apoplastic POX 
or amine oxidases (Allan and Fluhr 1997; Kawano et al. 
2000), the former being stimulated by SA, and involving 
SA• as an intermediate (Kawano et al. 1998; Kawano and 
Muto 2000; Mori et al. 2001). Alternately, the Ca-depen-
dent changes can be mediated by other extracellular elicit-
ors such as oligogalactouronic acid (Hu et al. 2004). As a 
generalization, whether H2O2 production leads or follows 
the increase in Cacyt depends on the signal. In the case of 
ABA, for example, H2O2 follows (Pei et al. 2000). In the 
case of extracellular elicitation, the bulk of the H2O2 pro-
duction leads (Hu et al. 2004) followed by other responses 
dependent on the type of insult (Orozco-Cárdenas et al. 
2001; Miles et al. 2002; Mur et al. 2005). In sum, it 
includes activities and responses, simultaneously, of the 
proteome, the metabolome and the transcriptome. 

Li et al. (2006b) combined more than 40 pathway and 
physiological components known to be involved in stoma-
tal responses into a single, dynamic model using a complex 
systems approach. It allowed simulation of stimulus and 
response, as well as inhibitor effects and gene disruptions. 
In addition, individual components of physiological path-
ways could be manipulated – ion fluxes, electrophysiolo-
gical parameters, signaling cascades or cellular character-
istics – and the results were very largely in keeping with 
experimental observations. This type of modeling essen-
tially says, “if we know what we think we know, then we 
ought to be able to predict responses to manipulations, or 
even design novel, new experiments.” Perhaps most sig-
nificant is the fact that this type of complex systems 
modeling allows quantitative simulation based on limited 
quantitative background information. It allows, for exam-
ple, “manipulation” of the apoplastic proteome and meta-
bolome, otherwise poorly understood, to generate testable 
predictions. 

Direct proteome analysis is much more difficult than 
transcriptome analysis because of the greater difficulty of 
protein isolation and sequencing, and the difficulty of 
extracting the apoplast without contamination by other 
compartments (Watson et al. 2004; Zhu et al. 2006), 
although the tools are developing rapidly. The promise of 
wall proteome studies was shown by analysis of tobacco 
leaves and their response to salt stress (Dani et al. 2005). 
Using two-dimensional electrophoresis of apoplastic fluids, 
they identified 150 polypeptide spots, 20 of which changed 
in abundance with salt stress, but other than identification 
of one germin-like protein, the results were still somewhat 
disappointing. That the activity of apoplastic enzymes can 
be influenced by biotically and abiotically-induced oxida-
tive stress (Diaz-Vivancos et al. 2006), and be modified by 
stress-related hormones, e.g. methyl jasmonate (Maksy-
miec and Krupa 2002), is clear. As importantly, some apo-
plastic enzymes are well known for their stability (e.g. per-
oxidases), which means a comparative proteomic analysis 
would not identify them as responding. Moreover, the 
correlation between enzyme activity and expression of the 
associated mRNAs is, in other cases, demonstrably poor 
(e.g. DAO - Angelini et al. 1996). 

While these problems can be addressed at one level 
using the systems modeling approach, experimentally, as 
was the case for many of the other responses discussed in 
this review, cell cultures have the advantage of simplicity 
that can provide initial models if not appropriately repre-
sent the responses of intact organisms. Chivasa et al. 
(2005), for example, used maize cell cultures to elucidate 
responses of the wall proteome to pathogen elicitors. The 
responses included changes in phosphorylation status (ex-
tracellular peroxidases), disappearance of some proteins 
(e.g. a putative extracellular β-N-acetylglucosamonidase), 
and accumulation of others (a secreted putative xylanase 
inhibitor), and appearance of some classically cytosolic 
proteins (e.g. glyceraldehyde-3-phosphate dehydrogenase). 
 
 

CONCLUSION 
 
Understanding the integrated responses of plants to their 
environment throughout their life cycles which enable them 
to acquire and allocate resources, grow, and reproduce in the 
face of serious and dynamic environmental constraints is as 
challenging now as it has been throughout the history of 
plant biology. In this review, I have focused on one meta-
bolite which is both a constraint and an essential element of 
physiology, and the tools plants have at their disposal to 
deal with it. While it would be naïve to think that recent ad-
vances in analytical techniques, standardized experimental 
systems and modeling put us on the threshold of fully 
understanding the role of H2O2 in plant metabolism, it is 
certain that they will open new levels of exciting uncertainty. 
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